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Abstract : In this note, anisotropic Bianchi type - I dark energy cosmological model with constant deceleration 

parameter and with time-dependent equation of state parameter )( t in bimetric theory of gravitation have 

been investigated and studied the accelerating as well as decelerating phase of expansion of the universe. We 

have measured the matter energy density parameter ,M  the dark energy density parameter  and the 

equation of state parameter   in it. The parameters lm    , 
 
and n affected the overall structure of the model. 

The time dependent equation of state parameter )( t is goes over to the value which is independent of time and 

fully depends only on the values of 0m .  Our measured values of M  ,   ,   and Hubble parameter H  

in our model are found to be consistent with the results of WMAP satellite, Bennett, C. L. et al. (2003) and SNe 

Ia data collaborated with CMBR anisotropy and galaxy clustering statistics, Tegmark, M., et al. (2004). The 

cosmological term   is a decreasing function of time and has a small positive value at present epoch which 

matched with the results from recent supernovae Ia observations. The other geometrical and physical properties 

of the model have been traced out. 
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I. Introduction 

The concept of dark energy is an important problem to expose the universe. The cosmological 

communities believed that a kind of a repulsive force which acts as antigravity is responsible for gearing up the 

universe some 7 billion years ago, is termed as dark energy. The dark energy cause the accelerating expansion 

of the universe and several high precision observational experiments, especially the Wilkinson Microwave 

Anisotropic Probe (WMAP) satellite experiment [Bennett et al. (2003)] concludes that the dark energy occupies 

near about 73% of the energy of the universe and dark matter is about 23%. The usual matter described by 

known particle theory is about 4% [1-11]. There are two groups of cosmological communities: The first is 

Supernova Cosmology Project and second is High-Z Supernova Team. They conclude that the universe is 

accelerated expanding and they measured the distances to cosmological supernovae by using the intrinsic 

luminosity of Type Ia supernovae is closely correlated to their decline rate from maximum brightness. These 

measurements combined with red-shift data for the supernovae and predicted an accelerating universe. For 

closed universe, the Hubble parameter ,H
 
the matter energy density parameter M and the dark energy density 

parameter ,  predicted by Tegmark [12] are near about , 32.0H 23.0M and . 17.1 For flat 

cosmological model, the cosmological observations [13-22], suggested the existence of a positive cosmological 

term  with magnitude 
12310

 
and with 7.0   ,3.0  M  in the accelerating universe.  

The properties of dark energy in the universe from the observational data based on determination of its 

equation of state (EOS)  p  ,   is not necessarily constant. The time variable parameter )( t have been 

restored from expressional data and analysis of the experimental data have been conducted to determine )( t  

by Sahni et al. [23-24].This parameter )( t have been calculated with some reasoning with reduced to some 

simple parameterization of the dependences by many authors [25-30]. The results from SNe Ia data collaborated 

with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. [12]) yield   as 977.0 (WMAP 

+SN results) at 68% confidence level for dark energy. These results are consistent with time variable equation of 

state parameter )( t and also for time free .  The equation of state parameter   is considered as a constant 

with values -1, 0, +1/3 and +1 corresponding to the vacuum fluid, dust fluid, radiation fluid and stiff dominated 

universe [31-32] and variable )( t of time or red shift is considered [33-34]. The quintessence models, 1  

(explanation of observations of accelerating universe) involving scalar field and phantom model, 1  
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(expansion of universe increases to infinite degree in finite time) give rise time dependent parameter )( t  [35-

38]. Various forms of parameter )( t  have been used for dark energy models [39-54]. 

In general theory of gravitation and in its alternative theories, especially in Bimetric theory of 

gravitation, the Bianchi type I spatially homogeneous with anisotropic cosmological models have been 

investigated to know the secret of the nature of the universe. Rosen’s bimetric theory of gravitation [55-56] is 

one of the alternatives to general relativity and it is free from singularities appearing in the big bang of 

cosmological models and it obeys the principle of covariance and equivalence of the general relativity. Thus, at 

every point of the space time in bimetric theory of gravitation, there are two metrics: 

 
ji

ij dxdxgds    2                                                                 (1) 

ji
ij dxdxd    2                                                                    (2) 

The Rosen’s field equations [55-56] in bimetric theory of gravitation are   

j
i

j
i

j
i TkNN    8  

2

1
                             (3)

                                                            

where  



|

     
2

1
 si

sjj
i ggN  , ij

ij NgN   is the Rosen scalar and for simplicity, let 1)  8( k . Here and 

hereafter the vertical bar ) |(  stands for  –covariant differentiation where )( det  ijgg  and )( det  ij  .  

