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Abstract: In this paper, a bivariate stochastic model for cancer growth within a specific organ during 

chemotherapy is developed using the birth, death and migration processes based on pathophysiology and 

genetic programs of cancerous cell.  Joint probability functions and statistical properties of the model are 

derived with the formulated stochastic differential equations.  Model behaviour was analysed with numerical 

data.  
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I. Introduction 
 Continuous proliferation with minimum rate of death in such cells will form a mass of accumulation of corrupted 

cells called tumour.  The growth or loss processes of cells are depending on the nature of mutant cell and its stages of 

transformation. Invasion of cancer cells has a potential to generate new colonies at different sites of the body from the 

forming or hosting sites.   Hence, the growth and spread of cancerous cells will have the random processes such as birth, 

death and migration. The dynamics of cancer cells spread is influenced by the drug presence and its absence during the 

treatment with chemotherapy.   It is customary to assess the severity of the cancer of the patient through manual methods.   

Approach of stochastic modelling for evaluating the health status of the patient will be more beneficial under the 

uncertain environment.  There is much evidence in literature on quantitative approach of cancer growth studies. The colony 

size distribution of multiple metastatic tumor and their growth is modelled by Wata et al [1]. The cancer chemotherapy 

treatment with the metastasis is modelled mathematically by Pinho et al [2]. The growth of cancer during and after the 

chemotherapy is modelled for studying the equilibrium probability of tumor size by Srinivasa Rao et al [3,4]. Various 

stochastic multistage models were developed for dynamics of cells in the cancer tumor and its behaviour under the presence 

and absence of chemotherapy by Tirupathi Rao et al [5-7]. 

This study is focused on developing bi-variate stochastic model for the cancer cells growth in an organ 

under presence and absence of chemotherapy. The birth, death and migration of cells to the neighbouring parts 

of an organ have been considered in the model. The migration of cancer cells are happens through the process 

called metastasis. Initial position of cancer tumor is named as primary tumor and tumor in the neighbouring 

location due migration process is called secondary tumor. This model is constructed based on the biological and 

patho-physiological assumptions of cancer and completely randomized cell divisions. The following schematic 

diagram shall give more clear idea on cancer growth in presence and absence of chemotherapy.   

 
Figure -1: Schematic Diagram of cancer cells growth during chemotherapy. 
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II. Stochastic Model for growth of cancerous cell during chemotherapy 
The mechanisms involved in the cell divisions are purely stochastic in nature. Let the events occurred 

in non-overlapping interval of time are statistically independent. Let t be an infinitesimal interval in the time. 

 

Let ijl be the growth rate of i
th

 stage cells in j
th

 stage tumor and l
th

 state of drug in chemotherapy; ijl be the 

loss rate of i
th

 stage cells in j
th

 stage tumor and l
th

 state of drug in chemotherapy;  

ijl be the transformation rate of i
th

 stage cells to (i+1)
th

 stage in the j
th

 stage tumor to (j+1)
th

 stage of tumor and 

l
th

 state of drug in chemotherapy.  

 

Where,  

i=1, 2, 3 :  Normal stage of cell, Mutant stage of cell, Migrant mutant stage of cell.  

j=1, 2 : Primary stage of tumor, Secondary stage of tumor. 

l=0, 1: Drug Absence , Drug Presence. 

 

Let 
k

1 Drug Presence for k 1,2,3,4,5,6,7,8,9

a 0 Drug Absence

(0,1) PartialPresenceof drug




 



  

Let {N(t), t 0}  be the process of normal cell division (growth/loss) and {M(t), t 0}  be the process of 

mutant cell division (growth/loss). Let {N(t),M(t), t 0}  be a joint bivariate stochastic processes of individual 

stochastic processes of {N(t), t 0} and {M(t), t 0} . Such that
n,mPr{[N(t),M(t)] [n,m]} P (t)   and

nPr{N(t) n} P (t)   , 
mPr{M(t) m} P (t)  . 

