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Abstract : In this paper, we present an epidemiological model with a non-monotonic incidence rate, describing 

the effect of social phenomenon due to availability of medical infrastructure and awareness of some epidemics, 

when the number of infective becomes larger. We also analyze the dynamical behavior of the model and derive 

the stability conditions for the disease-free and the endemic equilibrium. We illustrate theoretical results by 

carrying numerical simulation. 
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I. Introduction 
The spread of infectious diseases have major universal and economic impact. Social awareness plays 

an important role to reduce such impacts. Precautionary steps are taken by people due to awareness through 

education, warning and publicity by the different media such as TV, internet, newspaper, etc. It helps to control 

the spread of disease and also to reduce the infected individuals. 

 Sometimes people reported about the disease for few symptoms because of much availability of 

medical infrastructure which includes hospitals, doctors, medicinal facilities, etc. These people are included in 

the infected class. But after the diagnosis if the patients are not infected then eventually the number of infected 

individuals topples down. We can build the models of such infectious disease using mathematical epidemiology 

which is used to predict the spread and control of the disease.  

 

II. Basic Concepts Of Epidemiological Dynamics 
2.1 Basic SIR Model 

The simplest epidemiological model is an SIR model, if individuals recover with permanent immunity. 

Kermack and Mc Kendrick [1] proposed an SIR model in (1927) for the people infected with a contagious 

illness in a closed population over time. It explained the rapid rise and fall in the number of infected patients 

observed in epidemics such as plague and cholera.  

Schematically, SIR model can be shown as: 

The simplest epidemiological model is an SIR model, if individuals recover with permanent immunity. 

Kermack and Mc Kendrick [1] proposed an SIR model in (1927) for the people infected with a contagious 

illness in a closed population over time. It explained the rapid rise and fall in the number of infected patients 

observed in epidemics such as plague and cholera.  

Schematically, SIR model can be shown as: 
The simplest epidemiological model is an SIR model, if individuals recover with permanent immunity. 

Kermack and Mc Kendrick [1] proposed an SIR model in (1927) for the people infected with a contagious 

illness in a closed population over time. It explained the rapid rise and fall in the number of infected patients 

observed in epidemics such as plague and cholera.  

Schematically, SIR model can be shown as: 

  

                                              
                                                 β(t)                                            γ(t) 
 

The model consists of a system of three coupled nonlinear ordinary differential equations:  

 

 

 

S(t) 

 

R(t) 

 

 I(t) 

 



Global Dynamics of an Epidemic Model with a Non-Monotonic Incidence Rate 

www.iosrjournals.org                                                             72 | Page 

where t is time, S(t) is the number of susceptible people, I(t) is the number of people infected, R(t) is the number 

of people who have recovered and developed immunity to the infection, so that S(t) +I(t) + R(t) = N(t) is the 

total population. β is the infection rate, and  is the recovery rate. Also, .  
Summing up all the three equations in (2.1.1), we get, 

 

 
 

 The basic reproduction number R0 is defined as the average number of secondary infections produced 

when one infected individual is introduced into a population where everyone is susceptible. For the Kermack-

McKendric model the basic reproduction number is given by, 

 
 

 If R0 > 1, then the size of infective class increases and an epidemic occurs. If R0=1, then a diseased 

individual produces only one new case of the disease and no epidemic can occur. If R0 < 1, the disease dies out. 

The basic reproduction number plays a role in public health decisions, because prevention program will be 

effective in preventing outbreaks only when it ensures R0 ≤ 1.  

An equilibrium of a dynamical system,  generated by a system of ordinary differential equations is a 

solution that does not change with time. If the introduction of a few infective individuals does not result in an 

epidemic i.e. number of infective tends to zero, then there exist disease free equilibrium. Endemic equilibrium 

points are steady state solutions where the disease persists in the population. 

 

2.2 Models with non-monotone incidence rate 

In epidemiology, contact rate is the average number of contacts an individual experiences per unit time. 

Infection rate is an estimate of the rate of progress of a disease, based on proportional measures of the extent of 

infection at different time. The incidence rate is the number of new cases per population in a given time period. 

