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I. Introduction 
Metric spaces have very wide applications in mathematics and applied sciences. Therefore, many 

authors have tried to introduce the generalizations of metric spaces in many ways. In 1989, Gahler [2-3], 

introduced the notion of 2-metric spaces and Dhage [1] introduced the notion of D -metric spaces. They proved 

some results related to 2-metric and D -metric spaces. After this Mustafa and Sims [4] proved that most of the 

results of Dhage’s D -metric spaces are not valid. So, they introduced the new concept of generalized metric 

space called G-metric space. Now, recently Sedghi et al. [5] have introduced the notion of S-metric spaces as the 

generalization of G-metric and *D -metric spaces. They proved some fixed point results in S-metric spaces. 

Some results have been obtained in [5-7] by Sedghi et al. In the present paper, we prove some coupled 

coincidence point results in S-metric space which are the generalizations of some fixed point theorems in metric 

spaces [8-12]. 

 

Preliminaries 

 Here we give some definitions which are throughout used in this paper. 

Definition 2.1 ([5]). Let X  be a nonempty set. An S-metric on X  is a function 3: [0, )S X    that  satisfies 

the following conditions, for each , , ,x y z a X . 

(i) ( , , ) 0S x y z   

(ii) ( , , ) 0S x y z   if and only if x y z   

(iii) ( , , ) ( , , ) ( , , ) ( , , )S x y z S x x a S y y a S z z a    

Then the  pair ( , )X S  is called an S -metric space. 

Definition 2.2 ([14]). Let ( , )X   be a partially ordered set equipped with a metric S  such that ( , )X S  is a 

metric space. Further, equip the product space X X  with the following partial ordering:  

 for ( , ),( , )x y u v X X  , 

 define ( , ) ( , ) ,u v x y x u y v    . 

Definition 2.3 ([14]). Let ( , )X   be a partially ordered set and  :F X X X  . One says that F  enjoys the 

mixed monotone property if ( , )x y  is monotonically nondecreasing in x  and monotonically nonincreasing in 

y ; that is, for any ,x y X , 

 1 2 1 2 1 2, , ( , ) ( , ),x x X x x F x y F x y     

 1 2 1 2 1 2, , ( , ) ( , ),y y X y y F x y F x y     

Definition 2.4 ([14]). An element ( , )x y X X   is said to be a coupled fixed point of the mapping 

:F X X X   if 

( , )F x y x     and    ( , )F y x y . 

Lemma 2.5 ([7]). In an S -metric space, we have ( , , ) ( , , )S x x y S y y x . 

Definition 2.6 ([13]). Let ( , )X   be a partially ordered set and :F X X X   and :g X X  two 

mappings. The mapping F  is said to have the mixed g -monotone property if F  is monotone g -

nondecreasing in its first argument and is monotone g -nonincreasing in its second argument, that is, 

 if, for all 1 2 1 2, , ( ) ( )x x X g x g x   implies 1 2( , ) ( , )F x y F x y , for any y X , and,  
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 for all 1 2, ,y y X  1 2( ) ( )g y g y  implies 1 2( , ) ( , )F x y F x y , for any x X . 

 

Definition 2.7 ([13]). An element ( , ) :x y X X  is called a coupled coincidence point of mappings 

:F X X  and :g X X  if 

 ( , ) ( ), ( , ) ( )F x y g x F y x g y  .  

 

Theorem 2.8 ([13]). Let ( , )X   be a partially ordered set equipped with a metric d  such that ( , )X d  is a 

complete metric space. Assume that there is a function : [0, ) [0, )    with ( )t t   and lim ( )
r t

r t


  for each 

0t  . Let :F X X X   and :g X X  be maps such that F has the mixed g-monotone property and 

 
( ( ( ), ( ) ( ( ),g( )))

( ( , ), ( , ))
2

d g x g u d g y v
d F x y F u v 


  

for all , , ,x y u v X  for which ( ) ( )g x g u  and ( ) ( )g y g v . 

