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Abstract: Spectrum of pi is broadened in this article and made to be applicable to regular polygons. By this,
several equations of area and volumes are generalized. Also, a new method is suggested to find the value of arc
trigonometric functions like arcsin.
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I.  Introduction

Angles are defined with a little new view in the Il nd section. The words apothem and hypotenuse are
newly included into the family of radius. An advanced definition is furnished for pi. Equations for perimeter and
areas of regular polygons formed at this section resembles the equations of circle for perimeter and area.

Several triangles come into mind while studying the trigonometric functions w.r.t a circle which leads
to confusion to the students. To avoid such confusion, required triangle for trigonometric functions is designated
as determinant triangle in section I11.

Horizon of trigonometric function is expanded in the IVth section. In this section trigonometric
functions are derived for equilateral triangle. Sine graph is drawn at section V w.r.t the sine function of
equilateral triangle.

And at sections VI and VII cosine function is derived and corresponding graph is drawn for equilateral
triangle.

Validity of trigonometric function for negative values is checked at section VIII.

At sections IX and X expressions for tangent function and its graph are derived and drawn.

A generalized proof for trigonometric identities are furnished at sections X1 and XI|I.

Trigonometric functions are derived w.r.t square at section XIII. Here pi-en takes an integral value i.e., 4.
And the corresponding graph is also drawn.

General equations are derived for sides of the determinant triangles of regular polygons.

A new method is proposed at section XV to find the value of arc trigonometric functions.

1. Identical lines in a regular polygon.

In a regular polygon of n number of sides, infinite number of lines can be drawn from its centre to the
perimeter. All regular polygons are dividable into congruent triangles w.r.t the sides of the regular polygon, Fig
(1). And each such triangle is further dividable into two congruent right triangles. i.e., Line OP;, OP,, OP; -
divide the triangle AOB, BOC, COD -+, each into two right congruent triangles AOP;, BOP,,COP;--- . In the
right triangle P,OB, OB which is the line joining the centre and a vertex is the longest hypotenuse among all
hypotenuses that can be drawn from O to the neighborhood of apothem OP;. In the triangle AOB, OP, is
apothem and P;Bis half of the side AB and OB is largest hypotenuse. All lines within this right triangle are
unique in length. Also all lines formed by joining O and up to the neighborhood of apothem are hypotenuses.
Further, all hypotenuses and apothems are collectively called as radii.

Fig.(1): Showing the corresponding or equivalent lines
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Among all lines of these right triangles three border lines are significant lines. They are longest
hypotenuse, apothem and half of a side. For example opposite side of the right triangle P,OB is one of such
lines. Also, all lines have corresponding lines in other triangles. For example, OA = OB = 0C = ---and
OP;, = OP, = OP; = --- and so on.

i.e., OA corresponds to OB, OC, etc and OB corresponds to 0A, OC etc and so on.

Generally, all radii can be denoted by R? and all apothem can be denoted by R, and hypotenuses by R},
where i denotes a radius in the set of radii and 6 defines the positional uniqueness also h designates  the
line as hypotenuse.

) ) o _ Apothem
Mathematically magnitute of , R} = —————
cos 0
R,
= —— ———————— = 1
cos0 1)

T
Generally, limit of variation of 6 can be shown by the inequality as, (0 <0< H]

s i
For example, in an equilateral triangle , angle varies as, (0 <0< §] ,and if 0 = 3 we have,

R R
T = (2) =—= = 2R,

()

9 —
N (@

And for a square, Rt = V2R,
And so on.

Further, lim R?, = lim
6-0 6-0 cos 0
=R, ;sincecos0 =1

Therefore, R € {R,, R,}

2.0.1.Definitions of significant lines in a regular polygon.

Radii: Unique Lines w.r.t angle , drawn from centre of a regular polygon to the perimeter of the polygon are
radii. Actually, said lines from a vertex to the centre of the side are unique only in a chosen right triangle
and rest are corresponding  radii.

A set of unique hypotenuses and apothem, is furnished below

i
Mathematically, R® € {unique R}, }; Where, (0 <6< H]

R,

. 0 ; ; —
S {umque Ry, } € {unlque (cose) }Also, }_)lil’(l) Ry, =R,
For example when regular polygon is a square, Fig(2) and n = 4,0 will be = E,

In the 40P, B unique radii of square are all unique lines from OB to OP; among them OB and OP,
are significant lines which are largest hypotenuse and apothem.

R® € {uni ue (&) and R }'Here [0 <6< E] —————— 3)
! 4 cosH a)’ B |
All such lines in the remaining right triangles are corresponding radii.

P:
o 7]

O\ '

N\
_._'::i\‘ /
Re ”\

A D

L] [=

Fig.(2): radii in a square from B to P,
2.0.2. Apothem-
It is known that apothem is the line joining the centre of a regular polygon to the midpoint of its side.
Or it is the perpendicular drawn from the center of the regular polygon, on to one of its sides. Also it is the
perpendicular bisector of a side and the corresponding angle subtended by the side at the centre of the regular
polygon. It is denoted by R,.
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2.0.3.Di-apothem-

Di-apothem is any two apothems of a regular polygon. They are identifiable by their angle.
If di — apothem is denoted by DY, then Length of Di — apothem, D¢ = 2R,
Angle between apothems of diapothem are variable from 0 to m, w.r.tregular polygon.
considering from clockwise and anticlockwise direction whichever is least, is the angle of
di — apothem.
Apothems that are immediately adjecent to one another will have least angle between them,

21
i. e., The least angles between apothems of diapothem can be given by, 2D}, = o ; fig: (2)

Least angle of the apothen is equal to the angle subtended by a side at the centre.

Fig(3): showing the angle of di-apothem
(1 to (n;l))

an

When n is an odd number angle of di apothems, 2D will be,

2T 27 i (n—-1) 2n
I1X—,2X —,3X—,-, X —
n n

n 2 n
. . o 2 (-1 2m
Here, angle of maximum angled di — apothem of odd number of sides is, 2D, = X—< T
Instead it will approximately be equal to = when n—oo,
n—1
i.e.,limn_,ooLDg 7) = Jim 020 2T
n-oo 2 n

) i (1to3) . 21 2T s n 2w

And when n is an even number, angles of diapothems, 2D, willbe,1 X —,2 X —,3 X —, - 5 X —
n n n

n
By the above expression it is clear that angle of maximum angled di-apothem of regular polygon having even
number of sides will always be equal to ©
(2 _

n
i.e, angle of maximum angled diapothem, LDaZ = m,when n is an even number.

2.0.4.Specific angle Di-apothems-
Di-apothems that possess maximum angle, minimum angle or any identical or remarkable angle are
called Specific angle Di-apothems.

2.0.5. Maximum angled Di-apothem -
This is one of the Specific Di-apothems that has maximum angle between the  two apothems. Also,
it is denoted by D}'@*. The length of DJ'®* = 2R,
n
3)

And, Angle of D7"** when n is even numberis = 2D, = =

) -1 2r mh-1)
= X — =— =

Also, Angle of DJ®* when n is odd number is = 2D, >
n n

2.0.6. Minimum angled Di-Apothem-
Two apothems that have least angle between them are called Minimum angled Di-Apothem.
Immediately adjacent apothems will have least angle between them.
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Although, here Maximum angled Di-apothem is taken to relate it with diameter of a circle. Each apothem can be
designated w.r.t its corresponding side. Corresponding side is the side from which corresponding apothem is
drawn.

Apothem is one of the significant reference lines which is helpful in finding the relation between
perimeter and the line within the regular polygon.
When, the number of sides of the regular polygon tends to infinity, then the apothem becomes conventional
radius of the circle i.e., all lines from Maximum angled hypotenuse to apothem merge with apothem . And the
angle of Maximum angled Di-apothem will be equal to a straight angle.

2.0.7. Di-angle bisectors or Hypotenuse of maximume-length or angle -

The line joining the centre and the vertex divides the interior angle at the vertices of a regular polygon
and also divide the angle formed by the apothems that are immediately adjacent lines on both sides. Hence they
divide two angles. Also, it divides the angle between corresponding hypotenuses on either side of it. Therefore
they can be called as di-angle bisectors. Here OB is a di-angle-bisector. it bisects the angles B and
P,OP, Fig(1). The apothems that are immediately adjacent on both sides are P,0 and P,0. Also it divides the
angles of corresponding hypotenuses adjacent on either sides. This di-angle bisector can also be called as
hypotenuse of maximum length or angle, because they have maximum angle and hence they are longest
hypotenuses.

2.0.8. Duo-di-angle bisectors or Duo-Di-Hypotenuse of maximum-length or angle

Two di-angle bisectors or Di-Hypotenuse of maximum-length or angle in a regular polygon can be
called as Duo-di-angle bisector or Duo-Di-Hypotenuse of maximum-length or angle.
Out of these Duo-di-angle bisectors, specific Duo-di-angle bisectors are isolatable.

Maximum angled Duo-di-angle bisectors are sub set of specific Duo-di-angle bisectors.And these Duo-
di-angle bisectors are nothing but longest di-hypotenuses with maximum angles.
This can be denoted by DB ..
In Fig.(2), BOD is a Duo di-angle bisector or duo di-hypotenuse of maximum length or angle. Also this line is
conventionally called as diagonal.

Fig.4. Showing the different kinds of lines.

Further, it can also be called as diameter of maximum length
When the sides of a regular polygon are increased indefinitely or when the sides of a polygon tends to a
point, all hypotenuses and the apothem fuse to form the conventional radius which is equal to apothem.

Diameters:
Diameters are lines in a figure which are very helpful in understanding the figure. In that sense di-

radius with maximum angles are diameters or regular polygons. And it can be denoted by D9

n 2n
Angle between the radii of a diameter, Dgi = 3 X o

. 0 .
when n is an even number D" will be equal to Tt

Conversely, any two radii that have an angle equal to m, in a regular polygon of even
number of sides, are diameters.
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n—1) 2xu
Angle between the radii when n is an odd number is Dﬁz = ( > ) X o

(n—-1) 2m
X o in a regular polygon of odd number

Conversely, all radii that have an angle equal to

of sides, are diameters.
The diameters that have maximum length are di-hypotenuse or duo di-angle bisectors. And the diameters that
have minimum length are di-apothems.
Moreover, When n tends to infinity, the consequent figure will be a circle, hence all diameters merge
to form a conventional diameter which is always equal to di — apothem.

m(n—1)
Mathematically, lim ———= =

n—oo

And the length of diameter limD,e1 = lim [Czol:ae] ; here absolute value of cos 0 is considered.
n—-oo n—-oo

2R,

limcos 6

n—oo
As n tends to infinity 6 tends to m,
2R,
" [cosT]
= 2R,
= Twice the radius

2.0.9. Definition of angle of a regular polygon ( Two dimensional):- The angle is the measure of rotation of a
given ray about its initial point. Here Initial side is positive side of X-axis and vertex of the angle is the origin
of the co-ordinate axis.

The angle can also be defined as the space subtended by the segment of the perimeter of a regular
polygon, up to its in-center limited between the two radii. It is usually measured from anti-clockwise direction.
The measurement of an angle is conventional as in degrees and scientific as in radians. The measurement of an
angle does not comply with the concept of angle because length and amount of space bounded by the specified
limits of angle are immaterial to the measurement of an angle. Hence radius of angle of a circle used for
representation of an angle will always be a constant.

As usual, all regular polygons in this case are considered as a set of concentric regular polygons. Its
corresponding radii of each polygons are equal and constants. Whereas, in case of a circle, all radii and
diameters are equal and constant. Hence hands of the angle will also be equal. In case of a regular polygons
other than a circle, hands of the angle may be different and periodically equal.

Also, angle subtended by equal segments of a perimeter in a regular polygon are not equal always, except in
case of a circle.

For example, the angle subtended by some segment at the vertex which includes both the adjacent sides
of the vertex will not be equal to the same length on other side of the vertex.

Segment (arc) of circumference of a regular polygon has variable radii except the segment of (arc) a circle.
Hence radius of curvature of segment of circumference is variable whereas the radius of curvature of segment of
a circle is equal w.r.t the corresponding circle.

Therefore, angle of a regular polygon is measured from the positive X —axis in anti-clockwise
direction.

Circular and polygonal angle are denotable as shown in Fig (5)

Fig.5
2.1.0. The relation between apothem and perimeter of a regular polygon.
Till now conventional T is used as the unit of angle. In this section an effort is made for generalized
representation of the angle.
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Let ABCD ... be a regular polygon of n number of sides Fig(6), O be its center, OP; be its apothem drawn on to
the side. Let 1be the length of each side.