Standard epidemiological models use a bilinear incidence rate kIS based on the law of mass action. In Hethcote 

[2], the standard incidence rate is given by βSI/N, which is the average number of infection transmitted by all 

infectious individuals, I per day. This works well when there are a large number of susceptible. If the population 

is saturated with infective, the incidence rate may have a nonlinear dependence on I. Nonlinear incidence rates is 

of the form kIpSq. If the incidence rate is non-monotone, then it is increasing when I is small and decreasing 

when I is large. Capasso and Serio [3] introduced a saturated incidence rate  into epidemic models, where 

 tends to a saturation level when I gets large, i.e., 

 
where kI measures the infection force of the disease and  measures the inhibition effect 

from the behavioral change of the susceptible individuals when their number increases or from the crowding 
effect of the infective individuals. This incidence rate is more reasonable than the bilinear incidence rate 

 
 

because it includes the behavioral change and crowding effect of the infective individuals and prevents 
the unboundedness of the contact rate by choosing suitable parameters. Ruan and Wang [4] studied an epidemic 

model with a specific nonlinear incident rate 

 
and presented a detailed qualitative and bifurcation analysis of the model. The general incidence rate 

 
was proposed by Liu et al. [5] and used by a number of authors like Hethcote [2], Derrick and van den Driessche 
[6], Hethcote and Levin [7], van den Driessche [8] and Alexander and Moghadas [9], etc. Xiao and Ruan [10] 

proposed non-monotone incidence rate  

 
where  measures the infection force of the disease and    describes the psychological or inhibitory 

effect from the behavioral change of the susceptible individuals when the number of infective individuals is very 

large. When , the nonmonotone incidence rate (2.2.2) becomes the bilinear incidence rate (2.2.1).  
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III. Model Formulation 
We propose the following epidemiological model with the incidence rate of the form (1+aI)kIS / 

(1+aI+bI2).  

 

 

 
Where S(t), I(t) and R(t) denote the number of susceptible, infective, and recovered individuals at time 

t, respectively.  is the recruitment rate of the population,  is the natural death rate of the population,  is the 

proportionality constant, μ is the natural recovery rate of the infective individuals,  is the rate at which 

recovered individuals lose immunity and return to the susceptible class, a represents the parameter which 

measure social phenomenon due to availability of medical infrastructure and b is the parameters which measure 

awareness of the people through education and publicity, etc. 

We consider the biological meaning of the components ( S(t), I(t), R(t) ) and focus on the model in the 

first octant of R3. We discuss the existence of equilibriums of system (3.1). For any values of parameters, model 

(3.1) has a disease free equilibrium . We find the positive equilibrium by taking R. H. S. of 

(3.1) equal to zero.  

 

 

 
Then, 

 
  We define the basic reproduction number as follows: 

 
Then, we have the following: 

Theorem 3.1: 

(i) if R0 < 1, then there is no positive equilibrium; 

(ii) if R0 > 1, then there is a unique positive equilibrium , called the endemic equilibrium. 

Endemic equilibrium  is given by 

 

 

 

 
 The number of infected individuals in endemic state I* depends on the basic reproduction number R0. If 

the disease goes to extinct then endemic state will not exist. Bifurcation of steady states and exchange of 

stability is shown in Fig.1. 
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IV. Global Analysis 
In this section, we study the properties of the equilibriums and derive the stability conditions for the 

disease-free and the endemic equilibrium of model (3.1).   

Lemma 4.1: The plane S + I + R = α/β is an invariant manifold of system (3.1), which is attracting in the first 

octant. 

Proof:  Summing up the three equations in (3.1) and denoting , we have                            

 
For the equilibrium point, set 

 
From the above equation, it is clear that  is one solution of eq. (4.1).  

The second solution in general is given by, 

 
For any , the general solution of eq.(4.1), using eq.(4.2), is 

 
Also, 

 
This completes the proof.                                                                                                                                       ** 

Remark: The limit set of system (3.1) is on the plane S + I + R = α/β. Thus, we consider the reduced system 

 

 
We have the following result regarding the nonexistence of periodic orbits in system (4.3), and hence 

the nonexistence of periodic orbits of system (3.1) using Lemma 4.1. 

Theorem 4.2:  System (4.3) does not have nontrivial periodic orbits. 

Proof:  Consider system (4.3) for  and . Take a Dulac function 

 
We have 

 
We consider  

 
Solving only the curly bracket, we get 

 
As a, b are positive, for I > 0, this expression is positive. For I=0 it is positive unbounded. 
Thus the expression (4.4) remains negative for I ≥ 0. 

For the general γ and μ, expression (4.4) becomes 

 
Expression in curly bracket simplifies to 

 
which is positive if γ ≥ μ. Thus the expression (4.4) is negative for γ ≥ μ. 

More general treatment gives 
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So if k is such that i.e.  then this expression (4.4) is positive. 

Thus the theorem about non existence of periodic orbit will hold if the constants a, μ, γ, k are positive and 

 

In general we may expect μ > γ (ideally). Thus for a given population a, μ, γ may be known, so we can 

choose k such that  and the theorem holds.                                                                                     ** 

We rescale (4.3) by taking  

 
in order to study the properties of the disease-free equilibrium E0 and the endemic equilibrium E*. 