Suppose that ( ) ( )F X X g X  , g  is continuous and commutes with F  besides 

(a) F  is continuous, 

(b) X  has the following properties: 

(i) if a nondecreasing sequence { }nx x , then nx x  for all n , 

(ii) if a nonincreasing sequence { }ny y , then ny y  for all n . 

(iii) if a nondecreasing sequence { }nx x , then nx x  for all 0n  , 

(iv) if a nonincreasing sequence { }ny x , then ny x  for all 0n  .  

If there exist 0 0,x y X  such that  

 0 0 0( ) ( , )g x x y , 0 0 0( ) ( , )y y x ,  

then there exist ,x y X  such that 

 ( ) ( , )g x F x y , ( ) ( , )g y F y x ,  

That is, F  and g  have a coupled coincidence point.  

Theorem 2.9. Let ( , )X   be a complete S -metric space. Suppose that there is a function : [0, ) [0, )     

with ( )t t   and lim ( )
r t

r t


  for each 0t  . Further, assume that :F X X X   and :g X X  are two 

maps such that F  has the mixed g -monotone property satisfying the following condition: 

(i) ( ) ( )F X X g X  , 

(ii) g  is continuous and monotonically increasing. 

(iii) ( , )g F  is commutating pair. 

(iv) 
1

( ( , ), ( , ), ( , )) ( ( ( ), ( ), ( ) ( (y), ( ), (v))
2

S F x y F u v F u v S g x g u g u S g g v g
 

 
  

                   (1) 

       for all , , ,x y u v X , with ( ) ( )g x g u  and ( ) ( )g y g v . Also suppose that either  

(a) F  is continuous or 

(b) X  has the following properties: 

1. if a nondecreasing sequence { }nx x , then 

 nx x , for all 0n           (2) 

2. If a nonincreasing sequence { }nx x , then  

 nx x , for all 0n  . 

If there exist 0 0,x y X  such that  

 0 0 0( ) ( , )g x F x y    and     0 0 0( ) ( , )g y F y x         (3) 

Then F  and g  have a coupled coincidence point that is there exist ,x y X  such that  

 ( ) ( , )g x F x y     and     ( ) ( , )g y F y x          (4) 

Proof. Let us suppose that ,x y X , we construct the sequences { }nx  and { }ny  in X  such that  

 1( ) ( , )n n ng x F x y      and     1( ) ( , )n n ng y F y x          (5) 
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Now, we shall show that for 0n   

 1( ) ( )n ng x g x      and     1( ) ( )n ng y y           (6) 

So (6) holds for 0n  . Assume (6) holds for some 0n  . 

Suppose  

 

1

1

1 1

2

( ) ( , )

( , )

( , )

( )

n n n

n n

n n

n

g x F x y

F x y

F x y

g x





 











 

and 

 

1

1

1 1

2

( ) ( , )

( , )

( , )

( )

n n n

n n

n n

n

g y F y x

F y x

F y x

g y





 











 

Then by induction (6) holds for all 0n  . 

Using (5) and (6), we get 

 

1 1 1 1

1 1

( ( ), ( ), ( )) ( ( , ), ( , ), ( , ))

1
( ( ( ), ( ), ( ) ( ( ), ( ), ( ))

2

m m m m m m m m m

m m m m m m

S g x g x g x S F x y F x y F x y

S g x g x g x S g y g y g y

   

 



 
 

  

 

Similarly, we can write by induction 

 1 1 1 1

1
( ( ), ( ), ( )) ( ( ( ), ( ), ( ) ( ( ), ( ), ( ))

2
m m m m m m m m mS g y g y g y S g x g x g x S g y g y g y   

 
 

  
 

So, by putting 

 

 1 1 1 1( ( ), ( ), ( ) ( ( ), ( ), ( ))m m m m m m mS g x g x g x S g y g y g y       

We get 

 1 1 1 1( ( ), ( ), ( ) ( ( ), ( ), ( ))m m m m m m mS g x g x g x S g y g y g y       

       1 1

1
( ( ( ), ( ), ( ) ( ( ), ( ), ( ))

2
m m m m m mS g x g x g x S g y g y g y  

 
 

  
 

       1

1
2

2
m  

 
  

 
           (7) 

Since ( )t t   for 0t  . So, 1m m    for all m  so that { }m  is a nonincreasing sequence, since it is bounded 

below sequence, there exist some 0   such that  

 lim m
m

 


  . 