Here, OP,is the apothem of the corresponding side AB, and R, is its length. Also let1be the length of
each side.
A,B,C -+ denote vertices and zA, 2B, 2C --- denote the corresponding interior angles at the vertices of the
regular polygon.

The angle subtended by the side at the centre of the regular polygon is 8,,, n indicates the number of sides.

21
by which total angle is divided by to get the angle.i.e., ZOAB = o= On

And, £P,0B = %,which is the angle between apothem and largest hypotenuse.

Fig.(6): A typical regular polygon of n number of sides

Total angle of the circle

i.e.,2AOB = £BOC = £C0D = - = -
e number of sides of the regular polygon

Total angle of the circle

~ number of sides of the regular polygon

27 360° 400 grd
=—or or

n n n
21 360° 400 grd

If — or or is denoted by 6,
n n n
21 360° 400 grd
Then 6, = — or or
n n n

Further ELAOB = P,0B

) 6, m 180 200 grd
Accordmgly,; = - or — or ——

n n
Further, £OP,B = £0P,C = £0OP3;D = --- = LOP,Z = Aright angle

2.1.1.Theorem-1

The ratio of perimeter of a plane convex regular polygon to its maximum angled Di-apothem is a
constant. This universal constant can be called as PIEN (pi,en) and symbolically it can be written as &
Note- The ratio of perimeter of a regular polygon to its Apothem or to its Di-apothem is also constant.
Here, superscript a implies that m,, is derived w.r.t apothem and n indicates the number of sides of the regular
polygon to which pi refers to. For example, when the regular polygon is an equilateral triangle 5 is written as
w§, for a square ¢, and so on. Also, n which denotes the number of sides of a regular polygon is
€ N > 3,which is the set = {3,4,5,--,n}
and 6, is the angle subtended by a side of the regular polygon. Here also the subscript n indicates the number
of sides of the regular polygon. n starts from 3 because the minimum number of sides required to make a closed
plane figure is 3. The reason for retaining the subscript n of @ is to recognize the divisor of the total angle of
the circle from which 6 is obtained.
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2.1.2. Derivation of mathematical expression for 72

Since apothems are perpendiculars drawn on the sides of the regular polygon from its centre, the angles
20P,A,20P,B, 20P,B, £OP,C ...are right angles Fig. 6.
Let P be the perimeter of a plane convex regular polygon of n number of sides.
Then.P=nl———————— — — 4)
With reference to the Fig.(1), the angle between the side and apothem is a right angle.

0
Then length of a side,l = 2 <Ra tan (Tn)) ;a general equation w.r.t.the triangle OAB,

above equation can be written as

= 2(saeon (%)

Substituting this relation of [ in (4) we have
(@
P =n(2R,) tan (Tn)
Since 2R, is equal to the Di-apothem of maximum angle, which is denoted by D%,,, above equation
can be written as

6y,
P =n D&, tan (7)

According to the theorem 1.

Perimeter of regular polygon
o = f reg polyg

"~ Maximum angled Diapothem

0
nDf .. tan (7") . 0,
=—————=nf =ntan (—) ————— (5)
Dmax 2

When the unit of angle is w, (5) will be, t% = ntan (g)

When the unit of angle is expressed in degrees,y = ntan (?)
And so on
Thus derived.
Table-1:
Table showing the different values of mj for different values of n
n ntan (%) ntan (%)
IT
1 2 3
3 5.196152423 1.653986686
4 4 1.273239545
5 3.632712640 1.156328347
6 3.464101615 1.102657791
7 3.371022332 1.073029735
8 3.313708499 1.054786175
9 3.275732108 1.042697915
10 3.249196962 1.034251515
102 | 3.142626604 1.000329117
10% | 3.141602989 1.00000329
10* | 3.141592757 1.000000033
105 | 3.141592655
10" Value tend to 1

It is true that as the number sides of a regular polygon increase indefinitely, the regular polygon
approximates to a circle. Hence the value of 72 tends to conventional 7.

Z)
Mathematically, limn tan (7n) = conventional

n—oo
Note: Conventional = means the present value of .
Therefore, conventional m = &
Note: The symbol = when written without superscript and subscript may be considered as conventional pi.

2.1.3.The relation between Di-hypotenuse of maximum angle or length (Maximum angled Duo-di-angle
bisectors) and perimeter of a regular polygon.
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Theorem-2:

The ratio of perimeter of a plane convex regular polygon to its longest di-hypotenuse (Maximum angled
Duo-di-angle bisectors) is a constant.
This universal constant can be called as PIEN H-MAX (pi,en, a ch max) and symbolically it can be

written as h-max

Derivation of mathematical expression for h-max:
Let P be the perimeter of a regular polygon of n number of sides

Then the mathematical equation for the perimeter of regular polygon will be ,P = nl
AAOB is an isosceles triangle. Fig(2) here OA and OB are typical longest hypotenuses

Then,l = 2Ry, sin (92_11)

Then (5) can be written as

P =n(2Ry) sin (92_11)

Now, according to the theorem 2.

h—-max

Perimeter of regular polygon

Ty =

nD . sin (%)

h
Dmax

0

longest di — hypotenuse

ThTMax = nsin (—n> —————— (6)

2

When the unit of angle is m, (6) will be, 1,

h-max

When the unit of angle is degree, m, =

Table2: Table showing the different values of /*=™a* for different values of n

h—-max ; T
=nsin (—)
n

. (180)
nsin|—
n

n nsin (%) nsin (%)
TT

1 2 3

3 2598076211 0.826993343

4 2.828427125 0.900316316

5 2938926261 0.935489284

6 3 0.954929659

7 3.037186174 0.966766385

8 3.061467459 0.974495358

9 3.07818129 0.979815536

10 0.983631643 0.983631643

10° 3.141075908 0.999835515

10° 3.141587486 0.999998355

10* 3.141592602 0.999999984

10° 3.141592653

10" Value tend to 1

2.1.4.Theorem -3: A general theorem
The ratios of perimeters of a plane convex regular polygons to their diameters are constants.

This can be denoted by nﬁ" . It can also be written as m? , since @ is a significant value that is required to

find the length of the required lines and represents the uniqueness of its position.

Mathematical description for the above theorem.
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We already know that the length of the unique line in a right triangle in a regular polygon is,
Rq

cos 8
Then opposite side of the triangle is,l; = R; X sin 8

i =

= 2 _xsind
cos @
l;=R,Xtan@
l l
Then,z = li + (E - ll>

. l 0, l 6,
Accordlngly,i =R, tan6 + {Ra tan <7) — R, tan 9} 5= R, tan (7> And, 1

0
=2R, tan (711)

As usual, Perimeter of a regular polygon, P = nl
Substituting the expression for [ in the above equation we have,

6n
P = 2nR, tan (7)

a

We know that, D¢ =
os 6
In view of theorem 3 we have,
P 2nR, tan (%)
Df = 2R,
cos @

=ntan (9 ) (cos 8)

P
D9

P
Since Do = n,"; ,above equation can be written as,

n

nd = ntan ( ) (cos 0)
0,
We know that,n tan (;) =g

0,
Then,md =n tan( ) (cos) ——————— @)

n® = n%(cosf) ————— — — (8)
When 8 = 0;i.e., for lower bound of 6

8 = %(cos 0)

nd = ¢

6, m
And,when 6 = (7> or (E) ,i.e., for upper bound of 6
nl=n (sin (9—n>)
n 2

Case Study:
1.Whenn = 3, it is an equlateral triangle ;and let 6 =0

Then,md = n tan (9 ) (cos 8)

When 8 = 0; n8 will be = ¢

Also, by substituting the value of 8 and the value of 92_n in radians , in the above equation we get,
=3 tan( ) (cos 0)

) =33
2.Whenn =3;and let 8 = 30°

nf=n tan( ) (cos 0)
18

=3 tan( ) (cos 30)

et
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730 =45

This means that the length of the perimeter of this triangle i.e., equal to 4.5 times that of hypotenuse that can be

drawn at 30°.
2.Let,n=13;and 6 = 45

Then,m8 =n tan( 5 ) (cos 8)

180
=3 tan( ) (cos 45)
3

V2
3.Whenn =3;and let 6 = 60°

180
Then, m8® = 3 tan( ) (cos 60)
1
= 0=
s (2)1
= 33(3)
33
2
= 35in 60
This result is also obtainable directly from (8) as following
180
8 =3 tan( ) (cos 60)

_ (sm60)( 60)
= 0 cos

= 3sin 60
=2.598076

3v3 8
Whenn = 3, the value of nf varies from 3vV3 to 5 for [Z =>0= 0]

1.For example whenn =4 and 0 = 0, the value of semiperimeter will be

/%4 =ntan<2)(c059)

On
=ntan (7)

md —ntan( )(cos@)

=ncos 30

=4 % 0.866025

= 3.464102

2. Whenn=4; 0 =45°

When 6,, will be = 90°; since 6, is the angle subtended by a side at the center.

nd=n tan( )(cos 0)

V2
=22

0 n
Whenn = 4, the value of nf varies from 2v2 to 4 for [Z >0 = 0]

Similarly, value of ¢ can be found for subsequent values of n
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2.1.5. Applications of m9 :
To find the perimeter of a regular polygon:
If the perimeter of a regular polygon is denoted by B, where n denotes the number of sides of the polygon.

Then,P, =2 ng R? ______ 9)
Proof: Given, P, = 2 m§ R?

6
= 2n tan (7”) (cos B)R{9
l
2 —_
=n Q (cos 6) Rf
R,

l R, o
n <Ra ) X Rf X R;
=nl

Thus proved.

At simplified terms and w.r.t apothem perimeter of a regular polygon can be written as

P, = 2mfR,—————— (10)

2.1.6. To find the area of a regular polygon.

If the area of a regular polygon is denoted by 4, then A,, = w8 (cos 9)(Rl-9)2 ———————— 11)
Proof:

Given, A, = 8 (cos 8)(R?)*
0, 2
= [n tan (7) (cos 9)] (cos 0)(RY)

) (e

_ nl(cos O)RY

B 2

_ nlR,(cos 9)' e RO = R,
~ 2(cos ) PSMCE R = s 6
_nlR,

o2

> is half of the base of the isosceles triangle formed when two closest vertices are joined to the center,

l
also it is half of a side of the regular polygon and R, will be the height ofthis triangle, Hence 3 R,

is the area of this triangle. Further ,n is the numberof sides which is also equal to number of isosceles
triangles in a regular polygon.

l
Consequently, product of n and (E R, ) will be the area of the regular polygon.

l
=n|(3)d
A, =n X area of the triangle formed by the sides of the regular polygon with the centre
Thus proved.
At simplified terms (11) can be writtenas A, =m¢R2 — — — — — — — (12)
Examplel: Apothem of an equilateral triangle is 1 m find the perimeter, area, also find perimeter and area w.r.t
the radius R = R3°, R?S, R®°
Data: R, =1m
O, m . . . . .
- =3 since figure is an equilateral triangle.and 6 = 0
Perimeter of the triangle can be found by using (9):

i.e.,P, =2mf R?

P; =2ng R, ;sinceradius is an apothem and n = 3.
{0

=2X3 tan (g)

=10.3923 m
Area of the triangle can be found by using (11) :
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i.e,A, = mf(cos 9)(Rf)2

Since given radius is an apothem, 6 will be =0
Cosequently, above equation will be, A,, = n3(R,)?
Also, given that R, = 1m

Hence, A, = 1t

— T[ 2

=ntan (5) m

= 5.196 m?

a

cos 6

Further magnitude of R}® =
_ 1
" cos30
R} =1.1547 m
Then, A, = nf(cos 9)(Rf9)2
=n3°(cos 30)(R3°)?
T
=3tan (5) (cos 8) 2(R}%)?
=3 x (1.732) x (0.866) 2 x (1.1547) 2
= 5.196 m?
Similarly, we get the same result for R? = R}> and R$°

Example 2:
Find the perimeter and area of the pentagon whose line joining the centre and the vertex is 2 cm.

T
Given that, 6, = 3

; since it is the line joining the centre and the vertex. Also, R? =2cmanditisa

largest radius.
— h—
= 2nh maleynax

=2x5xsin(g)x2

= 11.75571
Or
o _ Ra
YY)
R, =Rfcos@

T
= 2cos (E)
= 1.618034
P; =2mg R,
=2x3.632713 X 1.618034
= 11.75571
Similarly, area and perimeter can be found for all regular polygons.

2.1.7. Equation for the area of a circle

Area of aregular polygon is generally given by A, = n2(R,)?
asn - oo, willbe =m,R; =71

consequently, area of the circle will be = mr?

2.1.8.Perimeter of a regular polygon exceeding the perimeter of the in-circle.
Perimeter of a regular polygon is, P, = 2 nfR?

