Doubt fuzzy ideals of BF-algebra

S. R. Barbhuiya

Department of Mathematics, SrikishanSarda College, Hailakandi, Assam, India

Abstract: The aim of this paper is to introduce the notion of Doubt fuzzy ideals of BF -algebra and to investigate some of their basic properties.

Keywords:BF -algebra, Subalgebra, Doubt fuzzy BF -Subalgebra, Doubt fuzzy ideals of BF -algebra

I. Introduction

In 1966, Imai and Iseki[1] introduced two classes of abstract algebras viz. BCK-algebras and BCI-algebras. The class of BCK-algebras is a proper subclass of the class of BCI-algebras. J. Neggers and H. S. Kim [2] introduced the notion of B-algebra which is a generalisation of BCK-algebras. Walendziak [3] introduced the notion of BF-algebras, which is a generalization B-algebras and subsequently fuzzy BF-subalgebra were introduced by Saeid and Rezvani [4, 5] in 2009. Y. B. Jun [6] introduced the notion of Doubt fuzzy ideals in BCK/BCI-algebras. R. Biswas [7] introduced the concept of anti fuzzy subgroup. Modifying their idea, in this paper we apply the idea of BF-algebras to introduce the notion of Doubt fuzzy ideal of BF-algebras and establish some of their basic properties.

II. Preliminaries

In this section, we recallsome basic concepts which would beused in the sequel.

Definition 2.1. A BF-algebra is a non-empty set X with a constant 0 and a binary operation * satisfying the following axioms:

- (i) x * x = 0
- (ii) x * 0 = x
- (iii) $0 * (x * y) = y * x \text{ for all } x, y \in X$

For brevity we also call X a BF-algebra. A binary relation ' \leq ' on X can be defined by $x \leq y$ if and only if x*y=0.

Example 2.2. Let R be the set of real numbers and X = (R, *, 0) be the algebra with the operation * defined by

$$x*y = \begin{cases} x & if \quad y = 0 \\ y & if \quad x = 0 \\ 0 & otherwise \end{cases}$$

then X is a BF-algebra.

Definition 2.3. A non-empty subset S of a BF-algebra X is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$.

Definition 2.4. A nonempty subset I of a BF-algebra X is said to be an ideal of X if

- (i) 0∈ I
- (ii) $x * y \in I \text{ and } y \in I \Rightarrow x \in I$

Definition 2.5. A fuzzy subset μ of X is called a fuzzy subalgebra of a BF-algebra X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 2.6. A fuzzy set μ of a BF-algebra X is called a fuzzy ideal of X if it satisfies the following conditions.

- (i) $\mu(0) \ge \mu(x)$
- (ii) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$

Definition 2.7. A fuzzy set μ of a BF-algebra X is called a doubt fuzzy subalgebra of X if

$$\mu(x * y) \le \max{\{\mu(x), \mu(y)\}} \forall x, y \in X.$$

III. Doubt fuzzy ideal

Definition 3.1. A fuzzy set μ of BF-algebra X is called a doubt fuzzy (DF) ideal of X if

$$\begin{array}{ll} (i) & \mu(0) \leq \mu(x) \\ (ii) \; \mu(x) \leq & \max\{\mu(x * y), \, \mu(y)\} \end{array}$$

Example 3.2. Let $X = \{0, 1, 2\}$ with the following Cayley table.

*	0	1	2
0	0	1	2
1	1	0	0
2	2	0	0

Then (X, *, 0) is a BF-algebra. Define a fuzzy set $\mu : X \to [0 \ 1]$ by $\mu(0) = 0.1$, $\mu(1) = \mu(2) = 0.4$ then μ is a doubt fuzzy ideal of X.

Example 3.3. In above algebra if we take $\mu(0) = 0.2$, $\mu(1) = 0.3$, $\mu(2) = 0.6$ then μ is a doubt fuzzy subalgebra of X.