 We have prove that 0  . On the other hand suppose that 0  . Putting limit as m   on both 

sides of (7) and having lim ( )
r t

r t


  for all 0t   in mind, we have, 

 

1

1
lim lim 2

2

1
2 2

2 2

m m
m m

   


  


 

 
   

 

 
    

 

 

Which gives us a contradiction so 0  . 

 

Therefore,  

  

 1 1 1 1lim ( ( ), ( ), ( ) ( ( ), ( ), ( )) 0m m m m m m
m

S g x g x g x S g y g y g y   


      (8) 

Now, we will show that the sequences { ( )}mg x  and { ( )}mg y  are Cauchy sequence. If possible, assume that 

atleast one of { ( )}mg x  and { ( )}mg y is not a Cauchy sequence. Then there exist 0   and sequence of positive 

integers { ( )}Kl  and { ( )}m K  such that for all positive integers K , 

 ( ) ( )m K K K l . 
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 ( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( ) 1( ( ), ( ), ( )) ( ( ), ( ), ( ))K m K m K K m K m KS g x g x g x S g y g y g y     l l . 

Now, 

 ( ) ( ) ( ) ( ) ( ) ( )( ( ), ( ), ( )) ( ( ), ( ), ( ))K m K m K K m K m KS g x g x g x S g y g y g y  l l  

    
( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( ) 1

( ) 1 ( ) ( ) ( ) 1 ( ) ( )

( ( ), ( ), ( )) ( ( ), ( ), ( ))

( ( ), ( ), ( )) ( ( ), ( ), ( ))

K m K m K K m K m K

m K m K m K m K m K m K

S g x g x g x S g y g y g y

S g x g x g x S g y g y g y

   

 

 

 

l l
 

That is 

 ( ) ( ) ( ) ( ) ( ) ( )( ( ), ( ), ( )) ( ( ), ( ), ( ))K m K m K K m K m KS g x g x g x S g y g y g y  l l  

    ( ) 1 ( ) ( ) ( ) 1 ( ) ( )( ( ), ( ), ( )) ( ( ), ( ), ( ))m K m K m K m K m K m KS g x g x g x S g y g y g y      

Taking k   in the above inequality and using (8), we get 

  ( ) ( ) ( ) ( ) ( ) ( )lim ( ( ), ( ), ( ) ( ( ), ( ), ( ))K m K m K K m K m K
k

S g x g x g x S g y g y g y 


 l l      (9) 

Again, we have 

 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1( ( ), ( ), ( )) ( ( ), ( ), ( ))K m K m K K m K m KS g x g x g x S g y g y g y     l l  

  

( ) 1 ( ) ( ) ( ) 1 ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( ) 1

( ( ), ( ), ( )) ( ( ), ( ), ( ))

( ( ), ( ), ( )) ( ( ), ( ), ( ))

( ( ), ( ), ( )) ( ( ), ( ), ( ))

K K K K K K

K m K m K K K K

m K m K m K m K m K m K

S g x g x g x S g y g y g y

S g x g x g x S g y g y g y

S g x g x g x S g y g y g y

 

   

 

 

 

l l l l l l

l l l l  

 ( ) ( ) ( ) ( ) ( ) ( )( ( ), ( ), ( )) ( ( ), ( ), ( ))K m K m K K m K m KS g x g x g x S g y g y g yl l  

  

( ) 1 ( ) ( ) ( ) 1 ( ) ( )

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1

( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( )

( ( ), ( ), ( )) ( ( ), ( ), ( ))

( ( ), ( ), ( )) ( ( ), ( ), ( ))