7]
= 2n tan (Tn) (cos H)R{9

And, perimeter of a circle is P = 2nR,

Total perimeter of regular polygon exceeding the perimeter of a circle is ,P, — P
If this dif ference is denoted Pg,_.) we have, Pp_wy = B, — P

Pin-wy = 2myRY — 2R,

=755
= 2R, [(n tan (é‘)) - n]
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P(n—oo) = 2(7-[1‘% - H)Ra ___________ (13)

Example: side of a square is 2 units and radius of a circle is 1 units find the difference of their perimeters.
Solution- Pi_ooy = 2(f — MR,

=2(4 —3.1416)

= 1.7168 units

2.1.9.Area of a regular polygon exceeding the area of the in-circle.
Area of aregular polygon is, A, = n(cos 9)(Rf)2

= n%(R,)?; when 6 of cosine in the equation is cosidered as 0
And area of incircle is, A, = T(R,)?

Then, A, — A, = t2(R,)? — n(R,)?

An - Aoc = (T[,‘: - T[)(Ra)z _______ (14)

Also,rlli_@(n{‘l‘ —-m)(R?*=0

Example: Consider a square with apothem R, and circle inscribed in it. Then the area of the shaded part is.

Fig 7: Area bounded between the circle and the square
A, = (R,)? — m(R,)?%; If this area is denoted by , A
= (mf —m)(R,)*

= (4 —m)(RY*?
~ 0.858 (R,)?

1.2.0. Volume and surface area of a Isogonic tetrahedron (regular tetrahedron):
Regular tetrahedron can be considered as a pyramid or as semi-conics with a base of equilateral
triangle.
a — Edge length of the tetrahedron, Fig(8).
h — Height of the tetrahedron
r — Radius of the insphere that is tangent to the face
O — Incentre of this insphere
R, — apothem of the base triangle.
A; — area of the base triangle.

Fig 8: Tetrahedron shown with its different elements.
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Véa

a
Known mathematical data ; h=——; r=—
a 3 V24
o/
Ratio of r and his,— = 24
h +éa
3
1
4
Cosequently,r:h = 1:4
Then Area of the base can be given by the equation ,A; = t¢(R)* — — — — — (15)
It is known that volume a pyramid is equal to the product of area of the base by the altitude.
Accordingly, volume of this pyramid will be ,V; = §n§1(Ra)2h —————— (15a)
And,Volume of this tetrahedron can also be written as,
4
Vs = §n§‘(Ra)2 r;sinceh=4r ————— (16)
For further simplification, relation between r and R, is found as following.
a

Radius of the incircle that is tangential to the face is,r =

V24

>/>/(“,
>%,

cl A

Fig. 9
And,R, = = tan—
nd,R, = >tan -
R,=——
a 2\/§
_a
Consequently,r:R, = “?;}
2v3

riR, = 1:V2
Hence, R, = V2 r

4
Volume of this tetrahedron,V; = gng (R)?*r
4
= §n§‘(\/§ r)z T

— a ,.3
=Tz T
3 3

8
= §X 3\/3_7"3

Example.1: If radius of in-sphere of a regular tetrahedron is 1 units find the volume of the tetrahedron.
Solution — V; = 8313
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given,r =1
Then ,V; =8 V3
a

R
Also,—a = 23
h 6a
3
R, 1
h 2v2
h=2V2R,——————— (18)

When (18) is replaced in (15a),
1
i.e.,,V;= §n§‘(Ra)2h

= %ns(Ra)Z(zﬁRa)
2V2

= Tnél(Ra)3
= %7 X 3V3 (Ry)?
=2V6 (R)°———-(19)

2.2.1. The ratio of volume of Regular tetrahedron and its in-sphere

4
Volume of insphere is V; = gnr3

Volume of tetrahedron that circumscribe the sphere and touch the surface at its centroid is

V, =8V3r3
%né‘ r3

%m‘3

SIS

a
_ 2m3

= 3508

Example.1: If the radius of the in-sphere of an isogonic tetrahedron is 1cm find the volume of the said
tetrahedron.

Solution: By (17) we have volume of the isogonic tetrahedron is,Vy = 8 V3 r3

= 8v/3 cubic units

Example.2: If the slant edge length of the isogonic tetrahedron is v24 units find its volume and the volume of
the in-sphere.

a V24
Solution: Givena =vV24,r=—=—=1
V24 24
4

Then the volume of the in — sphere is = §7‘[ cubic units

Consequantly,V; = 8313

= 8+/3 cubic units
This is also solvable as following by using (19)

Given that slant edge is V24 units
Then the perimeter of the triangle of the faces will be = 324

324
Then the apothem R, will be = ,since 3V3 = ¢
3v3
Consequantly, R, =2
Given that,Vs = 2V/6 (R,)?
When the value of R, is substiutted in the given equation we have
V5 = 8V3 cubic units

2.2.2. Surface area and volume of a closed cylinder of regular polygonal base and of height h.
a) General equation for the surface area of a closed cylinder of a regular polygonal base is

www.iosrjournals.org 92 | Page



Pien

derived as following

Area of the 2 bases that are on either end of the polygonal cylinder is,= 2n%(R,)?
Area of cylindrical surface is = perimeter of the base X height

Mathematically, Area of cylindrical surface is = (2miR,) X h

Total surface area of such cylinder is = 2n(R,)? + 2niR,h

If surface area of a cylinder of regular base is denoted by A, we have

AS =2nfR,(Rg+h) — ————— (20)

b) Volume of the closed cylinder with regular polygonal base

It is known that the area of the base is = m3(R,)?

consequantly volume of such cylinder is = n3(R,)*h ; whence h is the height of the cylinder.
Example: Find the area and volume of the prism with equilateral base with following data.
Length of side of the base =2 units

Height of the prism =4 units

Solution :

Volume of the prism = t%(R,)*h

To find R,, the relation, P; = 2n$R,, is used,

6 = 2 x 3v3 X R, ; since 6 is the perimeter of the triangle by data.

R - 1
“ V3
1 2
Now, the volume of the prism is = 3v3 x (ﬁ) X 4

= 4+/3 cubic units
Surface area = 2niR,(R, + h)
=2 x3\/§xi(i+4)
V3\W3
=2V3+24 square units
Check-This prism has 3 rectangular faces of length 4 units and breadth 3 units. Also it has 2 equilateral
triangular faces of side 2 units
Total surface area of the Prismis = 3 X area of rectangle + 2 X area of triangle

=3x4x2+2x§x25in(z)

3
=24+2V3
Thus checked.

2.2.3. Some more general examples:

Surface area of a cylinder of square base is A = 2n{R,(R, + h)
If h = 2R, ,we have,

= 2R, (R, + 2R,)

= 6m¢R,*

a\? a a
=6X4X(E) ;sincemy =4and R, = 5
=6a* ————(21)

Similarly for cylinder of pentagonal base

As = 28R, (R, + 2R,)

=6mlR,S————— — (22)

Generally , for a base of n number of sides and the height equal to 2R,
Ap=6miR} —————— (23)

Since 2R, = a ; side of a cube,we have

a 2
An =6 Tl'g (E)
= Ert,“laz
When n —» o, above equation will be,

3
= Enaz

Replacing 2R, for a,we have
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=6 R ,>

6mER,*

\
/

> =6 mR,*

N L/

Fig.10:surface areas of cube and inscribed cylinder in the cube
For example when radius of the incribed cylinder is 1, surface area of the cylinder will be
= 61 sq units
And the surface area of the circumscribing cube will be = 61§ sq units
Further, general equation with a base of n number and height h = br, i.e., height expressed in terms of r.
Ap =2+ 1) nfr? — ———(24)
Further,when n tends to infinity surface area of the figure will be,
A, =20+ Dnr?
= 2nr(r + h) ; since rb = h.

2.2.4. Surface area and Volume of a regular hexahedron (cube)
This is the basic reference figure that is considered as standard for all kinds of measurements of
volumes.
Here volume and surface area are expressed in the form of the equation of sphere.
a — Edge length of the cube, Fig:5.
h — Height of the cube
r — Radius of the insphere that is tangent to the face
0 — Incentre of the insphere that is tangent to the face.In this case it is also the centre
of the cube.
R, — apothem of the base square.
A, = area of the base square.

I
|

,
H
N
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Fig.11.
A cube can also be considered as the cylinder of square base with height equal to a side.

2.2.5. Volume of a cube :

We, know that volume of a cube is V, = a®

Since,edge length a = 2r = 2 R, , above equation will be
v, = (2r)®

=8rs

Also,V, =8R3 — — — — — (25)

/

Fig.12.
There are 8 number of r3s in a cube.
2.2.6.A general equation for the volume of a cylinder of regular polygonal base:

V¢ = A,h; here superscript c indicates shape of the figure i.e, cylinder.
Substituting the relation of 4,, in the above equation we have

Ve = md(Rg)Ph——— — = - (26)

When h = bR, above equation will be;; V. = bn%(R,)% — — — — — 27)
In a special case i.e.,when b = 2 and n = 4; then (27)will be

Vi =2 X MRy}~ — = —— — (28)

= 8(Ra)3

It is the volume of a cube.
Example :Find the volume of a regular pentagonal cylinder of whose side of base is 1 unit and height 3 units
VSC = T[g(Ra)zh
= 5 x tan (%) x (R)? X 3

5 a
V€ =10.8981 x (R,)?
By using (10)we can find R,.

5

i.e. , Ra = —T[
2Xx5Xxtan (ﬁ)
= 0.6882

7T
And value of 5 X tan (E) = 3.6327

Then,VE = 3.6327 X (0.6882)% x 3
= 5.1616 cubic units

2.2.7.Volume of a regular pyramid with square base and height equal to the side of the base:
.Conventional formula for finding the volume of pyramid is

1
VP = §Ah ;where A is the area of the base and h is the height of the pyramid.
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Substituting (12) for A in the above equation, we have, Vp
1
=3 2(Ry)%h; subscript of V is 4 because
base is a square.

2
Since h = 2R, in a cube we have, V] = 37 SR ————— (29)

2.2.8. Comparison of volumes of cube and regular pyramid of square base with height equal to the side of
the base:
Volume of the cube is V, = Ah ;since cube is a cylinder of square base with height equal to the side.

1
Volume of the pyramid of square base is V) = §Ah

Vp %Ah

N th t —_— =

ow the ratio of v, h
MRS
- 2mg(Ry)?

1
"3
=1:3

2

Further when n tends to infinity Pyramid will become a closed cone, V. = §7r(Ra)3 ———(30)

Hence it is equal to volume of the hemisphere.

2.2.9.A general equation for the volume of aregular pyramid with aregular polygonal base:
Conventional formula for the volume of pyramid isV = §Ah ; Where A is the area of the base and

h indicates height of the pyramid.

Formula derived for volume of pyramid in this article is , ;P = 17'[n AR *h—————— 31)

Applying limits to (31),we get an equation to volume of cone i.e.,

1
lim VP = llm ( 4(R,)? )
n-oo

2.3.0.Surface area of aregular pyramid of polygonal base:
If surface area of the pyramid is denoted by A, then
AP = Area of the base + total area of the slant surfaces

- T[n(Ra)z + T[n (\/ (Ra)z + hz)
Ay = (R + (VR H 1)) = = = = = - (33)

Example: If side length of the base of the square pyramid is 2 units and height 3 units, find its surface area.
Solution: A? = 2 ((Ra)2 + (VRD* + hz))
8=2X4XR,,;hereny; =4

R,=1
And,l =4

Then A? = 4 (1 +(V1i+ 32)>
= 16.649 sqr units

I1l. TRIGONOMETRIC APPLICATIONS OF &,
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Figure.13: Trigonometric angles w.r.t equilateral triangle.

3.0.1. Particulars, elements and required data w.r.t figure 13:

AHI — is an equilateral triangle circumscribing the circle of unit radius.

O - Is the centre of the in-circle and origin of co-ordinate axes X and Y also the centroid of the triangle AHI.

OE- Is the in-radius of in-circle and apothem of circumscribing equilateral triangle which is denoted by R, .
Also it is the wvariable radius of this triangle . In this case OF = R, = 1unitor 1rad.
Accordingly , total length of the perimeter of the triangle is 2m$ units = 6v/3 units
hence m¢ units = 3 V3 units or radians.

OP- is the moving radius, moving from OA in anti-clockwise direction and varying in magnitude from 2 units
tol unit in length. Its value is absolute positive.

Determinant triangles — These are the triangles that have radii as their hypotinuses, absissas as
their base and ordinate as their opposite side, for example OCP,0GP, OKP etc.
are typical determinant triangles.

z — denotes the magnitude of the position of the moving radius OP(a,b) w.r.t the circumferance

of the equilateral triangle measured from + X — axis , in the anti clockwise direction Fig(13).