Definition 3.4. Let μ be a fuzzy set of a BF-algebra Xfor tE $\,$ [0 1], then the sets

$$\mu_t = \{ x \in X \mid \mu(x) \geq t \},\$$

$$\mu^{t} = \{ x \in X \mid \mu(x) \leq t \}$$

could be empty sets. The set $\mu_t = \varphi$ (respt. $\mu^t \neq \varphi$) is called the t (respt t-doubt) confidences of μ .

Theorem 3.5. μ is a fuzzy subalgebra of BF-algebra X iff μ tisempty or subalgebra of X for all $t \in [0 \ 1]$.

Proof.Suppose μ is fuzzy subalgebra of X

Therefore $\mu(x^*y) \ge \min\{\mu(x), \mu(y)\}\$ (1)

To prove μ_t is a subalgebra of X

Let $x,y \in \mu_t \Rightarrow \mu(x), \mu(y) \ge t$

Now (1) $\Rightarrow \mu(x^*y) \ge \min\{t,t\} = t$

 $\mathop{\Longrightarrow} x^*y \ \in \mu_t$

Conversely

Let μ_t is a subalgebra of X.

To prove $\ \mu$ is a fuzzy subalgebra of X. Let x, $y \in X$ such that $\mu(x) = t$ and $\mu(y) = s$ where $t \le s$

Then x, y $\in \mu_t$ and so $(x^*y) \in \mu_t [\mu_t \text{ is a subalgebra of } X]$

 $\Rightarrow \mu (x*y) \ge t = \min \{ \mu(x), \mu (y) \}$

Hence μ is a fuzzy subalgebra of X.

Theorem 3.6. μ is a fuzzy ideal of BF-algebra X iff μ_t is ideal of Xt \in [0 1].

Proof. Assume μ is a fuzzy ideal of X. Here $\mu_t = \{ x \in X \mid \mu(x) \ge t \}$

Clearly $0 \in \mu_t$ since $\mu(0) \ge t$

Let $x * y, y \in \mu_t i.e \mu(x*y) \ge t$, $\mu(y) \ge t$

 $\mu\left(x\right)\geq\!min\{\;\mu\left(x^{*}y\right)\!,\,\mu\left(y\right)\}\geq\!min\{\;t,\,t\;\}$

 $\Rightarrow x \in \mu_t$

Therefore $x^*y,y \in \mu_t \implies x \in \mu_t$

 \Rightarrow μ_t is an ideal of BF-algebra X.

Conversely

Let μ_t is an ideal, to prove μ is fuzzy ideal. Let $x, y \in X$ such that $\mu(x^*y) = t$ and $\mu(y) = s$ where $t \leq s$

Then x*y, $y \in \mu_t$ and hence $x \in \mu_t$ [since μ_t is ideal]

which implies $\mu(x) \ge t = \min\{t, s\} = \min\{\mu(x*y), \mu(y)\}$. Therefore μ is a fuzzy ideal of X Proposition 3.7.Let μ be a Doubt fuzzy (DF)ideal of a BF-algebra X. Then the following hold.

```
(a) If x \le y then \mu(x) \le \mu(y), i.e. \mu preserves order.
```

(b) If
$$\mu(x^*y) = 0$$
 then $\mu(x) \le \mu(y)$

(c) If
$$x*y \le z$$
 then $\mu(x) \le \max{\{\mu(y), \mu(z)\}}$, for all $x, y, z \in X$

Proof.

(a) Let
$$x \le y$$
, then $x * y = 0$

Now, $\mu(x) \le \max{\{\mu(x^*y), \mu(y)\}}[\text{Since}\mu \text{ is DF ideal }]$

= max{
$$\mu(0)$$
, $\mu(y)$ } = $\mu(y)$ [since $\mu(0) \le \mu(y)$ for DF ideal]

i.e. $\mu(x) \le \mu(y)$ i.e. μ preserves order.