In bimetric theory of gravitation, at every pair of adjacent points in space, Rosen attached to metrics, 

one is Riemannian metric and other is flat metric in order to develop his theory. In order to have singularity free 

space time, he has considered the flat metric together with Riemannian metric in his theory. Right from Rosen 

[55-56], various researchers like Karade, T. M., Isrelit, M., Reddy D. R. K. and Venkateswara Rao N., Bali et 

al., Katore and Rane, Khadekar and Tade, Borkar et al., Gaikwad et al. [57-72] have been developed the theory 

and investigated many cosmological models of the universe in bimetric theory of gravitation.     

In this literature, an attempt has been made to investigate Bianchi type I dark energy cosmological 

model with anisotropy, with constant deceleration parameter and with variable equation of state parameter )( t

, since anisotropy play a significant role in the early universe as well as in the late universe. It is observed that 

the equation of state parameter )( t is no were longer as a function of time t  and finally it goes over to value 

which is free from time t  and depends on only the values of . 0m  For , 1m    vanishes gives dusty 

universe, for , 10  m   lies in open interval ) 0 , 1 (  representing visible universe and for , 1  m   

lies in ) 1   ,0 (  . i.e., 1    0   shows invisible universe with dark energy occupies near about 68% of the 

total universe. Our results are very much fit in 68% limit of 977.0  of WMAP +SN observations [12]. In 

our results, there is no value of , 1   which also agreed with the opinion of Tegmark [12]. The values of our

  are not in the favor of 1    for phantom model and therefore the expansion in our model is not accelerate 

so quickly that could cause Big-Rip. 

 

II. Metric And Solutions Of Field Equations 

We consider anisotropic Bianchi type-I line element in the form 

22222222 dzCdyBdxAtdds                                              (4) 

where the metric potentials BA  ,  and C  are functions of t  only. 

The flat metric corresponding to metric (4) is 

22222 dzdydxdtd                                                             (5) 

The energy momentum tensor 
j

iT  of the perfect fluid is given by 

j
i

j
i

j
i gppT   )(                             (6)                                                          

         

Here   and p are the proper energy density and pressure respectively. The quantity   is the scalar of 

expansion which is given by, 
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i
i

v
 |  


                           

(7)                                               

and 
i  is the flow vector satisfying the relation 

 

1ji
ijg                                                                          (8) 

 

We assume that coordinates to be co-moving, so that  

.1     ,0      4321                                                                             (9) 

Equation (6) of proper energy density tensor yield 

 

    ,   1
1   xxpT  

, )( 2
2   yypT                                                                  (10) 

,  )(   3
3   zzpT

            
 

4
4T

                  
 

Here zyx ppp , , and zyx  , , are the directional EOS parameters along yx  , and z axes 

respectively. The parameter   is the deviation free EOS parameter of the fluid. We have parameterized the 

deviation from isotropy by setting  x  and then introducing skewness parameter 
 
and  that are the 

deviations from   along y and z axes, which are )(   y and )(   z respectively. 

The Rosen’s field equations (3) for the metric (4) and (5) with the help of (10) gives 
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where 
2 2

444    ,  dtAdAdtdAA   etc. 

 

The spatial volume for the model (4) is given by 

 

CBAV       3                                                                                     (15) 

We define the average scale factor as  
31)  (    CBAa   so that the Hubble parameter H  is anisotropic and may 

be defined as  

H  
 ̇
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3

1
321 HHHH 
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where 
B

B
H

A

A
H 4

2
4

1 ,  and 
C

C
H 4

3  are the directional Hubble’s  parameters in the directions of yx, and 

z respectively. 
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An important observational quantity in cosmology is the deceleration parameter ,q which is given by   

q  
  ̈

 ̇ 
                               (18)

           

The scalar expansion , shear scalar 
2 and the average anisotropy parameter mA  are defined by   
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Equations (11) to (14) are four differential equations with seven unknown quantities  

  ,  ,  ,  ,  , CBA  and  , since the scalar expansion   is in the form of BA   , and C . In order to get the 

solution of the system of differential equations (11) to (14), one has to assume three extra conditions. We first 

assume the special law of variation for generalized Hubble’s parameter that yields a constant value of 

deceleration parameter q , since the line element (4) is characterized by Hubble parameter H  . The generalized 

mean Hubble parameter H is related to the average scale factor a  by the relation 

 
nalH                                                                                                 (22) 

where )0( l  and )0( n are constants. By using this special law of variation of parameters several 

authors have studied flat FRW model and Bianchi type models with constant deceleration parameter.  Such 

relation gives a constant value of deceleration parameter q . 