(—z) — denotes the magnitude of the position of the moving radius from +X axis in the clockwise direction.

k — This denotes that a side is divided into k number of equal segments.

P(a,b)

— is a point on the circumferance, varying from A to F and its domain is definable as varying between

a

413

4
0<z< or0<z<—.

P(—a,b): — is a point on the circumferance,varying from F to H ,its domain is definable as varying between

47d 2ms 4
3 3or—SZSZ\/?;
V3

<z<
9

P(—1,b): — is a point on the circumference, varying from H to K , its domain is definable as varying between
2m§
P <z< ¢ or 2v/3 < z < 3V3; this domain belongs to II nd quadrant. Note that the points

in this domain move towards X — axis perpendicularly.
P(—1,—b): —is the point varying from K to I, its domain is definable as varying between n§ < z
< 4m§
-3
value of z varies from 3V3 < z < 4V3; this domain belongs to 11l rd quadrant and the
points move away from X — axis perpendicularly towards 1.k varies from

www.iosrjournals.org 97 | Page



Pien

3
1to i P(—a,—b)
4

— is the point varying from I to N, its domain is definable as varying between

< z

1474
<2

P(a,—b) — It is the point on the circumferance varying from N to A, and this domain can be
14m§

; this domain belongs to 11l rd quadrant.

written as < z < 2n%; This domain belongs to IV th quadrant

OA — is the base of the A OAB and maximum radius within the triangle AHI, it's equal to 2R,

at this position.
a
3

2AOH — is the angle subtended by the side AH at the centre.And it is equal to rad or rads.

AP(+a, +b)

— is the part of the perimeter of equilateral triangle with unit apothem, measuredfrom A
and it is equal to z w.r.t.the respective quadrant and domain.

2£AOP(*a,xb) — is the angle subtended by the perimeter of the equlateral triangle at the centre
of the triangle measured from OA in anti — clockwise direction. Magnitude of this angle is
0; = zrad ; segment of this angle is not uniform througout the perimeter of the triangle,
it is defined within the limits of the domain as 6; = z
within the domain of 0 < z < 23 in the Ist quadrant.

2P(a,b)AC — This angle is constant for all values of P(a,b)and OA is a constant equal to 2.
And magnitude of angle equal to m/6 in the conventional radian measure.

3.0.2. Opposite sides of the determinant triangles at different quadrants and domains:

N/
e
]

L]

Fig.14:
P(a,b)C - is an opposite side of the determinant triangle OCP(a,b) varying between A and F in the | st
quadrant
and in the domain 0 < z

4
< ﬁ here z takes any value from 0 to 2.3094 ...,; figl4 Then, the length of opposite side in the I st quadrant is,

=zsm(z)

6
b bIC = z (M 1
Then, P(a, )ZC =3 ; since sin (g) =3
P(a,b)C = 5 ~—————- (34)
z
For example when z = 0 ; Opposite side P(a,b)C = > will be
P(a,b)C =0
z

When z = V3 value of ,P(a,b)C = 5 will be

V3
P(a,b)C = —

42
When z = — we have

V3
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z
P(a,b)C = 3 will be equal to
4
P(a,b)C = %
_ 2
V3

Check for the above result:
It is known that length of the base of the triangle AOF (Fig.14) is 2 units and length

. 4ang
of hypotenuse is Y

4 .

= — units

V3
Then the magnitude of opposite side, OF = 3~ 4
2

V3
Thus checked.

4
3.0.3. Further, in the Il nd quadrant same domain extends upto H i. e,ﬁ < z < 2V3; here z varies
4
rom — t02\/§;Fi .15.
f 73 9
Then GP(—a,b) = zsin (E)
2 6
GP(—a,b) = STT T (35)
For example when the magnitude of AP(—a,b) is 2\/3 magnitude of opposite side will be
z

GP(—a, b) = E
_2V3
2
=3

This V3 is the length of the opposite side of the triangle AKH, also half of the side HI.
This is the maximum length of the opposite side in the I st and Il nd domains.

Y

LIEY))

0 ]

Fig.15.
3.0.4.And in the I nd quadrant for the domain 2v3 < z < 3V3 ,here z varies from 2v/3 to 33;
and ; Fig.16.
The typical opposite side, KP(—1,b) = n§ — z
Herez = AH + HP(—1,Db)
Since AH is a constant equal to 2 V3:z =2v3+ HP(-1,b)
Consequently, HP(—1,b) = z — 2 V3
HP(-1,b) =z—-2V3
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HP(-1,b) =z—2+3
HP(-1,b)=(z—-2V3) - —————-—— (36)

5V3
For example, if the values of z are 2\/§,T, 3v3 ,the values of HP(—1,b) will be

P(-1b)

Fig.16.
When 2 = 2v3; HP(-1,b) = (z —2+/3)
i.e., HP(=1,b) = (2V3 - 2V3)
=0

5v3
Similarly when z = = ; HP(—1,b) = (Z -2 \/§)

V3

T2

And when z = 33, ;HP(—1,b) = (z -2 \/§)

=3

Now the opposite side KP(—1,b) = (3\/§ - (2 V3+(z-2 @)))
=v3- (Z -2 \/§)

Opposite side KP(—1,b) = (3\/§ -z) —————— (37)

Similarly the values of KP(—1,b) to the values of z = 2v/3,2.5V3,3V3 ,T$ are,
3
Forz=2V3 or k = 5 we have; KP(=a,b) = (3V3-2)
= (3V3-2V3)
- V3
3.0.5. Further in the Ill rd quadrant, domain is definable as varying between
3V3 < z < 4V3;zvaries 3V3 to 43 ; Fig.17.

P(-1,-b)

Fig.17.

—KP(-1,-b) = —(z—mn$)
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= (3\/§ - z)
—KP(-1,-b)=(3V3-2) ———————— (38)
Also, = (3\/§ - z)

For example when the value ofz = 43

—KP(—1,-b) = (3V3 — 4V3)

-3
14
2.06.Next in the 11I rd quadrant which consists the domain 43 <z< E ; this domain varies
14
between 4V3 to — ; Fig.18.
73 g
H
L
K 0 A
N
| P(-a-b)
Fig.18.
Here 43 is the length of AHI; IP(—a,—b) =z — AHI = z — 4VJ3
hence AP(—a.—b) = AP(—a,—b) — IP(—a,—b) = (z — 4\/§) - 2V3
T
Then , opposite side ,—LP(—a, —b) = [(z - 4\/§) - 2\/§] sin (g)
_[(z-+3) - 2v3]
= > .
zZ—6V3
ol -
143
For example when, z = 3
(452055
—LP(—a,-b)=">—— 7=
(—a,—b) >
_ 2
V3
14
3.0.7. And finally the IV th quadrant that consists the domain,ﬁ < z < 6 V3 here z varies from

14
— to 63; fig.19.
N fig
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Pla-b)

Fig.19.

—RP(a,—b) = [(z - %) - % sin (%)
_ V3z-18

23
—RP(a,—b) = #g ________ (40)
When z = 63
—RP&L—b)zéigéggiE
=0

3.0.8. Adjacent sides of determinant triangles at different quadrants and domains:
Adjacent side OC exists in the first quadrant and its domain is

4
0<z< ﬁ here z takes any value from 0 to 2.3094 ....; Fig. 14

Here OC is a typical adjacent side that varies between A and O.
I
A typical adjacent side, 0C = 0A — [A P(a,b) cos (g)] ; Fig. 14.

i.e.,0C =2 — [Z cos (g)]

_4—\/§Z

oc
2

————————— (41)

3.0.9. Values of adjacent side at some of significant positions:

Whenz =0
4 —+/3z2
2

Applying (41)we have OC =
4-0

2
=2

When
ocC =

z= 13
1
2

4
Whenz = —

V3
oc=0

4
3.1.0. Further,in the Il nd quadrant and domain,ﬁ < z < 2V3, the typical adjacent side is — 0G

that varies from O to K.; Fig(15).
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] B T
i.e,—0G =2 — [A P(—a,b) cos (g)]
V3
=2-[4 P(—a,b)]7
3
= > .
4 —zy3
og="20 (42)
2 4
For example when z = — ; (42)will be
p 73 (42)
4
4- (—)ﬁ
—0G = L
2
—-0G =0

Also when z = 2V/3
(42)will be equal to — 1

3.1.1.In the same quadrant another domain i.e 2v/3 < z < 3V3 or n¢ exists, and changes its

/s
direction by,g, w.r.t the side AH and X axis, these points move perpendicularly and collinearly
upto X axis, consequently value of adjacent side remains constant.Fig.16

i.e,~0OK = 2 — (AH) cos (%)

=2—2\/§<§>

—0K=-1——————— (43)
3.1.2. Also in the 11l rd quadrant same condition continues,i.e,in the domain
4rcd
3V3 <z <
X axis up to the vertex I.Fig.17.
s
—0K = 2 — (Al cos (g)

Then,—OK =1 - - — — (44)
3.1.3. Further,in the 1l rd quadrant base of the determinant triangle begins to increase from

,points of this domain keep perpendicularity and collinearity with

14
—1to 0 inthe domain4V3 <z < E which extends up to N.Fig.18

~0L = [(z - 6V3) cos ()] + 2

V3z — 14
—-0L=————
2
When,z = 43
—-0L =-1
14

When z = —
V3

V3z - 14

————— (45)

—-0L =

14
3—-—14
VBE

2
=0

14
3.1.4. Finally in the IV th quadrant and in the domain ﬁ <z <6V3; fig.19.

The value of the base of the determinant triangle will be, OR = OA — [A P(a,—b) cos (g)]
T
—OR=2- [(6\/§ - z) cos (g)]

_\/3_’2—14

—OR
2

—————————— (46)
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Wh 14
en,z=—
V3
V3z - 14
—OR=—"F_—
14
ﬁ(—) - 14
___ W3/
2
=0
And when z = 6V3
V3z - 14
—0OR = —
_V3(6V3) — 14
B 2
=2

3.1.5. Hypotenuses (radii) of determinant triangles at different quadrants and domains:
P(a,b)0 — is an hypotenuse or variable radius of the determinant triangle OCP varying

between A and F in the I st quadrant and in the domain 0 < z < ﬁ; Fig.14.

All hypotenuses are considered as having absolute values.

Now a typical hypotenuse or radius, OP(a,b) = /0C? + PC?
From (32) and

4—+3z\"
ASSEC
OP(a,b) = /zz —2\V3z4+4————— (47)

2

Whenz =0
The hypotenuse, OP(a,b) = ’22 —2V3z+4
=2
4
And when ,z = —

V3

OP(a,b) = /zz —2V3z+ 4

2

JERECR

V3

4
3.1.6. Further,in the Il nd quadrant and domain,ﬁ < z < 2V3, the typical hypotenuse

is OP(—a, b) that varies fromF to H.; Fig. 15

Then,OP(—a,b) = \/OG2 + [GP(—a, b)]?
From (35) and (42) we have

2
4—-z+/3 Z\?
= J (T) +3)
0P(—a,b) = /zz —2V3z44—————— (48)
4
when, z = ﬁ' The value of the radius will be, OP(—a, b) = ’zz —2V3z+4

- ) -2
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2

V3
When z = 2V3
(48) will be

0P(~a,b) = \/(2\/§)2 —2v3(2V3) + 4
=2
3.1.7.And in the Il nd quadrant for the domain 2v3 < z < 3V3; Fig16.

P(-1b)

Fig(20)

A typical hypotenuse in this domain is OP(—1,b) = \/OK2 + [0P(—1,b)]?

= ’1 + [3\/§ - 2]2
0P(—1,b) = /zz —6V3z428 —————— (49)

When, z = 23, the value of OP(—1,b) will be

OP(-1,b) = /zz —6V3z + 28

- \/(2\/5)2 —6V3(2V3) + 28
=2
When z = 3V3

0P(—1,b) = /zz — 6V3z + 28

- \/(3\/§)2 ~ 6v3(3V3) + 28
-1

3.1.8. Further,in the II1l rd quadrant same condition continues i.e, in the domain 3V3 < z< 43,
points move away from X — axis,perpendicularly. Fig.17.