(b)If
$$\mu(x^*y) = 0$$
,then we have

$$\mu(x) \le \max{\{\mu(x * y), \mu(y)\}}[$$
 Since μ is DF ideal $]$

=
$$\max\{\mu(0), \mu(y)\} = \mu(y)$$
, [Since $\mu(0) \le \mu(y)$ for DF ideal]

i.e. $\mu(x) \leq \mu(y)$.

(c) Here,

$$x^* y \le z$$
, therefore $(x^* y)^* z = 0$

Now
$$\mu(x) \le \max{\{\mu(x^*y), \mu(y)\}}(2)$$

In particular,

$$\mu(x * y) \le \max{\{\mu((x * y) * z), \mu(z)\}}$$

= max{
$$\mu(0)$$
, $\mu(z)$ } = $\mu(z)$ [Since $\mu(0) \le \mu(z)$ for DF ideal]

$$\therefore \mu(x * y) \leq \mu(z)$$

$$\therefore \max\{\mu(x * y), \mu(y)\} \le \max\{\mu(z), \mu(y)\}$$
 (3)

(2) and (3)
$$\Rightarrow \mu(x) \leq \max{\{\mu(y), \mu(z)\}}$$
.

Theorem 3.8.If μ is a Doubt fuzzy (DF)ideal of a BF-algebraX. Then the setX $_{\mu}$ ={x \in X| μ (x) = μ (0)} is an ideal of X.

Proof. Clearly,
$$0 \in X_{\mu}$$

Let x^*y , $y \in X_{\mu}$
 $\Rightarrow \mu(x^*y) = \mu(y) = \mu(0)$

$$\mu(x) \le \max{\{\mu(x * y), \mu(y)\}}[$$
 Since μ is DF ideal $]$

$$= \max\{\mu(0), \, \mu(0)\} = \mu(0)$$

$$\mu(x) \le \mu(0)$$
 also $\mu(0) \le \mu(x)$ [Since μ is DF ideal]

$$\therefore \qquad \mu(x) = \mu(0)$$

$$\begin{array}{ll} \therefore & x \in X_{\mu} \\ \therefore & x * y, \, y \in X_{\mu} \Rightarrow x \in X_{\mu} \\ \Longrightarrow X_{u} \text{is an ideal}. \end{array}$$

Theorem 3.9.A fuzzy subset μ of BF-algebra X is a fuzzy ideal of Xiff its complement μ^c is DF ideal of X.

Proof.Let μ be a fuzzy ideal of X,To prove μ^c is DF ideal. Let x, $y \in X$.

$$\begin{split} \text{(i)} \ \mu^c(0) &= 1 - \mu(0) {\leq} 1 - \mu(x) = \mu^c(x) \\ \text{i.e.,} \mu^c(0) {\leq} \mu^c(x) [\text{since } \mu(0) {\geq} \mu(x) \forall \ x {\in} \ X] \\ \text{(ii)} \qquad \mu^c(x) &= 1 - \mu(x) {\leq} 1 - \min \{ \mu(x^*y), \ \mu(y) \} \\ [\text{since} \mu(x) {\geq} \min \{ \mu(x^*y), \ \mu(y) \}] \\ &= 1 - \min \{ 1 - \mu^c(x^*y), \ 1 - \mu^c(y) \} \end{split}$$

= $\max\{\mu^{c}(x * y), \mu^{c}(y)\}$

 $\Rightarrow \mu^{c}$ is DF ideal.

Conversely,

Let μ^c is DF ideal of X. To prove μ is fuzzy ideal of X

- (i) $\mu^{c}(0) \leq \mu^{c}(x)$
- $\mu^{c}(x) \leq \max\{\mu^{c}(x*y), \mu^{c}(y)\}$ (ii)

Now (i)
$$\Rightarrow 1-\mu(0) \le 1-\mu(x)$$

$$\Rightarrow \mu(0) \ge \mu(x)$$

$$(ii) \Rightarrow 1-\mu(x) \le \max\{1-\mu(x^*y), 1-\mu(y)\}\$$

$$\Rightarrow 1 - \mu(x) \le 1 - \min\{\mu(x * y), \mu(y)\}$$

$$\Rightarrow$$
 $-\mu(x) \le -\min\{\mu(x * y), \mu(y)\}$

- $\mu(x) \ge \min\{\mu(x * y), \, \mu(y)\}$
- \Rightarrow μ is fuzzy ideal.