From equations (16) and (22), we obtain 

  ̇                        (23) 

  ̈                
                       (24)

 

Substituting equations (23) and (24) in to the equation (18), we get the constant value of deceleration parameter 

.1 nq
                            (25) 

We see that the equation (25) gives the deceleration parameter q is constant under the law of variation 

of .H  The sign of q indicates that whether the model accelerate or not. The positive sign of q corresponds to 

standard decelerating model whereas the negative sign of q corresponds to accelerating model. 1n  yields a 

decelerating universe and for  ,10  n  we have an accelerating universe. The value 1n yield neither 

accelerating nor decelerating expansion means expansion with constant speed. 

Integrate (23), we obtain the laws of variation of parameter for the average scale factor a as 

 

nctlna 1
1)  (  for ,0n                           (26) 

tleca  
2 

           
for ,0n                    (27) 

where 1c and 2c  are integrating constants. Thus the law of variation of Hubble parameter gives two 

types of the expansion in the universe i.e., (i) power law expansion given by (26) and (ii) exponential law 

expansion given by (27). 

Secondly we assume that the scalar expansion )( in the model is proportional to the eigen values 
1
1 of the 

shear tensor. This condition leads to  
mBCA )(                                                                                              (28) 

where 0m is a constant

Thirdly we assume condition that the deviations from  along y  and z axes are same. i.e. .   
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From equations (12) and (13), on integrating, we get 

]   exp[  43 tcc
C

B


                                                                                    (29) 

where 3c  and 4c are constants of integration. After simplifying the field equations (11)-(14), for the power law 

expansion (26) and by using equation (29), we arrived at  
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Using the equations (30)-(32), our metric (4) becomes, 
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            (33)
  

This is Bianchi type I anisotropic dark energy cosmological model with constant deceleration parameter in 

bimetric theory of gravitation. 

For , 0n using the exponential law (27), we deduced the metric  
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III. Geometric And Physical Properties Of Dark Energy Model 
3.1 In power law expansion

 
The directional Hubble’s parameter are given by        
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The scalar expansion , shear scalar 
2  and anisotropic parameter mA are obtained as follows 

1
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The anisotropic pressure along x direction, the EOS parameter , and the skewness parameters   and

 , the deviations from EOS parameter  along y - axis and z - axis of the fluid, have been respectively 

calculated as  
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For , 2/1m 0  and then the deviations from EOS parameter   along y -axis and z -axis 

vanish so that   zyx  and hence the model becomes isotropic for . 2/1m  

For flat universe (in the absence of curvature), the mass energy density M and dark energy  obeys the 

relation 

 

,  1 M                        
(42)

  

where 
23HM 

 

and  
23H . Thus equation (42) becomes, 
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which gives,    
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                 (44)
  

(using equations (36) and (39) ). 

The cosmological term  is a decreasing function of time t . 

From equations (36), (39) and (44), we yield, 

  

2

n
M     and   

2

)2( 


n
                     (45)

  

It is seen that, the anisotropic pressure ,p the energy density , the expansion , the shear  and the 

anisotropic parameter mA are time-dependent quantities whereas ,M   and  are time free parameters. 

Though we assumed time dependent equation of state parameter , the variable )( t approached the value 

which is free from time ,t  and it is depending only on the values of .0m  

We plot the graph of equation of state parameter   verses m in power-law expansion for both for 

accelerating 0q and for decelerating ,0q in one stroke in Fig. (1), as under: 

 

 
 

From equation (39), it is realized that the energy density of the fluid )( t is a decreasing function of 

time and attend the maximum value at .0t
 
From Fig. (2) and Fig. (3), it is observed that the energy density of 

the fluid  is maximum in the early stage of the universe and it is decreasing continiously with increasing time 

and it approaches to zero, when time .t  This is happening in the accelerating as well as in decelerating 

phase of the universe. 
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Physically   term is interesting to know the behaviour of the model. Einstein originally added the 

cosmological term  in his field equations to balance the effect of gravity in the equation of static universe. The 

behaviour of the universe is to be determined by cosmological term  . In our model the cosmological term 
is always positive and it is decreases when the cosmic time t  increases and it has a positive value always. In the 

early stage of the universe  attain maximum value, in both phases in accelerating and in decelerating 

expansion and at present epoch (at late time) it approaches a small positive value.   