The length of radius or hypotenuse, OP(—1.—b) = |1+ (z — 3\/§)2

OP(-1.-b) = /zz —6V3z+28—————— (50)

When,z = 3V3

OP(-1.—b) = /zz —6V3z + 28

- \/(3\@)2 ~ 6v3(3V3) + 28
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=1
When z = 43

OP(—1.—b) = /zz — 6V3z + 28

_ \/(4\/§)2 — 6v3(4V3) + 28
=2

3.1.9. Moving to the next domain in the same IlIrd quadrant 4V3 < z

OP(—a,—b) = /(0OL)? + [LP(—a, —b)]?
From (45) and (39) we have

0P<-a'-b>=](M)z+(m)z

2 2

0P(—a,—b) = Jzz —10V3z4+76 — — — — — — (51)
When,z = 43

0P(—a,—b) = Jzz —10V3z + 76
= \/(4\/5)2 — 10V3(4V3) + 76

=2
Wh 14
enz=—
V3

OP(—a,—b) = Jzz —10V3z + 76

= \/(%)2 —-10V3 (%) +76
2

V3

V3

14
3.2.0.Finally in the 1V th quadrant and the domain ﬁ < z < 6V3;Fig.19.

OP(a,—b) = \/OR? + [RP(a, —b)]?
From (46) and (40) we have

Then,OP(a,—b)=\j<\/§ZZ_ 14) +<\/§ZZ\/_§18)

OP(a,—b) = \/zz —10V3z+76 ——— — — — — (52)

Wh 14
enz=-—
V3

OP(a,—b) = \/zz —10V3z - 76

= j(%)z -10V3 (\1/—;) +76
2

V3
When,z = 6V3
P(a,—b) = \/zz —10V3z + 76
- \/(6\@)2 ~10V3(6v3) + 76
=2

4
; Fig.18
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IV.  Now, coming to the trigonometric functions with respect to m,,
They are written as following to provide with uniqueness.

sin , (x), cos ,,(x), tan ,(x)etc.
For example, for an equilateral triangle, the above expressions will be
sin 5 (x), cos 3(x), tan ;(x)etc.

4.0.1. Trigonometric Functions w.r.t. m$:
4.0.2. Mathematical expression of sinz(z) :

N/

Fig(21)
4
In the above figure AF is the domain defined by the expression of inequality ,0 < z < ﬁ’

where P(a, b)is the variable position of moving radius OP(a, b)measured from Ain the anticlockwise

direction.

A dingly, sin, (2) = Opposite side £ the det ] t i l
ccordingly, sins(z) = Hypotenuse ; of the determinant triangle
_CP(a,b)

" 0P(a,b)

From (34)and (47)we have sing(z) =

Vz2 =243z + 4
z

sig(z) =———-———————— (53)

2Vz2— 23z + 4
Some of the significant values of sin (z) at significant positions are:
When 050r z =0

z
sing(0) =

2Jz2 =23z + 4
0

24z2 —2\/3z+ 4

=0
Further,when z = V3
z
sin3(\/§) =
2Vz2 — 233z + 4
V3
)

Now,when z =

ol
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sing|—) =
V3/ 2z —2\3z+4
4

V3

R

Further moving to the next domain
4
4.0.3.Now, FH, Fig(15 )is the domain defined by the expression of inequality,ﬁ <z<2V3

and it is in the Il nd quadrant.

H P(-ab)

Fig(21a)

GP(—a,b)

Sin3 (Z) = m

Nl N

From (35)and (48) sing(z) = ———=——
Vz?2 —2V3z+ 4
z

sing(z) =————-————— (54)

2Vz2 —2V/3z+ 4
4
When z = —

3

n () -
sing (—=) =
V3/ 222 — 23z + 4

sing(z) =1

When ,z = 243
sing (2\/?) =

A
2422 —24/3z + 4

2v/3

2\/(2@)2 —2vV3(2V3) + 4
V3

S 2
4.0.4. Moving to the next domain in the same II nd quadrant Fig(16) ,2v3 <z < 3V/3;
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H
P{-1b)
K 0 A
Fig(22)
L . _KP(-1,b)
we have, sin;(z) = 0P(—Lb)
From (37) and (49) sin;(z) = (3v3-2) ______ (55)
Vz2 — 63z + 28
When z = 2V3
Then ,sin, (2\/§) = (3\5 _ Z)
Vz2 — 63z + 28
(3v3-2v3)

J@2V3) - 6v3(2v3) + 28
V3
T2
When,z = 3v3
sing(z) = (3\5 _ Z)

Vz2 — 63z + 28
(3v3-3V3)

Vz2 - 6v3z + 28
=0
4.0.5.Now in the Il rd quadrant and domain 3vV3 < z < 4V3
- ina(2) = —KP(—1,-b)

en, sing(z) = OP(—1-b)
From (38)and(50), sin;(z) = (v3-2) _____ (56)

Vz2 — 63z + 28

When, z = 3V3; The value of sins(6) will be,

, (3\/§—z)
3(3V3) =

sins(33) Vz2 — 6v3z + 28
3vV3-3V3

Vz2 — 63z + 28

=0
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Fig(23) K 0 5

P(-1,-b)

When,z = 43

sing(3v3) = (3v3-2)

Vz2 — 63z + 28
(3V3 — 4V3)

(V3 — 6v3(4v3) + 28

will be

sing(3v3) =

V3
S 2
4.0.6. In the same III rd quadrant and in the domain 4V3 < z

< 14 l f

< —,valueo
V3

sing(z), will be,

—LP(—a,—b)

OP(—a,—b)

Substituting (39) for — LP and (51)for OP(—a, —b)we have,

sing(z) =

[ Parh)

Fig(24)
[(z - 26\/§)]

Jz2 —10v3z + 76

sin(z) =
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sing(z) =

sing (%) =

=-1

14
3.07. Final quadrant is IV th quadrant and domain is — < z < 63 ,value of sing(z) is,

sing(z) =

[(z - 6V3)]

2422 — 10v3z + 76
14
When z = —

V3

(3-o5)

—RP(a,—b)

OP(a,—b)

From, (40)and (52),we have

sing(z) =

sing(z) =

z—6V3
2

Jz2 —10v3z + 76
7 —6V3

2\/(\1/—%)2 - 10v3 (%) +76

V3
\
0 R
Vﬂ
P(a-b)
///H
Fig(25)

————(58)

2422 — 10V3z + 76

When,z = 63, the value of sin3(0) will be

6V3 - 6v3
sing(6V3) =
2722 — 10V3z + 76
=0
V.  Graph of sin3(z)
Graph is drawn for the values of z , in the table furnished below . 27§ or 6 v/3 is divided into 360 units.
TABLE-I
Sl.No. Equation z Sin(z)
1. 0.0000 0.0000
2. ") z 0.0289 0.0073
3. 5inz(2) = ———— 0.0577 0.0148
4, Wz2 =23z +4 0.0866 0.0225
5. 0.1155 0.0304
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Sl.No. Equation z Sin(2)
6. 0.1443 0.0385
4 2.2517 0.9990
Domain, 0<z<— 2.2805 0.9998
80 3 2.3004 1.0000
81 5 2.3383 0.9998
82 5inz(2) = ——m—=— 2.3671 0.9991
83 Wz? =23z +4 2.3960 0.9981
118 3.4064 0.8733
119 3.4352 0.8697
n <z<2/3
120 Domain, \/§_Z < 3.4641 0.8660
121 _ (3v3—2) 3.4930 0.8624
122 sin(z) = ——=—— 3.5218 0.8585
123 Vz? - 6V3z + 28 3.5507 0.8546
178 5.1384 0.05764
179 5.1673 0.02886
180 243 <z <33 5.1962 0.00000
181 _ (3V3—2) 5.2250 -0.02886
182 sing(z) = ——=——= 5.2539 -0.05764
183 Vz? —6V3z +28 5.2828 -0.08628
238 6.8705 -0.8585
239 6.8993 -0.8624
240 3V3<z<4V3 6.9282 -0.8660
241 ' [(z— 6v3)] 6.9571 -0.8697
242 sing(z) = ———=—— 6.9859 -0.8733
243 2z —10v3z + 76 7.0148 0.8771
278 8.0252 -0.99911
279 8.0540 -0.99977
280 43<z < 1
== 8.0829 -1.00000
281 ' 21— 6v3 5.2250 -0.02886
282 sing(2) = ——— 5.2539 -0.05764
283 2yz2 — 103z + 76 5.2828 -0.08628
358 10.3346 -0.01480
359 10.3634 -0.00731
Z<r<ovd
360 Nk 10.3923 0.00000
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1.50000

1.00000

0.50000
2nd .
0.00000 seriesd
00000 4% 5 000 15.0000

-0.50000 -+ 9
-1.00000

-1.50000

5.0.1. Mathematical expression of sinz(—z) :
When the variable radius is rotated in the clockwise direction the valus of sin;(—z)
will be as following

Opposite side RP(a, —b)will be = (_TZ)
(%)
__\2)
72— 2V/3z+ 4
-z
2Vz2 —2/3z+4

Z
<2 72 —2\3z + 4>
sing(—z) = —( sing (Z))
Similarly equations are drawable for all quadrants

Then, sing(—z) = ; here hypotinuse remains same since it is absolute value.

VI.  Mathematical expression of cos3(z) :
Adjacent side ) )
Value of ,cos;(z) = THypotenise ;of the determinant triangle
. +0C
e, COS3(Z) = m

6.0.1. Value of ,cos3(z) in the Ist quadrant and in the domain 0 < z

4
S_)
V3

F
/A b

NI/
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(2) = oc
€052 = 0P (a, b)
From (41) and (47) we have
4 — 3z
cos3(z) = 2
Vz2—2+/3z+4
4 — 3z
cos3(z) =
2Vz2—23z+4
Whenz =20

Fig(26)

4 — 3z

Accordingly, cos;(z) =

2vVz2—-23z+4

4— 3x%x0

cos3(0) =

27J02—2V3x0+4

=1

4
Also ,when,z = —,we have
V3

cos;(z) - V32

Z) =

’ 2\/22—2\/§2+44
4 4—\/§(ﬁ)

T

6.0.2. Now, moving to the next quadrant (II nd)and domain ,

i)2—2«/§<i>+4

V3

Y

H pi-ah)

Fig(27)
-0G
C0S3 (Z) = m
From (42)and (48)we have
4—z+3
cos;(2) = 2
Vz2—2+/3z+4
4—-2z+3
cos3(z) = LCH (60)
2Vz2—23z+4
When z = — , the value of cos;(z) will be

V3

<z<2V3 ,we have,

V3
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4
Cosg(i)z 4_(ﬁ)‘/§
V3/ 22— 23z +4

=0
When,z = 23
cos5(z) = 4-z¥3

’ 2Vz2—23z+4
C0S3 (2\/§) = il (Z\E) V3

2\/(2@)2—2\/?(2@)+4

1

-T2

6.0.3. Moving to the next domain in the same Il nd quadrant ,2v3 <z < 3v/3;
From (43) and (49) we have

H
P(-1h)
K| o i
Fig(28)
—0K
€0S3 (z) = 70P(—1, )
we have, cos;(z) = - __ (61)

Vz2 —6v3z + 28

When ,z = 23, the value of cosz(z) will be
-1

Vz2 — 6v/3z + 28

-1

@3 - 6v3(2v3) + 28
e

cos3(z) =

)

6.0.4.Now in the III rd quadrant and domain 3vV3 < z < 4V3,value of cos;z will be,

P(-1.-b)

Fig(29)
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@) = —-0K
€058 = 0p(=1,—b)
From (44)and (50),we have
-1
c0s3(z2) = ———————— — (62)

Vz2 — 63z +28

When, z = 3V3 ; value of cosz(0) will be

-1
C0S3 (3\/§) =
\/(3\/§)2 — 6V3(3V3) + 28
=-1
When z = 4\/§, we have
-1
C0S3 (4\/§) =
J@V3) — 6v3(4v3) + 28
1
2 14
6.0.5.In the same IIl rd quadrant and in the domain 4/3< z < —3,
H
K 0 A
N
| P(-a.-b)
Fig(30)
_ -0L
cos3(z) = 0P(=a,—b)
V3z—14
cos3(z) = 2
Vz2 —10v3z + 76
V3z—14
c0s;3(2)) =—— - ————— (63)
2v/z2 —10v/3z + 76
When the value of z = 4V3,, the value of cos;(z)will be
V3(4v3,) — 14
cos3(4\/§,) = ( )
2(#43,)" - 10V3(43,) + 76
1
-2 14
6.0.6. Final quadrant is IV th quadrant and domain is ﬁ <z <6V3
_ —OR
€055(?) = OB (e —b)

From (46)and (52)we have,
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A
P(a-b)

