Dual Results of Opial's Inequality

Y.O. Anthonio¹, S.O. Salawu² and S.O. Sogunro³

¹Department of Mathematics, Lagos State University, Ojo, Nigeria.

²Department of Mathematics, University of Ilorin, Ilorin, Nigeria,

Abstract: In this paper, we used Jensen's inequality for the case of convex functions, firstly to obtain a Calvert's generalization and second, to obtain a Maron's generalization of Opial's inequality. The main tool was adaptation of Jensen's inequality for convex functions.

Keywords: Integral inequalities, Maron's inequality and Calvert's generalization of Opial's inequality Jensen's inequality, convex functions.

I. **Introduction:**

Opial [5] established the following interesting integral inequality:

Let $(x, y) \in C'[0,b]$ be such x(0) = x(b) = 0 and x(t) > 0 in (0,b), then

$$\int_{a}^{b} |x(t)x'(t)| dt \le \frac{b}{4} \int_{a}^{b} (x'(t))^{2} dt$$
 (1)

Where $\frac{b}{4}$ in the best possible constant.

In 1967 Maroni [5] obtained a generalized Opial's inequality by using Holder inequality with indices μ and ν . The result obtained is the following:

Theorem 1:

Let p(t) be positive and continuous on $[\tau, \alpha]$ with $\int_{-\infty}^{\infty} p^{1-\mu}(t)dt < \infty$, where $\mu > 1, x(t)$ be absolutely

function on $[\tau, \alpha]$ and x(0) = 0. The following inequality holds.

$$\int_{\alpha}^{\tau} |x(t)x'(t)| dt \le \frac{1}{2} \left(\int_{\alpha}^{\tau} p^{1-\mu}(t) dt \right)^{\frac{2}{\mu}} \left(\int_{\alpha}^{\tau} p(t) |x'(t)|^{\nu} dt \right)^{\frac{2}{\nu}}$$
 (2)

Where $\frac{1}{\mu} + \frac{1}{\nu} = 1$. equality holds in (2) in and only if $\int_{0}^{\tau} p^{1-\mu}(s)ds$

Calvert [2] also established the following result:

Theorem 2: [2] assume that

- x(t) is absolutely continuous in $[\alpha, \tau]$ and $x(\alpha) = 0$ (i)
- f(t) is continuous, complex-valued, defined in the range of x(t) and for all real for t of the form (ii)

$$t(s) = \int_{-s}^{s} |x'(u)| du$$
: $f(|t|)$ for all t and $f(t)$ is real $t > 0$ and is increasing there,

(iii)
$$p(t)$$
 is positive, continuous and $\int_{\alpha}^{\tau} p^{1-\mu}(t)dt < \infty$, where $\frac{1}{\mu} + \frac{1}{\nu} = 1$. then the following inequality holds.

$$\int_{\alpha}^{\tau} |f(t)x'(t)| dt \le F \left(\int_{\alpha}^{\tau} p^{1-\mu}(t) dt \right)^{\frac{2}{\mu}} \left(\int_{\alpha}^{\tau} p(t) |x'(t)|^{\nu} dt \right)^{\frac{2}{\nu}}$$
(3)

³Department of Mathematics, Lagos State Polytechnic, Ikorodu, Nigeria.

Where
$$F(t) = \int_{0}^{t} f(t)ds$$
, $t > 0$. Equality holds in (3) if and only if $x(t) = \int_{\alpha}^{t} p^{1-\mu}(s)ds$.

The aim of this paper is to generalize Maroni and Calvert results using Jensen's inequality.

II. Some Adaptation of Jensen's inequalities:

Let φ be continuous and convex function and let h(s,t) be a non negative function and λ be non decreasing function. Let $-\infty \le \xi(t) \le \eta(t) \prec \infty$ and suppose φ has a continuous inverse φ^{-1} (which is necessarily concave). Then,

$$\varphi^{-1}\left(\left|\frac{\int\limits_{\xi(t)}^{\eta(t)}h(s,t)d\lambda(s)}{\int\limits_{\xi(t)}^{\eta(t)}d\lambda(s)}\right|\right) \leq \left(\frac{\int\limits_{\xi(t)}^{\eta(t)}(\varphi)^{-1}(\left|h(s,t)\right|)d\lambda(s)}{\int\limits_{\xi(t)}^{\eta(t)}d\lambda(s)}\right) (4)$$

With the inequality reserved if φ is concave. The inequality (4) above is known as Jensen's inequality for convex function. Setting $\varphi(u) = u', \xi(t) = t$ and $\eta(t) = 0$ in (4), then we obtain.