Theorem 3.10.Let μ be a fuzzy subset of a BF-algebra X.If μ is a DF ideal of X, then the lower level cut μ^t is an ideal of X for all $t \in [0 \ 1]$, $t > \mu(0)$.

Proof.

Let μ be a DF ideal of X. Therefore we have

(i) $\mu(0) \leq \mu(x)$

$$(ii)\mu(x) \le \max\{\mu(x^*y), \mu(y)\}$$

To prove μ^t is an ideal of X.We know that $\mu^t = \{x \in X | \mu(x) \le t\}$ Let x, $y \in \mu^t$ $\operatorname{since}\mu(0) \le \mu(x) \le t \Rightarrow 0 \in \mu^t \forall t \in [0 \ 1]$ Again let x*y, $y \in \mu^t$ $\therefore \mu(x * y) \le t, \mu(y) \le t$ Now, $\mu(x) \le \max{\{\mu(x^*y), \mu(y)\}}$ $\leq \max\{t, t\} = t$

hence, $\mu(x) \le t \Rightarrow x \in \mu^t$

 $x^* y, y \in \mu^t \Rightarrow x \in \mu^t$

 \therefore μ^{t} is an ideal.

Theorem 3.11.Let μ be a DF ideal of BF-algebra X.Then twolower level cuts μ^{t_1} , μ^{t_2} where ($t_1 < t_2$) of μ are equaliff there is no $x \in X$ such that $t_1 < \mu(x) < t_2$.

Proof.Recall that $\mu^t = \{x \in X | \mu(x) \le t\}$

Let $\mu^{t_1} = \mu^{t_2}$ where $(t_1 < t_2)$ and there exists $x \in X$ such that $t_1 < \mu(x) < t_2$.

then $\mu^{t_1} \subset \mu^{t_2}$, then $x \in \mu^{t_2}$ but $x \notin \mu^{t_1}$ which contradicts the fact that $\mu^{t_1} = \mu^{t_2}$. Hence there is no $x \in X$ such that $t_1 < t$ $\mu(x) < t_2$.

Conversely, suppose that there is no $x \in X$ such that $t_1 < \mu(x) < t_2$. Therefore $\mu^{t_1} \subset \mu^{t_2}$ (since $t_1 < t_2$). Again if x $\in \mu^{t_2}$ then $\mu(x) \le t_2$ and by hypothesis we get $\mu(x) \le t_1 \Rightarrow \mu^{t_2} \subset \mu^{t_1}$. Hence $\mu^{t_1} = \mu^{t_2}$.

Theorem 3.12.Let μ_1 and μ_2 be two DF ideal of BF-algebraX. Then $\mu_1 \cup \mu_2$ is also a DF ideal of X.

Proof.Let x, $y \in X$. Now

```
(\mu_1 \cup \mu_2)(0) = \max\{\mu_1(0), \mu_2(0)\} \le \max\{\mu_1(x), \mu_2(x)\} = (\mu_1 \cup \mu_2)(x)
\therefore (\mu_1 \cup \mu_2)(0) \le (\mu_1 \cup \mu_2)(x)
```

```
Again(\mu_1 \cup \mu_2)(x) = max{\mu_1(x), \mu_2(x)}
\leq \max\{\max\{\mu_1(x * y), \mu_1(y)\}, \max\{\mu_2(x * y), \mu_2(y)\}\}
= max\{max\{\mu_1(x\ *\ y),\ \mu_2(x\ *\ y)\},\ max\{\mu_1(y),\ \mu_2(y)\}\}
                 = \max\{(\mu_1 \cup \mu_2)(x * y), (\mu_1 \cup \mu_2)(y)\}
```

Therefore $\mu_1 \cup \mu_2$ is a DF ideal of X.