( ( ), ( ), ( )) ( ( ), ( ), (

K K K K K K

K m K m K K K K

m K m K m K m K m K m K

S g x g x g x S g y g y g y

S g x g x g x S g y g y g y

S g x g x g x S g y g y g y

 

     

  

 

 

 

l l l l l l

l l l l

1))

 

Taking K   in above inequalities and using (8) and (9), we obtain, 

  ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1lim ( ( ), ( ), ( ) ( ( ), ( ), ( ))K m K m K K m K m K
k

S g x g x g x S g y g y g y      


 l l                 (10) 

Now,  

 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) 1( ( ), ( ), ( )) ( ( ), ( ), ( ))K m K m K K m K m KS g x g x g x S g y g y g y     l l  

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ( , ), ( , ), ( , ))

( ( , ), ( , ), ( , ))

K K m K m K m K m K

K K m K m K m K m K

S F x y F x y F x y

S F y x F y x F x y





l l

l l

 

  ( ) ( ) ( ) ( ) ( ) ( )

1
( ( ( ), ( ), ( ) ( ( ), ( ), ( ))

2
K m K m K K m K m KS g x g x g x S g y g y g y

 
 

  
l l . 

Assuming K   in the above inequality and using (9) and (10) and the property of  , we get 

 2 2
2 2

 
  

 
    

 
 

Which leads to a contradiction. Therefore { ( )}mg x  and { ( )}mg y  are Cauchy sequences in ( , )X S . Since the 

metric space ( , )X S  is complete, therefore there exist ,x y X  such that 

 lim ( )m
m

g x x


   and    lim ( )m
m

g y y


 .       (11) 

Now, g  is continuation. So, by the continuity of g  and (11), we can get  

 lim ( ( )) ( )m
m

g g x g x


  and     lim ( ( )) ( )m
m

g g y g y


 .     (12) 

Using (5) and the commutativity of F  and g , we have 

 
1( ( )) ( ( , ))

( ( ), ( ))

m m m

m m

g g x g F x y

F g x g y

 


 

and 

 
1( ( )) ( ( , ))

( ( ), ( ))

m m m

m m

g g y g F y x

F g y g x

 


 

Now, we will show that F  and g  have a coupled coincidence point. To, prove this, suppose (a) holds, then by 

(5) and (12) and the continuous of F  and g , we get 
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 

1( ) lim ( ( ))

lim ( ( , ))

lim ( ), lim ( )

( , )

m
m

m m
m

m m
m m

g x g g x

g F x y

F g x g y

F x y






 









 

Similarly, we can show that  

 ( ) ( , )g y F y x . 

Hence, the element ( , )x y X X   is a coupled coincidence point of the mappings F  and g . Now, suppose 

that (6) holds. Since { ( )}mg x  and { ( )}mg y  is nondecreasing and nonincreasing respectively, and  

 ( )mg x x  as m  , 

 ( )mg y y  as m  , 

we have 

 ( )mg x x  and ( )mg y y . 

Since g  is monotonically increasing. So, 

 ( ( )) ( )mg g x g x  and ( ( )) ( )mg g y g y . 

Using triangle inequality together with (5), we have 

 

1 1

1

1 1

( ( ), ( , ), ( , )) ( ( ( )), ( , ), ( , )) ( ( ( )), ( ), ( ))

( ( ( )), ( ), ( ))

1
( ( ( ( ), ( ), ( )) ( ( ( ( ), ( ), ( ))

2

m m

m

m m

S g x F x y F x y S g g x F x y F x y S g g x g x g x

S g g x g x g x

S g g x g x g x S g g y g y g y

 



 

 



 
 

  

 

Letting m   in this inequality and using (12), we get ( ) ( , )g x F x y . Similarly, we can show that 

( ) ( , )g y F y x . 

Which shows that F  and g  have a coupled coincidence point. 