$$(f(t))^{\zeta} = f\left(\left|\int_{0}^{t} h(s,t)d\lambda(s)\right|\right)^{\frac{1}{\zeta}} \le \left(\int_{0}^{t} (|h(s,t)|)^{\frac{1}{l}}d\lambda(s)\right)^{\frac{1}{\zeta}} \le \left(\int_{0}^{t} (|h(s,t)|)^{\frac{1}{l}}d\lambda(s)\right)^{\frac{1}{\zeta}}$$

III. Main Result:

Before stating our main result in this section, we shall need the following useful Lemma:

Lemma 1:

Let $x(t), \lambda(t)$ and f(u) be absolutely continuous and non decreasing functions on [a,b] for $0 \le a \le b \le \infty$ with f(t) > 0. Let l,k,o,ρ and ζ be real numbers such that $\zeta \ge 0,o \ge 0$ and also let R(t) be non negative and measurable function on [a,b] such that

$$\left| x'(t) \right| \times f\left(\left| \int_{0}^{t} x'(t) R(t) d\lambda(t) \right| \right) \le \lambda(t)^{l-\zeta} y(t)^{\zeta} \times R(t)^{-1} \lambda'(t)^{-1} y'(t). \tag{6}$$

Then the following inequality holds:

$$\int_{a}^{b} |x'(t)f(t)| dt \le \int_{a}^{b} f(y(t))y'(t)dt$$
 (7)

Proof:

Setting h(s,t) = x'(t)R(t) in (5), we have

$$(f(t))^{\zeta} = f \left(\left| \int_{0}^{t} x'(t)R(t)d\lambda(t) \right| \int_{0}^{\frac{1}{\zeta}} d\lambda(t) \right)^{\frac{1}{\zeta}} \leq \left(\int_{0}^{t} (\left| x'(t)R(t) \right|)^{\frac{1}{l}} d\lambda(t) \right)^{\frac{1}{l}} d\lambda(t)$$

$$(8)$$

By setting $f(\lambda(t)) = \lambda(t)^{l}$ in (8) yields

$$\frac{f\left(\left|\int_{0}^{t} x'(t)R(t)d\lambda(t)\right|\right)}{\lambda(t)^{l}} \leq \frac{\left(\int_{0}^{t} f\left|x'(t)R(t)\right|\right)^{\frac{1}{l}}d\lambda(t)^{\zeta}}{\lambda(t)^{\zeta}} \tag{9}$$

Hence.

$$f\left(\left|\int_{0}^{t} x'(t)R(t)d\lambda(t)\right|\right) \leq \lambda(t)^{l-\zeta} \left(\int_{0}^{t} f\left(\left|x'(t)R(t)\right|\right)^{\frac{1}{l}} d\lambda(t)\right)^{\zeta} = \lambda(t)^{l-\zeta} y(t)^{\zeta} (10)$$

Now let

$$y(t) = \int_{0}^{t} f(|x'(t)R(t)|)^{\frac{1}{l}} \lambda'(t)$$
 (11)

then
$$y'(t) = f\left(\left|x'(t)R(t)\right|\right)^{\frac{1}{l}}\lambda'(t)$$
 (12)

that is

$$y'(t)^{l} = f(x'(t)R(t))\lambda'(t)^{l} (13)$$

using the fact that f(u) = u' to have

$$y'(t)^{l} = |x'(t)|R(t)^{l} \lambda'(t)^{l}$$
 (14)

$$|x'(t)| = R(t)^{-1} \lambda'(t)^{-1} y'(t)$$
 (15)

Combining both (10) and (15) yields, inequality (6) and the proof is complete.

Remarks 1:

By setting
$$f(u) = u', R(t) = P(t)^{-\frac{1}{k-1}}, \lambda'(t) = P(t)^{\frac{1}{k-1}}, \zeta = l$$
 in lemma 1 yields $|x'(t)| \times f\left(\left|\int_{0}^{t} x'(t)P(t)\right|^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} dt\right) \le \lambda(t)^{l-1} y(t)^{l} \times P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} y'(t).$ (16)

Integrating both sides of inequality (16) over [a,b] with the respect to t, to get

$$\int_{a}^{b} |x'(t)| \times f\left(\int_{0}^{t} |x'(t)| dt\right) \le \int_{a}^{b} y(t)' y'(t) dt$$
 (17)

That is

$$\int_{a}^{b} |x'(t)| \times \left(\int_{0}^{t} |x'(t)| dt \right)^{l} \le \int_{a}^{b} y(t)^{l} y'(t) dt = F(y(b)) - F(y(a)).$$
 (18)