Fig(31)
V3z — 14
cos3(z) = 2
Vz2 — 103z + 76
V3z — 14
c0s3(z2) =—— - ———— (64)
222 — 1032 + 76
When z = —, the value of cos;(z) will be,
\/§ f 3
V3z — 14
cos3(z) =
2vz2 - 1032+ 76
V3 Q—%) —14
cos3(z) =
272 — 1032 + 76
=0
When z = 6V3, the value of cos;(z) will be,
V3(6v3) — 14
cos3(z) = ( )
2 \/(6\/5)2 ~10v3(6v3) + 76
=1
VIl.  Graph of cos;(z)
TABLE-II
SI.No. Equation z cos(z)
1 0.0000 1.00000
2. 0.0289 0.99997
3 cos,(2) = 4- 3z 0.0577 0.99989
4. A JZ2—23z+4 0.0866 0.99975
5. 29zt 23z +4 0.1155 0.99954
6. 0.1443 0.99926
78 4 29517 0.04437
79 Domain, 0 <z<— 2.2805 0.02192
80 V3 2.3094 0.00000
81 4-23 2.3383 -0.02138
82 €0s3(2) = —F———o—— 2.3671 -0.04221
2vVz2—-23z+4
83 2.3960 -0.06248
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Sl.No. Equation z cos(z)
118 3.4064 -0.48713
119 3.4352 -0.49366
120 Domain i <z<2V3

BT 3.4641 -0.50000
121 coss(2) = -1 3.4930 -0.50632
122 M T —ofast 28 3.5218 0.51276
123 7%~ 63z +28 3.5507 20.51935
178 51384 -0.99834
179 51673 -0.99958
180 243 <z < 33 5.1962 -1.00000
181 coss(2) = -1 5.2250 -0.99958
182 T 7 _evizt 28 5.2539 -0.99834
183 28~ 6V3z+128 5.0828 20.99627
238 6.8705 0.51276
239 6.3993 -0.50632
240 3V3<z<4/3 6.9282 -0.50000
241 \V3z—14 6.9571 -0.49366
242 cos3(z) = \/2: 6.9859 0.48713
243 2z —10v3z + 76 7.0148 ~0.48040
278 8.0252 0.04221
279 8.0540 -0.02138
280 43<z <2
N 8.0829 0.00000
281 V3z - 14 8.1118 0.02192
282 cos3(z) = NN 8.1406 0.04437
283 2Vz* =103z +76 8.1695 0.06733
358 10.3346 0.99989
359 10.3634 0.99997
14
360 —<z<6+3
Ve 10.3923 1.00000
1.50000
4nd s 14ng 208
9 9
1.00000
0.50000
0.00000 —Series]
0.0000 2.00¢ 4.0000 6.0000 8.¢400 10.0000 12.0000
-0.50000
-1.00000
-1.50000
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VIIl. Mathematical expression for cos;(—z):
When the variable radius is rotated in the clockwise direction the valus of cos;(—2z)

will be as following
4 -3z
2

Adjacent side OR in the IV th quadrant will be will be =
4 -3z

Then, cos;(—z) = 2

Vz2 =23z + 4
_ 4—\/§Z
27Jz2 —2\/3z + 4

= cos(—z)
Hence trignometric identity cos;(—z) = cos;(z) holds
Similarly equations are drawable for all quadrants

; here hypotinuse remains same since it is absolute value.

IX.  Mathematical expression of tan;(0) :
¥

1N/

Fig(32)
4
3.16.In the above figure AF is the domain defined by the expression of inequality ,0 <z < —,

V3

where P(a, b)is the variable position of moving radius OP(a, b)measured from Ain the anticlockwise
direction.where k vary from 1 to oo will be

Opposite side

Accordingly, tan;(0) = ;of the determinant triangle OCP(a, b)

Adjacent side
sins(z)
r =
c0s3(z)
z
2
By(41)and (47), we have, tans(z) = ———
y(41)and (47) @) = ==
2
tans(z) = z (65)
: 4 —+/3z
Some of the significant values at significant angles are:
Whenz =20
A
tan;(z) =
3(2) PR
B 0
4—-+3x%0
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=0
Next,whenz=\/§
z
tans(z) =
3(2) R
B V3
4 —3(V3)
=3
N h 4
ow,when z = —
Z\/§
tans(z) =
3(2) R
4
_ V3
- 4
4 —3x—
V3
= 00

Further moving to the next domain

4
9.0.1. Now, in the Fig( 25) FH is the domain defined by the expression of inequality,ﬁ <z<2V3

H_P(-ab)
F
Fig(33)
sin;(6)
tans(0) = —cosz 0

from (55)and (61)we have
z
_ 2Vz2 — 23z + 4
4—7+3
2Vz2 -2 \/Z§z +4
tang(@) = ——— — — — — (66)
: 4—7+3

When z = 2\/§,
2V3

tan3(2\/§) = m
tan3(2\/§) =—3

9.0.2. Moving to the next domain in the same Il nd quadrant,2v3 < z < 3V3
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P(-1h)

Fig(34)
_ sing )
tany(z) = cos;(6)
From (37)and (43), tan;(6) = @
tans(2) = —(3v3 - 2)
tany(z) = (z—3V3) ——— — — (67)

When z = 3\/§,
Then ,tans(3V3) = (z - 3v3)
=0

9.0.3.Now in the Il rd quadrant and domain 3vV3 < z < 4V3,value of tan;6 will be,

K 0 i
P(-1.-b)
I
Fig(35)
Similarly, tan;(z) = (z — 3\/§)
tans(z) = (z — 3\/§) ————— (68)
When,z = 4\/§;
tang(z) = (z - 3\/§)
= (4V3 - 3v3)
=3
14
9.0.4.In the same Il rd quadrant and in the domain 4/3<z < ﬁ’

Then value of tan;(z), will be,
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14
—<z<6V3.

K 0 A
|
| P(-a-b)
Fig(36)
From (39) and (45)
[(z-63)]
_ 2
tans(a) ===
2
I (Gl E) |
tans(z) = 37— 14 (69)
When z = E
v3 14
n (E) _ [(\/_5 ~° @)]
3 =
V3 14) _
V3 ( @) 14
9.0.5. Final quadrant is IV th quadrant and domain is 7
0 R
V A
P(a-b)
/ N
Fig(37)

From (40) and (46) we have
z—6+3

2
V3z— 14

2

tans(z) =
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z7—6+3
tanz(z) = ———————— (70)
V3z — 14
When,z = 633, the value of sins(z) will be
, 6vV3 - 63
sing (6\/§) =
V3z—14
=0
X. Graph of tan(z)
TABLE-3
Sl.No. Equation z tan(z)
1. 0.0000 0.00000
2. 0.0289 0.00731
3. tan, (z) = —2 0.0577 0.01480
4, 3 —V3z 0.0866 0.02249
5. 0.1155 0.03039
6. 0.1443 0.03849
78 4 2.2517 22.51666
79 Domain, 0 <z<-— 2.2805 45.61067
80 V3 2.3004 »
81 2.3383 -46.76537
82 tans(z) = 2.3671 -23.67136
83 4-2v3 2.3960 -15.97336
118 3.4064 -1.79282
119 3.4352 -1.76166
120 L4
—<z<
Domain, = <2 < 23 3.4641 -1.73205
121 tany(z) = (z — 3V3) 3.4930 -1.70318
122 35218 -1.67432
123 3.5507 -1.64545
178 5.1384 -0.05774
179 5.1673 -0.02887
180 243 <z <33 5.1962 0.00000
181 tan,(2) = (z - 3v3) 5.2250 0.02887
182 5.2539 0.05774
183 5.2828 0.08660
238 6.8705 -0.51276
239 6.8993 -0.50632
240 3V3<z<4V3 6.9282 -0.50000
241 [(z-6V3)] 6.9571 1.76166
242 tans (2) = == 4 6.9859 1.79282
243 7.0148 1.82568
278 8.0252 23.67136
279 8.0540 46.76537
14
< z<—
280 43z s Ne 8.0829 oo
281 Z— 63 8.1118 -45.61067
282 tan;(z) = 14 8.1406 -22.51666
283 8.1695 -14.81866
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SI.No. Equation z tan(z)
358 10.3346 -0.01480
359 10.3634 -0.00731

—<z<
360 N V3 10.3923 0.00000

60.00000

40.00000

20.00000

0.00000 - — Seriesl

0.00002.00§04.00006.00008.0400.0.00002.0000
-20.00000

-40.00000

-60.00000

XI.  The basic trigonometric identities:

11.0.1.a) sin3zz +c0s32z=1——————— (71)
2

2
o ) z 4— 3z
Proof:LHS of above equation in the I st quadrant is +
2Vz2 —2V3z+ 4 2Vz2-23z+4

2 L (4o V3z)"
2 2
(2 22—2\/§z+4) (2 22—2\/§z+4)
_22+16+3ZZ—8\/§Z

2
(2 72 — 2\/§z+4)
472 -8V3z+16

472 — 83z + 16
=1

This identity is true for all the domains because angles and determinant triangle are same for sin and
cos functions. And hypotenuse of sin 8 = hypotenuse of cos 0 ,in a determinant triangle .
Also sum of square of opposite side and adjacent side is equal to square of hypotenuse .
consequently
sin?z + cos?z = 1 throughout the triangle

11.0.2. Another method of proof
LHS of sins?z + cos;2z = 1 can be written as
_ (Opposite side) >~ (Adjacent side) ?

" (Hypotenuse) 2 (Hypotenuse) ?
Symbolically and generally it can also be written as

www.iosrjournals.org 124 | Page



Pien

{XP(xa,+b)}* = {0(£X)}
" {OP(£a, +h)Y " {0P(ta, £b)}
_ {XP(£a, £b)}* + {0(FX))}’

- {OP(+a, +b)}?
_{0P(+a,+b))?

~{0P(xa, +b)}2
=1

since{XP(ta, £b)}* + {0(£X))}* = {OP(%a, b))}

XIl.  Inverse Trigonometric functions w.r.t m§ :
12.0.0. To find the value of inverse trigonometric functions of equilateral triangle, we require to find
the value of coefficient z.

To find value of z, following method is adopted.

4
We know that in the Ist quadrant and the domain 0 < z < —

NG

VA
2Jz2 =23z + 4

Let sing(z) = x

sing z =

Z

2vVz2 —2V/3z + 4
After algebraic manipulations it can be written as

z2(4x? —1) — (8V3x?)z+ 16x> =0 — — — — — — — — (72)
let 4x2 —1=a; —8V3x2=band 16x2 = ¢

This resebles the quadratic equation az?> +bz+c =0
Consequantly, the roots of the equation will be

Then, above equation can be written as ,x =

—b £ Vb?% — 4ac
=T
Example 1 : when sing(z) = 0.5, the value of z will be

Then,x = 0.5; hence ,a =4x>—-1=4x(05)2-1=0
b = —8V3x% = —8v3 x (0.5)? = —3.461
c=16x(052%=4
In this case resulting equation is not a quadratic equation because a = 0, hence z is directly
solvable as following
i.e., 3461z =4
4

“ = 3461

= 1.1547

Example 2: sing(z) =1
a=4x1-1=3

b = —8v3 = —13.8564

c=16

—b +Vb?% — 4ac
Then,z = ———

2a
_ 13.8564 +/(13.8564)2 — 4 X 3 X 16
B 2x3
= 2.3094
XIIl.  The next regular polygon is a square. Trigonometric functions are derived

as following.
13.0.0. ABCD is a unit square (a square of unit apothem) circumscribing a unit circle.
OP(a,b)- is a variable and moving radius in anti-clock wise direction from apothem OE. This OP(a,b) varies
from 1 to /2 units and vice versa. Also it is the hypotenuse of the determinant triangle OEP(a,b). This triangle
varies w.r.t the position of radius OP(a,b).
Here the £GAP(a, b)is a conastant throughout the domain 0 < z < 2;

s
Accordingly, opposite side GP(a,b) w.r.t the 4GAP(a,b) = AP(a, b) sin (Z)
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GP(a,b) = —
Tz

GP(a,b)is also the opposite side of the determinant triangle OGP (a, b)
7
GA which is adjacent side of the AGAP(a,b) = AP(a,b) X cos (Z)

Z

V2

Then the adjacent side OG of determinant triangle is = OA — GA

z
0G =2 - ﬁ ; since the square is circumscribing a unit circle.
_2-2)
2
Y
B
P(a.b)
X
o0 A
Fig(38)
. . . z\2 (-2
Finally, the hypotenuse OP(a, b)of the determinant triangleAGAP(a,b) = (—) +
V2 V2
=4z2—-2z+42
Z
Now, sin,(z) = i
ZZ2 —2z+2
sig(z2) =————=—————— 73
* V2Vz2 =2z +2 73) 0
For example whenz =0; sin,(0) =———
P * V2vVz2 =2z + 2
=0
And when z = 2
z
sing(z) = ———
* V2vzZ -2z +2
=1
Next in the Il nd quadrant for the domain,2 <z < 4
4—7z
sig(z) =———-—————— 74
Y V2aVZZ— 6z + 10 7
In the 11l rd quadrant for the domain,4 <z <6
4—z
sing(2) =
T V2VzZ — 10z + 26
In the IV th quadrant for the domain,6 < z < 8
z—8
sing(z) =
S V2VZZ— 14z + 50
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Sine graph of square

1.50000

1.00000

0.50000 / \

0.00000 \ T !
0 \ 5 / 10
-0.50000 \

Series1

-1.00000

-1.50000

XIV. General equations to find the opposite sides of the determinant triangles of
regular polygons:
Further,when the number of sides are within the reasonable limits, domains exists. When sides are
sufficiently large to consider the Figure as a circle, then the domain may be considered as mono-element
domain.