 

Corollary 2.10. Let ( , )X S  is a complete S-metric space. Suppose that three is a function : [0, ) [0, )     

with ( )t t   and lim ( )
r t

r t


  for each 0t  . Further, assume that :F X X X   is a mapping such that F  

has the mixed monotone property satisfying the following conditions: 

 
1

( ( , ), ( , ), ( , )) ( ( , , ), (y, v, v)
2

S F x y F u v F u v S x u u g
 


  

 

for all , , ,x y u v X  with x u  and y v . 

Also, suppose that either  

(a) F  is continuous or 

(b) X  has the following properties: 

(i) If a nondecreasing sequence { }nx x , then  

  nx x  for all 0n   

(ii) If a nonincreasing sequence { }nx x , then  

  nx x  for all 0n   

If there exist 0 0,x y X  such that 

 0 0 0( , )x F x y    and    0 0 0( , )y F y x  

Then F  has a coupled fixed point in X , that is there exist ,x y X  such that  

 ( , )x F x y    and    ( , )y F y x  

 

Proof. Assuming g I , the identity mapping, in Theorem 2.9, we get the above Corollary 2.10. 

 

Corollary 2.11. Let ( , )X S  be a complete S-metric space. Suppose that :F X X X   and :g X X  are 

two maps such that F  has the mixed g -monotone property satisfying the following conditions: 

(i) ( ) ( )F X X g X   

(ii) g  is continuous and monotonically increasing,  
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(iii) ( , )g F  is a commutating pair, 

(iv)  ( ( , ), ( , ), ( , )) ( ( ), ( ), ( )) ( ( ), ( ), ( ))
k

S F x y F u v F u v S g x g u g u S g y g v g v
r

  , [0,1)k   

for all , , ,x y u v X  with ( ) ( )g x g u  and ( ) ( )g y g v . Also, assume that either 

(a) F  is continuous or  

(b) X  has the following properties: 

(i) If a nondecreasing sequence { }nx x , then  

  nx x  for all 0n   

(ii) If a nonincreasing sequence { }nx x , then  

  nx x  for all 0n   

If there exist 0 0,x y X  such that  

 0 0 0( ) ( , )g x F x y    and    0 0 0( ) ( , )g y F y x  

Then F  and g  have a coupled fixed point in X , i.e. there exist ,x y X  such that  

 ( ) ( , )g x F x y    and    ( ) ( , )g y F y x  

 

Proof. Taking ( )t k t    with [0,1)k   in Theorem 2.9, we obtain the above Corollary 2.11. 

 

References 
[1] B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84, 1992, 329-336. 

[2] S. Gahlers, 2-metrische Raume and ihre topologische structure, Math.Nachr, 26, 1963, 115-148. 

[3] S. Gahlers, Zur geometric 2-metrische raume, Revue Roumaine Math. Pures Appl., 11, 1966, 665-667. 

[4] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, 7 (2), 2006, 289-

297. 

[5] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (3) (2012), 258-

266. 

[6] S. Sedghi and N.V. Dzung, Fixed point theorems on S-metric spaces, accepted for publication in Mat. Vesnik (2012). 

[7] T.V. An and N.V. Dung, Two fixed point theorems in S-metric spaces, preprint (2012).  

[8] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 

2009, 10 (2009). Article ID 917175  

[9] T.G. Bhaskar and V. Lakshmikantham, Fixed point theory in partially ordered metric spaces and applications, Nonlinear Anal., 65 

(2006), 1379-1393.  

[10] D.W. Boyd and S.W. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20, 1969, 458-464, doi:10.1090/S0002-9939-1969-

0239559-9. 

[11] M. Imdad et al, On n-tupled coincidence point results in metric spaces, Journal of Operators, 2013, 8 pages. 

[12] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete metric spaces, Fixed Point Theory 

Appl., 2008, 12 (2008). Article ID 189870. 

[13] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear  contractions in partially ordered metric spaces, 

Nonlinear Analysis: Theory, Methods & Applications A, 70 (12), 2009, 4341-4349. 

[14] T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear 

Analysis: Theory, Methods & Applications A, 65 (7), 2006, 1379-1393. 

 