 

 
We explore both flat and curved universe, for accelerating 0q and decelerating 0q expansion, 

when we report on our limits on the dark energy properties. For closed universe, the Hubble parameter is 

derived as 32.0H  with cosmological term 35.0 at early stage of the universe at 2.0t . At this early 

stage, the parameters M and  are found as ,23.0M ,17.1 for ,5.0n  for accelerating expansion 

.0q For decelerating expansion ,0q  we deduced the results as ,32.0H ,57.0 93.0M and 

9.1 for 2n at early stage .04.0t  Thus at early stage of the universe, these our reporting results are 

very much consistent with  WMAP satellite, Bennett, C. L., et al. [1] and Tegmark, M., et al. [12]. These results 

are listed as under in Table: I  

 

For closed universe: 
                   For accelerating universe,  

                  
2.0  ,5.0  ,0  tnq   

                    For decelerating expansion, 

                      
04.0  ,2  ,0  tnq

 
 

 

                  32.0H  

                  35.0    

                 
23.0M  

                 
17.1    

 

                    32.0  H  

                     57.0     

                    
93.0M  

                    
9.1    

Table : I  
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3.2 In exponential law expansion  

In exponential law i.e., lteca 2  for ,0n the values of BA, and C  are 
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mlt
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3

3
                        (48) 

From equation (46-48), it is seen that our model is flat at early stage of the universe in exponential law. 

The spatial volume V and average scale factor a are as follows 

ltDeABCV 3                         (49) 

,)( 3/1 ltDeABCa 
 
                       (50) 

where D  is the constant. 

The volume V  and the scale factor a of the model attain the constant value at early stage of the universe and 

they are increasing exponentially with increase in time and at late epoch of time they are infinite. 

The directional 21, HH and 3H of the Hubble parameter H are 
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m
 

                    (51) 

and the Hubble parameter H  is given by  

lH                           (52) 

The scalar expansion , shear scalar ,2  anisotropic parameter mA and the deceleration parameter q are given 

by 

,3l
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The mean Hubble parameter H  and its directional’s are independent of time and they attain the 

constant values. Also the scalar expansion  attains the constant value. The deceleration parameter q  is 

negative. From this it is clear that in our exponential law, our model (34) has uniform expansion right from the 

beginning and the expansion has accelerating phase. The magnitude of the shear is independent of time and has 

constant value. This shows that the model has uniform shear. The anisotropic parameter mA also attains the 

constant value which suggested that the model is isotropize uniformly. 

The anisotropic pressure ,p  the energy density , the EOS parameter , skew-ness parameters  , along y

and z axis and the cosmological term  are as follows 

.3,0,0,0,0 2lp  
 
                    (57) 

The pressure ,p the energy density , the skew ness parameter  and , the EoS parameter   all are 

zeros, which infers that our model (34) represents dusty universe in exponential law expansion and the model is 

isotropize in all spatial direction. The cosmological term  has value 
23l and for particular choice of constant 

,10/81.1 61l the observing cosmological term  is .10 123  

For open universe (flat cosmological model), the relation 1  M  yields 0n  (using equation 

(45)) which correspondence to an accelerating expansion )0( q  of the universe. For this value ,0n  we 

deduced 0M and 1 yields )1 ,0()  ,(  M universe.
 
Simultaneously, for 0n , our model (34) 
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exist and it is flat at early stage with )1  ,0() ,(  M  universe. In our flat model, we observed 0 and the 

values of  as 12310 for 6110/81.1 l
 
and for )1)1013.3/((1 61  m in accelerating expansion 

. 0q
 
Our results are good in agreement with the recent cosmological observations [13-22] as they suggested 

the existence of a positive cosmological constant   with the magnitude
12310 in the accelerating universe. 