 

Further,  

nuPr{N( t) u / N(t) n} P for u n 1,n 1,n,n 2       
 

mvPr{M( t) v / M(t) m} P for v m 1,m 1,m,m 2         

     nu,mvPr [N( t),M( t)] (u,v) / [N(t),M(t) (n,m)] P for v m 1,m 1,m,m 2        
 

Let us now define postulates of the univariate process with respect to normal and mutant growth,
 

n,u

1 111 1 110

5 111 5 110

2 111 2 111

1 111 1 110

5 111 5 110

2 111 2 111

P P{N(Δ t) u/ N(t) n}

n(a λ (1 a )λ )Δt o(Δ t) ;u n 1

n(a μ (1 a )μ )Δt o(Δt) ;u n 1

n(a δ (1 a )δ )Δt o(Δt) ;u n 1

(a λ (1 a )λ )

1 n (a μ (1 a )μ ) Δ t

(a δ (1 a )δ )

  

     

     

     

  
     
 
   

2

o(Δ t) ;u n

o(Δt) ;u n 2

 
  
 
  

  

 

For mutant growth processes, 

m,v

3 211 3 210

6 211 6 210

7 211 7 210

4 321 4 320

8 321 8 320

9

P P{M(Δ t) v / M(t) m}

m(a λ (1 a )λ )Δt o(Δ t) ; v m 1

m(a μ (1 a )μ )Δt o(Δt) ; v m 1

m(a δ (1 a )δ )Δt o(Δt) ; v m 1

(a λ (1 a )λ )Δt o(Δt) ; v m 1

(a μ (1 a )μ )Δt o(Δt) ; v m 1

(a δ

  

    

     

     

     

     



=

321 9 321

3 211 3 210 6 211 6 210

7 211 7 210 4 321 4 320

8 321 8 320 9 321 9 321

2

(1 a )δ )Δt o(Δt) ; v m 1

m((a λ (1 a )λ ) (a μ (1 a )μ )

1 (a δ (1 a )δ )) ((a λ (1 a )λ ) Δ t o(Δ t) ; v m

(a μ (1 a )μ ) (a δ (1 a )δ ))

o(Δt) ; v m

    

      
             
         

   2

 

Considering the joint stochastic processes, we have 
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nu,mv

1 111 1 110

5 111 5 110

2 111 2 111

P P{[(N(Δt),M(Δt)] (u, v) / [(N(t),M(t)] (n,m)}

n(a λ (1 a )λ )Δt o(Δt) ;u n 1, v m

n (a μ (1 a )μ )Δt o(Δt) ;u n 1, v m

n(a δ (1 a )δ )Δt o(Δt) ;u n 1, v m

  

      

      

      
 

3 211 3 210

6 211 6 210

7 211 7 210

4 321 4 320

8 321 8 320

9 32

m(a λ (1- a )λ )Δt o(Δt) ;u n, v m 1

m(a μ (1- a )μ )Δt o(Δt) ;u n, v m -1

m(a δ (1- a )δ )Δt o(Δt) ;u n, v m -1

(a λ (1- a )λ )Δt o(Δt) ;u n, v m 1

(a μ (1- a )μ )Δt o(Δt) ;u n, v m 1

(a δ

     

    

    

     

     

 1 9 320

1 111 1 110 5 111 5 110

2 111 2 111 3 211 3 210

6 211 6 210 7 211 7 210

4 321 4 320 8 321 8 320

(1- a )δ )Δt o(Δt) ;u n, v m 1

n((a λ (1- a )λ ) (a μ (1- a )μ )

(a δ (1- a )δ )) m((a λ (1- a )λ )

1- (a μ (1- a )μ ) (a δ (1- a )δ ))

((a λ (1- a )λ ) (a μ (1- a )μ )

    

  

   

    

   

9 321 9 320

2

Δt o(Δt)

(a δ (1- a )δ ))

;u n, v m

o(Δt) ;u n 2, v m 2

  
  
  

  
  
     

 

      

 

Let n,mP (t t)  be the probability that happening of an event of one event in an infinitesimal interval

t , there exists „n‟ normal and „m‟ mutant cells in the organ upto time „t‟. Then the differential - difference 

equations of the model are: 

n ,m

'

1 111 1 110 2 111 2 110 5 111 5 110

3 211 3 210 6 211 6 210 7 211 7 210

4 41 4 40 8 41 8 40 9 51 9 50 n,m

P (t) {n((a λ (1 a )λ ) (a δ (1 a )δ ) (a μ (1 a )μ ))

m((a λ (1 a )λ ) (a μ (1 a )μ ) (a δ (1 a )δ ))

((a λ (1 a )λ ) (a μ (1 a )μ ) (a μ (1 a )μ ))}P (t)

         

        