Then we obtain 

 

 

where 

 
Remark: The trivial equilibrium (0, 0) of system (eq. (4.5) and eq. (4.6)) is the disease-free equilibrium E0 of 

model (3.1) and the unique positive equilibrium (x*, y*) of system (eq. (4.5) & eq. (4.6)) is the endemic 

equilibrium E* of model (3.1) if and only if  , where 

 
The Jacobian matrix of system (eq. (4.5) & eq. (4.6)) is 

 
Now, we determine the stability and topological type of the disease free equilibrium (0, 0) of system (eq. (4.5) & 

eq. (4.6)). 
Theorem 4.3: The disease-free equilibrium (0, 0) of system (eq. (4.5) & eq. (4.6)) is 

(i) a stable hyperbolic node if ;   

(ii) a saddle-node if ; 

(iii) a hyperbolic saddle if . 

Proof. The Jacobian matrix of system (eq. (4.5) & eq. (4.6)) at (0, 0) is  

 
The eigen values for M0 are  

For , one eigen value is positive and another is negative, therefore the disease-free equilibrium (0, 0) 

of system (eq. (4.5) & eq. (4.6)) is a hyperbolic saddle.  

For  , both eigen values are negative, therefore the disease-free equilibrium (0, 0) of system (eq. (4.5) 

& eq. (4.6))   is a stable hyperbolic node. If  , then there exists a small neighborhood N0 of (0, 0) 

such that the dynamics of system (eq. (4.5) & eq. (4.6)) are equivalent to that of 

 

 

Since the degree of x in first term dx/dτ is 2 which is even, (0, 0) is a saddle-node (refer theorem 2.11.1 of Perko 

[12], pp. 150). 

This completes the proof.                                                                                                                                       ** 

When , we discuss the stability and topological type of the endemic equilibrium (x*, y*). The 

Jacobian matrix of (eq. (4.5) & eq. (4.6)) at (x*, y*) is 
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Hence,  if  and (x*, y*) is a node or a focus or a center. We also have the following result 

on the stability of (x*, y*). 

Theorem 4.4: There is a unique endemic equilibrium (x*, y*) of model (eq. (4.5) & eq. (4.6)), which is a stable 

node if . 

Proof. The stability of (x*, y*) is determined by . From (4.7), we have 

 
If  then it implies  

This completes the proof.                                                                                                                                       ** 

We have the following results in terms of the basic reproduction number . 

Summarizing theorems 4.2, 4.3 and 4.4, we have the following theorem. 

Theorem 4.5:  

(i) If R0 < 1, then model (3.1) has a unique disease-free equilibrium E0 = (α/β, 0, 0), which is a global attractor in 

the first octant. 

(ii) If R0 = 1, then model (3.1) has a unique disease-free equilibrium E0 = (α/β, 0, 0), which attracts all orbits in 

the interior of the first octant. 

(iii) If R0 > 1, then model (3.1) has two equilibria, a disease-free equilibrium E0 = (α/β, 0, 0) and an endemic 

equilibrium . The endemic equilibrium E * is a global attractor in the interior of the first octant. 

 

V. Numerical Simulation 
                We give the numerical simulation of the solutions of system (2.1) using MATLAB. Fig. 2 shows that 

S(t) approaches steady state value whereas I(t) and R(t) tends to zero with the evolving time and hence the 

disease goes to extinct at R0 < 1. When R0 > 1, S(t) and R(t) approach  the steady state values while I(t) 

increases first and attains a steady state value as shown in Fig. 3 and epidemic occurs.  

Variations of I* with varying values of a and b, keeping all the other values constant, are shown in Fig. 

4 and Fig. 5 respectively. In Fig. 4, it is shown that I* increases with the increase of a and epidemic attains its 

peak at high values of a. Fig. 5 shows that the value of I* decreases as b increases and it tends to zero with 

increasing b. 
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Fig. 2. here S(0)=4, I(0)=2, R(0)=1, α=0.9, β=0.82, γ=0.25, k=0.4, a=2.9, b=4.6, μ=0.11, R0=0.47 
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Fig. 3. here S(0)=4, I(0)=2, R(0)=1, α=0.9, β=0.82, γ=0.25, k=2.7 a=2.9, b=4.6, μ=0.11, R0=3.186 
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Fig. 4: dependence of I* on a 

 
 

 

 

 
 

 

 
 

 

 
Fig. 5: dependence of I* on b 

 

VI. Concluding Remarks 
Using the numerical simulations, we conclude that when R0  ≤ 1 disease dies out and the disease free 

equilibrium is globally attractive. When R0 > 1, the endemic equilibrium is globally stable i.e. epidemic occurs. 

Also it is seen that though R0 does not depend on a and b, I* varies with the variations in a and b. It implies that 

as the superstitions about the disease increases within the population, the number of infectives also increases and 

the disease persists in the population. While if we create awareness among the population about the disease and 

the precautions are taken then the disease eradicate significantly 
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