The above theorem can be generalised as

Theorem 3.13.Let $\{\mu_i | i = 1, 2, 3, ...\}$ be a family of DF ideal of BF-algebra X, then $\bigcup_{i=1}^n \mu_i$ is also a DF ideal of X. where $\bigcup \mu_i = \max \{ \mu_i(x) : i = 1, 2, ... \}$.

Product of DF ideals of BF-algebra (iii)

Definition 4.1. Let μ_1 and μ_2 be two DF idealsof a BF-algebra X. Then their cartesian product is defined by $(\mu_1 \times \mu_2)(x, y) = \max{\{\mu_1(x), \mu_2(y)\}}$ where $(\mu_1 \times \mu_2): X \times X \to [0 \ 1] \forall x, y \in X$.

Theorem 4.2 Let X be a BF-algebra, then the cartesian product $X \times X = \{(x,y) \mid x,y \in X\}$ is also a BF-algebra under the binary operation * defined in X×X by (x,y)*(p,q)=(x*p,y*q) for all $(x,y),(p,q)\in X\times X$.

Proof. Clearly $(0,0) \in X \times X$

```
(i)
         (x,y)*(x,y)=(x*x,y*y)=(0,0)
```

(ii)
$$(x,y)*(0,0)=(x*0,y*0)=(x,y)$$

(iii)
$$(0,0)*\{(x,y)*(p,q)\}=(0,0)*(x*p,y*q)$$

= $\{0*(x*p),0*(y*q)\}$
= $(p*x,q*y)=(p,q)*(x,y)$

Which shows that $(X \times X, (0,0),*)$ is a BF-algebra.

Theorem 4.3.Let μ_1 and μ_2 be two DF ideal of BF-algebraX. Then $\mu_1 \times \mu_2$ is also a DF ideal of X×X.

Proof.For any $(x, y) \in X \times X$,

```
we have (\mu_1 \times \mu_2)(0,0) = \max{\{\mu_1(0), \mu_2(0)\}}
                                     \leq \max\{\mu_1(x), \mu_2(y)\}\
=(\mu_1\times\mu_2)(x, y)
Therefore (\mu_1 \times \mu_2)(0,0) \le (\mu_1 \times \mu_2)(x, y)
Againlet (x_1, x_2), (y_1, y_2) \in X \times X
then(\mu_1 \times \mu_2)(x_1, x_2) = \max{\{\mu_1(x_1), \mu_2(x_2)\}}
```

 $\leq \max\{\max\{\mu_1(x_1^* y_1), \mu_1(y_1)\}, \max\{\mu_2(x_2^* y_2), \mu_2(y_2)\}\}$

= $\max\{\max\{\mu_1(x_1^* y_1), \mu_2(x_2^* y_2)\}, \max\{\mu_1(y_1), \mu_2(y_2)\}\}$

= $\max\{(\mu_1 \times \mu_2)(x_1 * y_1, x_2 * y_2), (\mu_1 \times \mu_2)(y_1, y_2)\}$

= $\max\{(\mu_1 \times \mu_2)((x_1, x_2)^*(y_1, y_2)), (\mu_1 \times \mu_2)(y_1, y_2)\}$ (4) and(5) shows that $\mu_1 \times \mu_2$ is also a DF ideal of X×X.

Investigation of DF ideals under homomorphism

In this section homomorphism of BF-algebra is defined and some results are studied.

Definition 5.1. Let X and X'be two BF-algebras. A mapping $f: X \rightarrow X'$ is said to be homomorphismif f(x *y) = f(x) * f(y) for all $x, y \in X$.