        

n 1,m 1 111 1 110 n 1,m 1 2 111 2 110

n,m 1 3 211 3 210 n 1,m 5 111 5 110

n,m 1 6 211 6 210 n,m 1

P (t)[(n 1)(a λ (1 a )λ )] P (t)[(n 1)(a δ (1 a )δ )]

P (t)[(m 1)(a λ (1 a )λ )] P (t)[(n 1)(a μ (1 a )μ )]

P (t)[(m 1)(a μ (1 a )μ )] P (t)[(m 1)(a

  

 

 

       

       

      7 211 7 210

n,m 1 4 321 4 320 n,m 1 8 321 8 320

n,m 1 9 321 9 320

δ (1 a )δ )]

P (t)[(a λ (1 a )λ )] P (t)[(a μ (1 a )μ )]

P (t)[(a δ (1 a )δ )] for n,m 1

 



 

     

   
       (2.1) 

'

0,1 3 211 3 210 4 321 4 320 6 211 6 210

8 321 8 320 9 321 9 320 0,1 5 111 5 110 1,1

2 111 2 110 1,0 6 211 6 210 7

P (t) -[(a λ (1- a )λ ) (a λ (1- a )λ ) (a μ (1- a )μ )

(a μ (1- a )μ ) (a δ (1- a )δ )]P (t) (a μ (1- a )μ )P (t)

(a δ (1- a )δ )P (t) {2((a μ (1- a )μ ) (a δ

     

     

     211 7 210

8 321 8 320 9 321 9 320 0,2 4 321 4 320 0,0

(1- a )δ ))

(a μ (1- a )μ ) (a δ (1- a )δ )}P (t) (a λ (1- a )λ )P (t)



     

   (2.2) 

'

1,0 1,0 1 111 1 110 2 111 2 110 4 321 4 320

5 111 5 110 7 211 7 210 8 321 8 320 9 321

9 320 5 111 5 110 2,0 1,1

P (t) P (t){-((a λ (1- a )λ ) (a δ (1- a )δ ) (a λ (1- a )λ )

(a μ (1- a )μ ) (a δ (1- a )δ ) (a μ (1- a )μ ) (a δ

(1- a )δ ))} 2(a μ (1- a )μ )P (t) P (t){((a

     

      

    5 111 5 110

7 211 7 210 8 321 8 320 9 321 9 320

μ (1- a )μ )

(a δ (1- a )δ ) (a μ (1- a )μ ) (a δ (1- a )δ ))}



     
   (2.3) 

 

0.0

'

4 321 4 320 8 321 8 320 9 321 9 320 0,0

5 111 5 110 1,0 5 111 5 110 7 211 7 210

8 321 8 320 9 321 9 320 0,1

P (t) {-[(a λ (1- a )λ ) (a μ (1- a )μ ) (a δ (1- a )δ )]}P (t)

(a μ (1- a )μ )P (t) ((a μ (1- a )μ ) (a δ (1- a )δ )

(a μ (1- a )μ ) (a δ (1- a )δ ))P (t)

     

     

   

      
(2.4) 

With the initial condition  
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0 0N ,M i, j 0 0P (t) 1, P (0) 0 i N ; j M       

 

III. Generating Functions and Statistical Measures 

Let  ( , ; )P x y t  be the probability generating function of , ( )n mP t  . 

Where, 
,

0 0

( , ; ) ( )) ; 1, 1n m

n m

m n

P x y t x y P t x y
 

 

   . Multiplying the above differential-difference 

equations (2.1) to (2.4) with 
n mx y  and summing over n, m, we get 

n 1 m

1 111 1 110 2 111 2 110 5 111 5 110 n,m

m 0 n 0

n m 1

3 211 3 210 6 211 6 210 7 211 7 210 n,m

m 0 n 0

4 321

d
P(x, y; t) ((a λ (1 a )λ ) (a δ (1 a )δ ) (a μ (1 a )μ ))x nx y P (t)

dx

((a λ (1 a )λ ) (a μ (1 a )μ ) (a δ (1 a )δ ))y mx y P (t)

((a λ (1 a

 


 
 



 

         

        

  





n m

4 320 8 321 8 320 9 321 9 320 n,m

m 0 n 0

2 n 2 m n m 1

1 111 1 110 n 1,m 2 111 2 110

m 0 n 0 m 0 n 0

)λ ) (a μ (1 a )μ ) (a δ (1 a )δ )) x y P (t)