If y(a) = 0, then inequality (18) becomes

$$\int_{a}^{b} |x'(t)| \times \left(\int_{0}^{t} |x'(t)| dt \right)^{l} \le \int_{a}^{b} y(t)^{l} y'(t) dt = F(y(b)).$$
 (19)

By using Holders inequality with o and ho we obtain

$$y(b) = \int_{a}^{b} |x'(t)| dt = \int_{a}^{b} R^{-\frac{1}{o}}(t) R^{\frac{1}{\rho}} |x'(t)|(t) dt \le \left(\int_{a}^{b} R^{1-o}(t) dt \right)^{\frac{1}{o}} \left(\int_{a}^{b} R(t) |x'(t)|^{\rho} dt \right)^{\frac{1}{\rho}}$$
(20)

Combing inequality (19) and (20) to obtain inequality (3) if in inequality (20) $\mu = o$ and $\nu = \rho$ which is our desired result.

Furthermore, we need the following Lemma to obtain a generalization of Maroni.

Lemma 2:

Let $x(t), \lambda(t), f(u), R(t), l, k, o$ and ρ be as in Lemma 1 such that

$$\left|x'(t)\right| \times f\left(\left|\int_{0}^{t} x'(t)R(t)\right| d\lambda(t)\right) \le \lambda(t)^{\frac{1-\zeta}{l}} y(t)^{\frac{\zeta}{l}} \times R(t)^{-1} \lambda'(t)^{-1} y'(t). \tag{21}$$

Then, the following inequality holds:

$$\int_{a}^{b} |x'(t)f(t)| dt \le \int_{a}^{b} y(t)y'(t) dt = \frac{1}{2} \left(\int_{a}^{b} |y(t)| dt \right)^{2}$$
 (22)

Proof:

The proof is similar to the proof of lemma 1.

Since $f(u) = u^{l}$, inequality (10) becomes

$$\left(\left|\int_{0}^{t} x'(t)R(t)d\lambda(t)\right|\right)^{l} \leq \lambda(t)^{l-\zeta} y(t)^{\zeta} (23)$$

$$\left(\left|\int_{0}^{t} x'(t)R(t)d\lambda(t)\right|\right) \leq \lambda(t)^{\frac{l-\zeta}{l}} y(t)^{-1} (24)$$

Combining (15) and (24) to obtain the inequality (21)

This completes the proof of the Lemma.

Consider all conditions of remark 1

$$\left| x'(t) \right| \times \left(\left| \int_{0}^{t} x'(t) P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} \right| dt \right) \le \lambda(t)^{\frac{l-l}{l}} y(t)^{\frac{l}{l}} \times P(t)^{-\frac{1}{k-1}} P(t)^{\frac{1}{k-1}} y'(t). \tag{25}$$

$$\left| x'(t) \right| \left(\int_{0}^{t} |x'(t)| dt \right) \le y(t) y'(t) \tag{26}$$

Putting $\int_{0}^{t} |x'(t)| dt = x(t)$ and integrate both side of inequality (26) over [a,b] with the respect to t obtain

$$\int_{a}^{b} |x'(t)x(t)| dt \leq \int_{a}^{b} y(t)y'(t) dt = \frac{1}{2} \left(\int_{a}^{b} |x(t)| dt \right)^{2} (27)$$

$$= \frac{1}{2} \left(\int_{0}^{t} |x'(t)| P(t)^{-\frac{1}{o}} P(t)^{\frac{1}{o}} dt \right)^{2} (28)$$

$$= \frac{1}{2} \left(\int_{a}^{b} P(t)^{1-\rho} dt \right)^{\frac{2}{\rho}} \left(\int_{a}^{b} |x'(t)| P(t)^{\frac{1}{o}} dt \right)^{\frac{2}{o}} (29)$$

This is the generalization of inequality (2).

Acknowledgements: The authors gratefully acknowledged with thanks, Professor J.A Oguntuase for his contributions which have improved the final version of this paper.

References

- [1]. Adeagbo-Shelkh A.G and Imoru C.O: An integral inequality of the Hardy's-Type. KragujevacJMath. 29(2006), 57-61.
- [2]. Calvert J.: Some generalization of Opial's Inequality, Pron. Amer. Math. Soc. 18(1967) 72-75
- [3]. Maroni P.M.; Surl'ingelited'Opial-Bessack, C.R Aca. Sci. Paris A264 (1967), 62-64.
- [4]. O.O Fabulurin, A.G Adeagbo-Shelkh and Y.O Anthonio,: On an inequality relates to Opial, OctogonMathematics Magazine, 18(2010), No 1, 32-41.
- [5]. Obial Z.: Suruneintegalite. Ann. Polon. Math. 8(1960), 29-32.