These observations on magnitude and red-shift of Type Ia supernovae suggested the accelerating universe. The 

behavior of   in our dark energy model agreed with recent observations. Our results ruled out the decelerating 

expansion of the universe in flat cosmological model, which is also supported with the recent observations.  

 
 

IV. Our Findings 

1.  Our deduced models (33) and (34) are the solutions of Rosen’s field equations for anisotropic Bianchi type 

I space-time with perfect fluid and variable equation of state parameter . )(  t The solutions have been 

obtained in power law (26) and in exponential law (27) for accelerating as well as for decelerating phase of 

the universe. 

2.  The time dependent equation of state of parameter )(  t is goes over to the value which is independent of 

time t  and it is fully based on the values of m  only in both accelerating and decelerating phase. 

3.  The character of our model is described by    . When , 1 m . 0   For , 10  m  we have 01 

and 10  , for . 1  m From this, it is clear that for , 10  m we get visible universe. For 

, 1m we have dusty universe and for whole range of m  , i.e., ,  1  m  we observe invisible universe 

i.e.,  dark energy model. 

4. For 2/1 m  , we have 0  and then the deviations from EOS parameter    along y -axis an z -

axis vanish so that   zyx  and hence the model becomes isotropic for 2/1 m . 

5.     We explore both flat and curved (closed) universe, for accelerating 0q and decelerating 0q
                                  

        expansion. Our dark energy model presented by equation of state parameter   is accommodated closed  

        universe with Hubble parameter 32.0H with cosmological term 35.0 at early stage of the universe   

        which are very much consistent with WMAP satellite, Bennett, C. L., et al. [1] and Tegmark, M., et al.   

        [12]. 

6.     For closed universe, our results, the matter energy density parameter 23.0M and dark energy density   

        parameter 17.1 for 5.0n for accelerating expansion 0q and for decelerating expansion , 0q   

        we  have 93.0M and 9.1 for 2n  at early stage of the universe determined by   are close to  

        the results of WMAP satellite, Bennett, C. L., et al. [1] and Tegmark, M., et al. [12]. 

7.    For flat universe, we deduced the cosmological term  as M  with )1 ,0() ,(  M universe at late   

       stage in accelerating expansion of the universe which supported the recent cosmological observations [13- 

       22] on magnitude and red shift of type Ia supernovae suggest that our universe may be an accelerating one  

       and ruled-out decelerating expansion. 

 

8.    For very large value of m , our 977.0  consistent with the results of 68% confidence level of WMAP  

       +SN Bennett, C. L., et al. [1] and Tegmark, M., et al. [12] of supernovae observation for flat cosmological  

       model. 

 

9.   The behavior of the whole dark energy model is affected by the values of lm   , and n . For , 0n we get  

      the flat universe at early time which has accelerating exponential expansion only and ruled-out decelerating   
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       expansion for 1n . The value 1n , suggested neither accelerating nor decelerating expansion that means   

       expansion of the model with constant speed. For 0n , we yield the closed universe with accelerating as   

       well as decelerating phase of the expansion. The values of m described the behavior of the universe which  

       contains 32% visible matter and 68% dark matter which has shown in Fig. (1). 

 

10. In exponential law expansion, the pressure ,p  energy density , the equation of sate parameter , skew- 

      ness parameter  and   all are vanishes which infers that our model (34) is dusty universe and it is  

      isotropize in all spatial direction. 

 

V. Conclusion 

We investigated Bianchi type - I dark energy cosmological model with an anisotropic constant 

deceleration parameter with time-dependent equation of state parameter )( t in bimetric theory of gravitation 

and studied the accelerating as well as decelerating phase of expansion of the universe and measured the matter 

energy density parameter M , the dark energy density parameter  and the equation of state parameter   in 

it. The parameters lm    , and n affected the overall structure of the model. The time dependent equation of state 

parameter )( t is goes over to the value which is time independent and fully depends only on the values of 

0m . Our measured values of M  ,   ,   and Hubble parameter H  in our model are found to be 

consistent with the results of WMAP satellite, Bennett, C. L. et al. (2003) and SNe Ia data collaborated with 

CMBR anisotropy and galaxy clustering statistics, Tegmark, M., et al. (2004). In power law expansion, the 

cosmological term   is a decreasing function of time and has a small positive value at present epoch which 

matched with the results from recent supernovae Ia observations whereas in exponential law it is constant. The 

physical features of the model have been explicitly traced out. 
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