(a λ (1 a )λ )x (n 1)x y P (t) (a δ (1 a )δ )y (n 1)x y

 

 
   

 



   

     

       



 

 

2 n m 2

n 1,m 1 3 211 3 210 n,m 1 5 111 5 110

m 0 n 0

n m n m

n 1,m 6 211 6 210 7 211 7 210

m 0 n 0 m 0 n 0

P (t) (a λ (1 a )λ )y (m 1)x y P (t) (a μ (1 a )μ )

(n 1)x y P (t) ((a μ (1 a )μ ) (a δ (1 a )δ )) (m 1)x y

 


  

 
   



   

      

       



 

 

2 n m 2

n 1,m 1 3 211 3 210 n,m 1 5 111 5 110

m 0 n 0

n m n m

n 1,m 6 211 6 210 7 211 7 210

m 0 n 0 m 0 n 0

P (t) (a λ (1 a )λ )y (m 1)x y P (t) (a μ (1 a )μ )

(n 1)x y P (t) ((a μ (1 a )μ ) (a δ (1 a )δ )) (m 1)x y

 


  

 
   



   

      

       



 
 

                    
(3.1)

 On simplification, we obtain the differential equation of the form as follows, 

1 111 1 110 2 111 2 110 5 111 5 110 5 111

2

5 110 1 111 1 110 2 111 2 110

3 211 3 210 6 211 6 210 7 2

P(x, y; t) { ((a λ (1 a )λ ) (a δ (1 a )δ ) (a μ (1 a )μ ))x (a μ
t

(1 a )μ ) (a λ (1 a )λ )x (a δ (1 a )δ )y} P(x, y; t)
x

{ ((a λ (1 a )λ ) (a μ (1 a )μ ) (a δ


          




       


        11 7 210(1 a )δ ))y 

 

2

3 211 3 210 6 211 6 210 7 211 7 210

4 321 4 320 8 321 8 320

8 321 8 320 9 321 9 320
9 321 9 320

4 321 4 3

(a λ (1 a )λ )y ((a μ (1 a )μ ) (a δ (1 a )δ ))}

P(x, y; t) { ((a λ (1 a )λ ) (a μ (1 a )μ )
y

[(a μ (1 a )μ ) (a δ (1 a )δ )]
(a δ (1 a )δ ))

y

(a λ (1 a )λ

        


      



    
   

   20 )y}P(x, y; t)
     

(3.2) 

 We can obtain the characteristics of the model using joint cumulant generating function of n,mP (t) . Taking

ux e ,
vy e  and denoting k(u, v; t)  as the joint cumulant generating function of n,mP (t) , we get the 

following expression 

1 111 1 110 2 111 2 110 5 111 5 110 5 111

u v u

5 110 1 111 1 110 2 111 2 110

3 211 3 210 6 211 6 210 7

k(u, v; t) { ((a λ (1 a )λ ) (a δ (1 a )δ ) (a μ (1 a )μ )) (a μ
t

(1 a )μ ) (a λ (1 a )λ )e (a δ (1 a )δ )e } k(u, v; t)
u

{ ((a λ (1 a )λ ) (a μ (1 a )μ ) (a




          




       


        211 7 210δ (1 a )δ )) 
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v v

3 211 3 210 6 211 6 210 7 211 7 210

4 321 4 320 8 321 8 320 9 321 9 320

8 321 8 320 9 321 9 320
4 321v

(a λ (1 a )λ )e ((a μ (1 a )μ ) (a δ (1 a )δ ))e }

k(u, v; t) { ((a λ (1 a )λ ) (a μ (1 a )μ ) (a δ (1 a )δ ))
v

[(a μ (1 a )μ ) (a δ (1 a )δ )]
(a λ (1 a

e

        


         


    

    v

4 320)λ )e }k(u, v; t)

               

   (3.3) 

Comparing the coefficient of the power of  u‟s  and v‟s in the above equations, we get the following 

* * *

1,0 1 2 1 1,0m (t) ( )m (t)
t


   

                (3.4) 

* * * *

0,1 2 1,0 3 2 3 0,1m (t) m (t) ( )m (t)
t


     

                (3.5) 

* * * * * *

2,0 1 2 1 2,0 1 2 1 1,0m (t) 2( )m (t) ( )m (t)
t


       

              (3.6) 