14.0.1. General equation for opposite side in the I quadrant:

Pi(a)h)

/ / Pi(a,h)

C
o
LN 2ty

B
B 5T P

Fig( 39). A typical regular polygon
Let ABC... be a regular polygon of n number of sides Fig (39 )

2n
2AOB, £BOC --- = — ,whence nis the number of sides.

n
And the £0AP,(a,b), 2B'BP,(a,b), - ]'CB,(a,b) ---vary w.r.t the position from X axis to the end
of the Ist quadrant. And the lines B'A,C'C ... J'Y ---are parallel to X — axis. And GP,(a, b), KP,(a, b)
...JB,(a, b) are parallel to Y axis.
20AB, £B'BC -+ are constant throughout the domain or side .
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(n—-2)m

20AB (angle formed with the x — axis is considered as Ist angle ) = o™

; the line segment OA is on X axis.

, (n—2)m ,
The second £B'BC = ———— — 2£0BB
2n

(n—-2)m
==~ 2AOB ; angles between the parallels are equal
_ (m=-2)r 2m
h 2n
_n(n—6)
h 2n

] , (n—2)m 21
The third angle £]'CP;(a, b) = —m 2 <7)
B n—-2)m (471)
- 2n n
B n—-2)m (411)
- 2n n
_nm—2m—8n
- 2n
_nm—10m
T 2n
_m(n—10)
- 2n
Equation for the angle at the i th term from initial position (in Ist quadrant)is
m(n — 2x)
¢K'DP; = T
nn—202i—-1

¢K'DP; = ( ( D _ . (75)

2n
n
; Wwhere x is an ordinal odd number,ie.x € N ={1,3,5,---}/ ithside < 7

n
and 1 is a natural number.And x = 2i — 1,where i is the ordinal number of the

angle or side counted from X — axis.
For an equilateral triangle, Z0AB which is also equal to £0AP,(a,b),x = 2i — 1
ile,ex=02x1)—-1

=1

£0AP,(a,b) = nn - Zz(jl )
(3 —2)

=n2x3

6

But, its 2™ angle is not in the It quadrant.
For a square , LOAB in the I°t quadrant will be.
n(n—2(2i — 1))
20AP;(a,b) =
2n
B (4 —2)
© 2x4
m

4
Here also only one angle is in the first quadrant that has an hand parallel to X axis and

the other end of the IS side rest onY axis. Whereas in the equilateral triangle side extends
beyond ISt quadrant.
For aregular pentagon the angles will be

IStLOAP(ab)_M
N 2n
_n(5-2)

T 2x5
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3

10

Further, for 2™ £IBC =
m(5—2 X% 3)

- 7TZ X5

m(n — 2x)
2n

10
Here the angle is below the parallel to X axis, hence the opposite side starts decreasing. Further for

hexagon, £0AP; (a, b) will vary as following
m(n — 2x)

15t £Z0AP,;(a, b)in the It quadrant will be.= o=

_m(6—2)
T 2x%x6
_T[

3
2™ £ XYP,(a,b) in the It quadrant will be.=
_m(6—2x3)
T 2x6

m(n—2x%3)
2n

=0

Although I st quadrant of the hexagon contains fractional part of the second side, it is parallel to X
— axis, hence the second angle is 0.

9.02. For aregular polygon of 32 sides, each quadrant contains 8 sides, then the angle at the

: , m(n — 2x)
7 th side will be £XYP,(a,b) = —
_m@2-2x13)
= 2% 32 ;where x = 2i
= 0.294524

Further, (75) provides basis for the equation to find the opposite side.

m(n — 2))

2Ty
accordingly, the longest opposite side of the first side is = ( n") sin( o

o o 2mp\ . (m(n—2x3)
The longest opposite side of the second side is = ( - )sm o

N (2w . (m(n—2X5)
The longest opposite side of the second side is = < - )sm o

N (2w (=2 X X)
The longest opposite side of the i th side is = ( " )sm o
Or

2n

Accordingly, opposite side is sum of the lengths from the first side to required position.
4§ . T 4 . T

g tojor 7 0

Let, the arc of aregular polygon of n number of sides measured from the X — axis be z.

a
n

n(n— (4 — 2)))

2ny
The longest opposite side of the i th side is = ( nn) sin <

Magnitude of the Ist quadrant of regular polygons vary from

It is known that the length of each side is

If the number of sides with fractional side that z contains be denoted by (C + d)
where C is a whole number and d is a decimal.

z
Then,(C +d) = >a
n
n
Ct+d)=om
( 2nd

Please note that magnitude of all sides are equal except the fractional part d and the
corresponding angles in this context are dif ferent.
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It is known that magnitude of each side is =

a
n

(C+d)

na a
_ 2Cmy N 2dmy
n n

2dny
let o be denoted by D
_ 2Cmy

n
For an equilateral triangle, magnitude of opposite side with in the It quadrant is

2my _(m(n —2) .
GP,(a,b) = - (C+d)|sin —n )T (77); Fig (41)
in case of an equilateral triangle C = 0 because the length of the arc in the I* quadrant is
less than one side.

Hence,C+d=d

Then, 6P (a,b) — (Zdnnﬂ) [sin <7r(nzr—l 2))]

7 =

i.e,

V3
a)For example when z = V/3,; d will be = ﬁ ; here 2V/3 is the length of the side of the considered

triangle
Putting these values we have
of opposite side of of the determinant triangle will be,

2x%x3\/§ ~ (n(3-2)
)l ()

GP(a,b) =

V3

2
b)Also,if D = 2.3094

GP(a,b) =d (ZZ,‘%) [sin (1‘[(112—7—12)>]

= 2.3094 [sin (Mﬂ
2n

= 2.3094 X sin (g)
= 1.1547

1
c)For square when z = 1,C will be = 0,and d = 5 then we have

GP(a,b) =d (22,‘{) [sin (#)]

_1(2)[1]

=5 75

1

V2

d)Whenn = 32,1, = 32 [tan (75| = 31517, hence length hside is, 27 = 83935 _ 197
YWhenn = 32,n5, = an(z)| =3 ,hence length of each side is, =35 =0

arc length 6.4 sides = 6.4 x 0.1970 = 1.2608

(side in this case is the length of the side of givenn — gon)
ThenC+d=6+04

Then, magnitude of opposite side is

2rd [ [m(n—2) 2| . [m(n—2x%x11) - (m(n—2x13)
GP(a,b) = - [SLH<T)]+'-~+ - [sm(T)]+Dx szn(T>]

_ 2ng, (32 -2)  (m(32—-2x11) - (m(32-2x%x13)
=3 [{sm (T)} + {sm <T)}] + 0.0788 x [sm <T>]

—01970[' (15”)+ +si (Sn)]+00788><[' 3”]
= VU. Sin ? . Sin ﬁ . smﬁ
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= 0.9284 + 0.0229
= 0.9513
This above series of n number of sides is a convergent functional series that converges towards 1.

14.0.2. To check the above result geometric method is adopted as following.
Here C indicates number of sides in the given arc. Hence, at the end of 6 th side, the triangle OPz(a, b)Oq
isformable.The side 00 is the part of the required opposite side 00, .Some of the elements of the

A OPg(a, b)Ogare known. Hence this triangle is chosen.
/s
The magnitude of OP.(a, b)is a constant = sec (E)

/i
Consequently, OP¢(a, b) = sec (—)

32
And, 20g = =
’ 6 2
C'O? Foa @9
N ™_P6(a,b)
0
0 G
Fig(40)
o nn—2) =n(n-22C-1))
Similarly, 20.P,(a,b)0 = P o™
_2Cm
T on
2X6Xm
Hence, 204Ps0(a,b) = —3
_3m
-8

iy
Further,200.P.(a,b) = 5

3

Then, £004P4(a,b) = 5

applying sin law 00; can be found as following
00i _ OPL (a, b)

sin (%) - sin (g)

00, = (0P,(a, b)) (sin (?))

(sin (55)
coS (%)

00;or GPy(a, b)) =—FF————— — (78)
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. (2x6xm)
STy
Hence, 004 = —— N
cos (ﬁ)
= 0.9284
a
Length of the remaining part is d x —= = 0.4 x 0.1970
= 0.0788

Finally to find the remaining part of the opposite side
3
=0.0788 X |sin—
[sm 32]

= 0.0229

Further length of opposite side will be

00,, = 0.9284 + 0.0229

= 0.9513

9.04.Now (79)is used for equating with ( 78)as following

n
If C+d= 7 Following formula is valid for (C + d)*" term, which means if

the fraction d exists,d = 1,if does not exist,d = 0

GP(a,b) = ZZ,‘f [sin (_n(n —20@- 1))> + -+ sin <—n(n — 2t 1))> + .-+ sin <n(n —2(2h - 1))>

2n n m
. (2Cm
= (Sm (?)) + D X sin (
i cos (H)
o[5S i D )

2n
i=1

[2117‘% i':C [sin (n(n —~ 2(1216 — 1)))” N (d o Znﬁ) « sin (n(n - 2(2i, — 1)))

2 2n
_ sin (?)
cos (%)
Case-1

n
Whenn = 2y ,wherey € {2,3,4-},and for C +d = Z,if d exists d = 1, hence (C + 1)t

term exists.
. (2CTm
s (T) _ (m(n—22(C +1)"term —1)
We have GP(a,b) = ——7=~+ D X sin ————(81)
cos (—) 2n

+d X sin (n(n — 202 — 1)))

n(n —2(2i, — 1))
2n )

2n

+ stin(

— th —
4D x sin <7T(n 22(C + D™ term 1))

2n

We reqiure to show here that 2(2(C + 1) term — 1) = 2y iff d exists and n = 2y.
For that following method is adopted.

n n
WeknowthatZ=C+d; iffZ;tC

Let 2= C+d
e 4—

" d=c

4

1 is added to both sides of above equation, we have

%—d+1:(C+D

Multiplied both sides by 2, and considered C + 1 as the value of the term
2 (g— d+ 1) = 2((C + 1" term)

1 is subtracted from both sides
2(%—d44Q-—1=2«c+1thmn)—1

Once again both sides are multiplied by 2

2(2 (%— d+1)=1) = 22((C + 1)* term) — 1)
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Now RHS of the equation resembles LHS of (81)

When LHS of the above equation is brought to simple terms, we have
n—4d+2=2Q2(C+ D" term) - 1) — ——— — — (82)

Once again it needs to show that 4d = 2

Any even number > 5 and not multiple of 4 can be written as
4C+2=n

Further,n—4C =2 ——— — — (83)
n

Also,z =C+d

Then,n = 4C + 4d

And,n—4C=4d———— — (84)

Subtracting (84)from (83 )we have

0=2-4d

4d = 2

ord=05

This value of d serves as a proof of, +Y ordinate passes through the centre of a side.

Now equation ( 88)can be written as
n=22(C+ D™ term) — 1)
i.e.2y =22((C + D" term) — 1)
sin (ZCn)
2 T2y —2
Consequently, GP(a,b) = 77%/ + D X sin <%)
o ()

sin (%)

T

cos ()
Th the angl '(ZC") d (”)
e sum of the angles of sin 2y and cos 2y is

CTL’ T 2CT[+T[

y 2y 2y
_m(2C+1)

2y
n
Substituting 7 for C we have,

:n(z(ﬂ—d)+1)

(n 4d )
(n 4d+2)
(

%)

GP(a,b) =

;since d = 0.5 in this case.