Theorem 5.2 Let X and X' be two BF-algebras and f: $X \rightarrow X'$ be a homomorphism Then f(0) = 0'Proof. Let $x \in X$ therefore $f(x) \in X'$

Now f(0) = f(x * x) = f(x) * f(x) = 0*0=0

Theorem 5.3.Let $f:X \to X'$ be an epimorphism of BF-algebras if v be a DF ideal of X', then the pre image of

(4)

(5)

vunder f is also a DF ideal of X.

```
Proof. Recall that f^{-1}(v) is defined as f^{-1}(v)(x) = v(f(x)). Let \mu be the pre image of v under f then v(f(x)) = \mu(x) \forall x \in X. Since v is DF ideal therefore v(0') \le v(f(x)) = \mu(x). On the other hand v(0') = v(f(0)) = \mu(0). \Rightarrow \mu(0) \le \mu(x) \forall x \in X
Again \mu(x) = v(f(x)) \le \max\{v(f(x) * y'), v(y')\} for any y \in X'
Let y \in X such that f(y) = y', then \mu(x) \le \max\{v(f(x) * y'), v(y')\} = \max\{v(f(x) * y'), v(f(y))\} = \max\{v(f(x) * y'), v(f(y))\} = \max\{v(f(x) * y'), \mu(y')\} \Rightarrow \mu(x) \le \max\{\mu(x) * y', \mu(y')\} which is true for all x, y \in X. Hence \mu is a Doubt fuzzy ideal of X.
```

Theorem 5.4.Let $f: X \to X$ be an epimorphism where X and X are two BF-algebras if v be a fuzzy subset of X, such that $f^{-1}(v)$ is DF ideal of X, then v is also a DF ideal of X.

```
Proof .Let u, v \in X' therefore there exists x, y \in X such that f(x) = u, f(y) = v

Let \mu be the pre image of v under f, then v(f(x)) = \mu(x) [since f^{-1}(v)(x) = v(f(x))] since \mu is DF ideal of X

\therefore \mu(0) \le \mu(x)

\Rightarrow v(f(0)) \le v(f(x))

\Rightarrow v(0') \le v(u) \forall u \in X

Again

\mu(x) \le \max\{\mu(x * y), \mu(y)\} \forall x, y \in X

\Rightarrow v(f(x)) \le \max\{v(f(x * y)), v(y)\}

\Rightarrow v(u) \le \max\{v(f(x) * f(y)), v(y)\}

= \max\{v(u * v), v(v)\} for all u, v \in X'

Hence v is a DF ideal of X'.
```

(v) **Conclusion**

In this paper we studied about ideals of BF-algebras in context of fuzzy set and we introduced Doubt fuzzy ideals of BF-algebras. We discussed some characterizations of BF- algebras in terms of Doubt fuzzy ideals. In future, the following studies may be carried out (1) Rough fuzzy ideals of BF-algebras (2)(\in , \in vq)-Doubt fuzzy ideals of BF-algebras.

(vi) Acknowledgements

The author would like to thank Dr.D.K.Basnet Associate Professor, Department of Mathematical Sciences, Tezpur University, Tezpur for his constant support and helpful comments.

References

- [1]. Y.Imai and K.Iseki: On Axiom System of Propositional Calculi 15, Proc. Japan Academy, 42(1966), 19-22.
- [2]. J.Neggers and H.S. Kim: on B-algebras, Math. Vensik, 54(2002), 21-29.
- [3]. AndrzejWalendziak: On BF algebras, MathSlovaca,57((2007),No2,119-128.
- [4]. A.BorumandSaeid and M.A Rezvani: on Fuzzy BF algebras International Mathematical Forum, 4,No1(2009),13-25.
- [5]. A.BorumandSaeid: Some results in Doubt fuzzy BF- algebras AnaleleUniversitatii Vest Timisoara seriaMathematica -Informatica, XLIX, (2011), 125-134.
- [6]. Young Bae Jun: Doubt fuzzy BCK/BCI algebras, Soochow Journal of Mathematics, Volume 20 No-3,351-358, July 1991.
- [7]. R.Biswas: Fuzzy subgroups and antifuzzy subgroups, Fuzzy sets and systems, 35,(1990) 121-124.