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Abstract: In this paper, we used Jensen’s inequality for the case of convex functions, firstly to obtain a 

Calvert’s generalization and second, to obtain a Maron’s generalization of Opial’s inequality. The main tool 

was adaptation of Jensen’s inequality for convex functions. 
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I. Introduction: 
Opial [5] established the following interesting integral inequality: 

Let ],0[),( bCyx   be such 0)()0(  bxx and 0)( tx in ),,0( b then 
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in the best possible constant. 

In 1967 Maroni [5] obtained a generalized Opial’s inequality by using Holder inequality with indices  and  . 

The result obtained is the following: 

Theorem 1: 

Let )(tp be positive and continuous on   , with  





 ,)(1 dttp where )(,1 tx be absolutely 

function on   , and 0)0( x . The following inequality holds. 
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Calvert [2] also established the following result: 

Theorem 2: [2] assume that 

(i) )(tx is absolutely continuous in   , and 0)( x  

(ii) )(tf is continuous, complex-valued, defined in the range of )(tx and for all real for t of the form 
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The aim of this paper is to generalize Maroni and Calvert results using Jensen’s inequality. 

 

II. Some Adaptation of Jensen’s inequalities: 

Let  be continuous and convex function and let ),( tsh be a non negative function and  be non 

decreasing function. Let  )()( tt  and suppose  has a continuous inverse 
1 (which is 

necessarily concave). Then, 
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With the inequality reserved if  is concave. The inequality (4) above is known as Jensen’s inequality for 

convex function. Setting ttuu  )(,)(  and 0)( t in (4), then we obtain. 
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III. Main Result: 
Before stating our main result in this section, we shall need the following useful Lemma: 

Lemma 1: 

Let )(),( ttx  and )(uf be absolutely continuous and non decreasing functions on  ba,  for  ba0

with .0)( tf  Let ,,, okl and  be real numbers such that 0,0  o and also let R(t) be non negative 

and measurable function on  ba,  such that 
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Then the following inequality holds: 
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Proof: 

Setting )()(),( tRtxtsh  in )5( , we have 
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By setting 
lttf )())((   in )8( yields 
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Combining both )10( and )15( yields, inequality )6( and the proof is complete. 
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Integrating both sides of inequality )16( over ],[ ba with the respect to t, to get 
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If ,0)( ay then inequality )18( becomes 
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By using Holders inequality with o and  we obtain 
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Combing inequality )19( and )20( to obtain inequality )3( if in inequality )20( o and   which is 

our desired result. 

Furthermore, we need the following Lemma to obtain a generalization of Maroni. 

 

Lemma 2: 
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Let okltRufttx ,,),(),(),(),(  and  be as in Lemma 1 such that  
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Proof: 

The proof is similar to the proof of lemma 1. 

Since ,)( luuf  inequality (10) becomes 
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This completes the proof of the Lemma. 
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).()()()()()()()()( 1

1

1

1

0

1

1

1

1

tytPtPtytdttPtPtxtx kkl

l

l

llt

kk 













 







  )25(  

  )()()()(
0

tytydttxtx

t















  )26(  

Putting  
t

txdttx
0

)()( and integrate both side of inequality )26( over ],[ ba with the respect to t obtain 

2

)(
2

1
)()()()(   















b

a

b

a

b

a

dttxdttytydttxtx )27(  

2
11

0

)()()(
2

1

















 dttPtPtx oo

t

)28(  

  

o

o

b

a

b

a

dttPtxdttP

2

1
2

1 )()()(
2

1




























 





)29(  

This is the generalization of inequality ).2(  
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