Ny _,
—Zy,smcen— y
. 7T+7T_T[
ence, 2y 2

~ angles of sin and cos are complementary.
2Cn T

Hence, sin (—) = cos (—)
2y

)
cos (27; )
Case-2

When n is the multiple of 4 ,ie.,n =4y,fory € N ={1,2,3---}

Therefore, GP(a,b) =
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Then d will be = 0, hence the equation will be.

sn (1)

GP(a,b) = . (%)
n
sin (7271
n
GP(a,b) = . (%) ;since 2C = >
1

- cos (%)
GP(a,b) = sec (g)

n
For example whenn = 4,and for C = i 1, then

GP(a,b) = sec (%)
= sec (%)
=1.4142

Further, applying limit on both sides of ( 86) we have
i=C,

a _ _ _ th _
lim zzn Z [Sin (n(n 2(2¢ 1)))} D x sin <1T(n 22(C + D™ term 1))

n—-oo 2n 2n
i=1

sin (@) m(n—22(C + 1) term — 1)
= lim n 2 4+Dx sin( )

T
Lonaell TS (—) 2n
n

sin (@) 2ne n(n—22(C + 1" term — 1)
— 1 +lim{ “xd xsin( )}

V[
cos (E) n—-oo n 2n

_ Lim {Si” (2%)} N {lim (@) < d X sin <7r(n —2(2(C + D" term — 1))}
tim feos ()} " o

n m
as n - o, The value onC—>E; £—>0and

= lim
n—-oo

n—oo

a
n
also — 0.

c tly, tim {sin (2N = sin (B) = 1; 1 ™) = cos(0) = 1 andim (222) = 0
onsequently, lim {sm (T>} = sin (E) =1; lim {cos (E)} =cos(0) =1lan nm( - ) =
Then (80) will be

=1

This result is the value of radius of unit circle.

Similarly equations are derivable for other sides of the determinant triangles.

XV. To find the value of arc trignometric functions like arcsin 0, arccos0.:
10.01. Examplel: Let the value of sin 8 in the Ist quadrant of a circle ,be =0.5, here the value of
0 is in conventional

2Cm

Solution 1: we have 00; = (OP;(a, b)) (sin <T>) ————— (85)

00, 2Cn
00 _ (o () _ep)
(0Pi(a, b)) n

2Cr
Then, (85)will be , 0.5 = (sin (T)) —___(86)
By trial and error method we can find that ( 87)will be true when C = 4, hence n = 48
2Cm

Consequantly, 6 = -
_2X4xm
~ 48
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6

This result can also be found as following

Solution 2: From (79)we have

2n

orta) =2 s (0722 71)

2n

)+...+Sm(w) +---+sin(

n(n—2Qi — 1))
2n )

(-2, - )\ _ (sn(555) (n— 2020, - 1)
t(n — i, — (n— i, —
+d><sin< 2 )]z g +D><sin( 2 )
2n cos (_) 2n
n
Letn = 32
TABLE-4 : Showing the details of required elements to find the angle.
Ordinal n Number of | Length of | Length of maximum opposite side of each side Length | Cumulative
number sides in the | each side ) n(n —2(2i — 1)) of the | total(opposit
of a side Ist quadrant | = 21y I x sin (T) = opposit | e side)
n I e side | (GPi(a,b))
4 w.r.t
each
side
-m
1 2 3 4 5 6 7
1st 4 1 2 (7‘[{4 202 - 1)}) NG
2xXsin| ————
2 %4
1st 8-2(2-1 0.7654
0.8284 X sin (u>
0.8284 2x8
d .
2" 8 2 . (n —2(2x2) - 1)) 0.3170 | 1.0824
0.8284 x sin
2n
1% 12-2(2-1 0.5176
0.5359  sin (M)
2 %12
2" C(m{12-2(2x2-1)} 0.3789 | 0.8966
12 3 0.5359 0.5359 X sin
2 %12
3¢ - (m{12-2(2x3-1)} 0.1387 | 1.0353
0.5359 X sin
2 %12
1% 16—202-1 0.3902
0.3978 x sin (M)
2X16
2" C (m{16 —2(2 x2—1)} 0.3308 | 0.7210
0.3978 X sin 2x16
3¢ 16 |4 0.3978 ] <n{16 —2(2x3- 1)}) 0.2210 | 0.9420
0.3978 X sin
2X16
4" ] <n{16 —-2(2x4— 1)}) 0.0776 | 1.0196
0.3978 X sin
2X16
1% o (m{24-2(2-1)} 0.3129
0.3168 X sin (T)
2" ] (n{24 —-2(2x2— 1)}) 0.2822 | 0.5951
0.3168 X sin
2 X 24
3¢ 24—2(2x3-1 0.2240 | 0.8191
20 |5 0.3168 0.3168 X sin ("{ ( )}>
2% 24
4" ] (n{zo —2(2x4— 1)}) 0.1438 | 0.9629
0.3168 X sin
2 X 24
50 ] (n{ZO —2(2x5— 1)}) 0.0496 | 1.0124
0.3168 X sin
2% 20
1 24—-2(02-1 0.2611
0.2633 X sin ( m 5 X(24 )}>
7 24 |6 0.2633 _ (n{24 22x2-1 ) 02433 | 05043
0.2633 X sin
2 X 24
3 ] (n{24 —-2(2x3- 1)}) 0.2089 | 0.7132
0.2633 X sin
2% 24
4™ ({24 -2(2 x 4 —1)} 0.1603 | 0.8735
0.2633 X sin
2% 24
50 ~ (m{24-2(2x5-1)} 0.1008 | 0.9743
0.2633 X sin
2% 24
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Ordinal n Number of | Length of | Length of maximum opposite side of each side Length | Cumulative
number sides in the | each side ) n(n —2(2i — 1)) of the | total(opposit
of a side Ist quadrant | = 2my I x sin - . /°m opposit | e side)
n ~n e side | (GP,(a,b))
4 w.r.t
each
side
-m
6" ~ (m{24-202x6—-1)} 0.0344 | 1.0086
0.2633 X sin
2 X 24
1 02254 x si {28 —2(2 - 1)} 0.2239
. sin 2% 28
2" (w28 -2(2x2—-1)} 0.1825 | 0.4366
0.2254 X sin
2 %28
31 m{28—2(2x3-1)} 0.1908 | 0.6274
0.2254 X sin
2x28
4" {28 —2(2 x4 —1)} 0.1593 | 0.7868
28 7 0.2254 0.2254 X sin
2 %28
50 {28 —2(2x5—-1)} 0.1199 | 0.9067
0.2254 X sin
2 %28
6" {28 —2(2x 6 —1)} 0.0744 | 0.9811
0.2254 X sin
2 %28
7" ~ (m{28-2(2x6—1)} 0.0252 | 1.0063
0.2254 X sin
2 %28
1% 32 8 0.1970 . {32 22-1)}
0.1970 X sin
T 2x32 0.1961
2"  (m{32-2(2x2-1)}
0.1970 X sin
2 %32 0.1885 0.3846
31 0.1970 n{32-2(2x3—-1)}
0.1970 X sin
2x32 0.1737 0.5583
47 {32 -2(2 x4 —1)}
0.1970 X sin
2 %32 0.1523 0.7116
5h 32—-2(2x5-1
01970 x sin [ ¢ ) 0.1250
2 %32 0.8366
6" 32-22x6-—1
01970 x sin [ ¢ ) 0.0929
2 %32 0.9295
7" n{32-2(2x7—-1)}
0.1970 X sin
2 %32 0.0580 | 0.9875
8" - (m{32-2(2x8-1)}
0.1970 X sin
2 %32 0.0193 | 1.0048

15.0.1. If a polygon of non convenient number of sides is chosen value of 6 is approximatable as
following.
Solution 2: Now let a convenient regular polygon be chosen to find the angle ,i.e.,letn

n
= 32,then i 8
27 -2 2m —2x11 ~2x13
GP(a,b) = = [Sm (M)] g [sm <M)] +D x| sin (M)}
n 2n n n m
To find the boundary
2ng, [ (m(B2-2)\] , 2n%[ . (m(32-6)  (mB32-10)\]
The value of 32 [Sm( > X 32 + 2 IS <37 + D % |sin — will be
01970 lsin (P2~ 2\ 4 01970 [sin (FE2 =N 4 p » [si (FB2 =100
. sin| —~ 25 . sin| —~ =5 sin| —5535

 (1(32 - 10)
S\ T %32
— 0.3845 + D x 0.8819

Similarly, the expression for adjacent side is.

0G = 1.004839 — [0.1970 m(32 —2) n(32 - 6) D m(32 — 10)
=1. — [ . { cos <W) + cos <W)} + { X cos (W)}]

= 0.1960 + 0.1885 + D x
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2% 32 2 X% 32 2% 32
= 1.004839 — 0.0765 — D x 0.4714
=0.9283 - D x 04714
Now the hypotenuse of determinant A is,
OP(a,b) = (0.3845 + D x 0.8819)2 + (0.9283 — D x 0.4714)?
[2(0.3845 + D x 0.8819)]% = (0.3845 + D x 0.8819)? + (0.9283 — D x 0.4714)?
When above relation is brought to simple terms we have a quadratic equation that can be
solved for D.
i.e,2.1110D? + 2.5157 D — 0.4182 = 0
Here the leading coef ficient a = 2.1110, middle coef ficient b = 2.5157 and the constant term

= 1.004839 — [0.1970{ cos <m) + cos <—7r(32 _ 6))} + D X cos <—n(32 _ 10))]

¢ =-0.4182
—b + Vb? — 4ac

Now solving for D using the formula D, , = — we have
D =0.1312
c v d = 0.1312

onsequently d = ——o
= 0.6660
Now to find the angle subtended by two sides and the fractional side is found as following

2m

Angle subtended by each side at the center is = 37
= 0.1963
So,the angle subtended by two such sides = 2 x 0.1963
= 0.3927

Here,segments of the side do not subtend the angle at the centre proportinately . Hence
an approximation is done at this stage.
i.e.,the angle subtended by the fractional part of the side is = 0.6660 X 0.1963
i.e.,Opposite side intersect the perimeter at C + d number of sides which is = 2 + 0.6660
= 2.666 sides
C+d 2666
Ty
4
Here lim(C+d)=C

n—-oo
Now let n = 400000, a relatively large number, then C will be
C B 2.666

100000 8
Then C = 33325

2n
Then,0 = C X —
n

= 33325 X
= 0.5235

s
which is very nearly equal to i 0.5236

T
400000

1
Example2: Find the angle when sinf = NG (in the Ist quadrant)

NG
2Cm
Solution: It is known that, 00; = (OPi (a, b)) (sin (T))
o 00; - [2Cm
i.e, in the above case , —— = (sm (—))
(OPi(a, b)) n

1 ( . (2671))
— =(sin|—
V2 n
Above equation is true when C = land n = 4

2
Consequantly, 8 = T

This method is applicable for values that can be found by trial and error method.
15.0.2. Finally, it is the right position to study the values of sum and dif ferances of trigonometric
functions. cos(x +y) = cosxcosy — sinx siny — — —— — — (87);

www.iosrjournals.org 137 | Page



Pien

this identity is not true for equilateral triangle
Now, let we consider a regular polygon of 32 sides. Here values of x and y are considerd only
at vertices.

2m§,
Here in the first quadrant values of x and y are any one of the multiples of 3;2 = 0.1970
2mg, 2ng,
Letx = dy=
etx=—-andy=—-
Then, cos(x +y) = cos x cos y — sinx siny
2ms, " 2ms, _ 2ms, 213, _(2m5y\ . [2m3,
cos | = e | =cos\ 55 Jeos| ¢ ) —sin| 55 ) sin| ¢
3ms, _ 213, 213, _(2m5y\ . (2m5,
cos | — = | = cos| == Jcos | —¢ sin| =5~ ) sin{ —¢
33, | .
16 is equal to arc length of 3 sides

@ —0.197 {cos (135—27T) + cos (133—;) + cos (131—27T)}

3mg;\
cos| ") =

=1-0197 x (n){ (15”)+ ( 7T)+ (11”)}

= . CoS 32 coSs 32 coSs coSs 32

= 0.8315

Similarl 2ms = 0.9808; 2m5 = 0.9239; si 2ms = 0.1951; si 2ms2 = 0.3827
imilarly, cos 32 | =0 ; COS 6 = ;sin 32 | =0 ;sin e =

Substituting these values in () we have

0.8315 = (0.9808 x 0.9239) — (0.1951 x 0.3827)
= 0.8314
0.8315 ~ 0.8314
This result shows that the equation cos(x + y) = cos x cos y — sinx siny is valied only
to the values at the vertices of the regular polygons from reasonable number of sides.
Asn — oo, the resulting figure will be a circle.then, each point on the circumferance of a circle
is a side as well as a vertex. Consequently, ( 87)is true for all points on the circumferance of a circle.

XVI. Conclusion

Any knowledge that exhibits good relation and link between the subject and matter will be interesting,
easy to learn and to remember, hence they can be easily applicable in required fields. With this vision an effort

is made to bring the link between the equations of regular polygons in this article
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