* * * * * * *

0,2 2 1,0 3 2 3 0,1 3 2 3 0,2

* * * *

4 4 5 0,1 2 1,1

m (t) m (t) ( )m (t) 2( )m (t)
t

2( )m (t) m (t)


         



                     (3.7) 

* * * * * * * *

1,1 1 2 1 1,1 2 2,0 2 1,0 3 2 3 1,1

* * * *

4 4 5 1,0 2 2,0

m (t) ( )m (t) m (t) m (t) ( )m (t)
t

( )m (t) m (t)


         



    
              (3.8) 

Let , ( )i jm t  denotes the moments of order (i, j) of the normal cells, mutant cells in an organ at time t. Then the 

characteristics of the model are obtained by solving the above ordinary linear differential equations, which are 

as follows 

 

Expected number of normal cells in an organ at time „t‟ 
At

1,0 0m (t) N e
                          (3.9) 

Expected number of mutant cells in an organ at time „t‟ 
* At *

Bt2 0 2 0
0,1 0

N e N
m (t) M e

A B A B

  
   

                         (3.10) 

Variance of number of normal cells in the organ at time„t‟ 

 
At

At0
2,0

DN e
m (t) e 1

A
 

                (3.11) 

Variance of number of mutant cells in the organ at time„t‟ 
* At * At * Bt

2 0 2 0 2 0
0,2 0

N e N e N e
m (t) (F 2E) M

A 2B (A 2B)(A B) A B B

     
      

      

 

  

* * At2At At

2 0 2 0

2

*
* *2 (A B)t
2 0 2 0

N D (E )N ee e

A 2(A B) (A 2B)B (A 2B)B

N D A B E N e

(A B)B (A B)



   
   

    
       

  
   

  

 

* *

2 0 2 0 0

2

2Bt

* *
* 2 2 2
2 0 2

N N (A 2B)M
(F 2E)

(A 2B) 2(A 2B)(A B) B
e

2(A B)( E) D
N

2(A 2B)(A B)

     
   

      
                               (3.12) 

Covariance of number of normal and mutant cells in an organ at time „t‟ 
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* Bt * * *2At At
(A B)t2 0 2 0 2 0 2 0

1,1

(E )N e DN DN (A B)(E )Ne e
m (t) e

B A (A B) B (A B)B




          
       

         

                        (3.13) 

Where, N0 & M0 – Initial number of normal and mutant cells in an organ

 

* * *

1 2 1A      
* * *

3 2 3B      
* * *

1 2 1D      

* * *

4 4 5E      
* * *

3 2 3F      - 

*

1 1 111 1 110a (1 a )       
*

2 2 111 2 110a (1 a )       
*

3 3 211 3 210a (1 a )       

*

4 4 321 4 320a (1 a )       
*

1 5 111 5 110a (1 a )       
*

2 6 211 6 210a (1 a )       

*

3 7 211 7 210a (1 a )       
*

4 8 321 8 320a (1 a )       
*

5 9 321 9 320a (1 a )       

 

IV. Numerical Illustration 

The computed values of the characteristics of the model 
1,0 0,1 2,0 0,2m (t),m (t),m (t),m (t)  and 

1,1m (t)   

mentioned above from equation (3.9) to (3.13) for the parameters are presented in the tables for changing values 

of λ111, λ110, δ111, δ 110, λ211, λ210, λ321, λ320, µ111, µ110, µ211, µ210, δ211, δ210, µ321, µ320, δ321, δ320 and t in the 

appendix-I. The linear function is defined to connection the kinetics of cells in the tumor under presence and 

vacation period of drug therapy.  

 

V. Findings 
The findings were made by changing one decision parameter while fixing other parameters are constant. 

 m10, m01, m20, m02 and m11 are the increasing function of initial size normal cells N0. 

 m10, m20, m11 are invariant and m01, m02 are increasing function of initial number of mutant cells M0. 

 m10, m01, m20, m02 and m11 are the increasing function arrival of normal cells λ111 and λ110. 

 m10, m20, m02 and m11 are decreasing and m01 is an increasing function of transformation rate of normal 

cells to mutant cells δ111 and δ 110. 

 m10, m20 are invariant and, m01, m02 and m11 are the increasing function arrival of mutant cells λ211 and 

λ210. 

 m10, m01, m20 are invariant and, m02 and m11 are the increasing function growth rate of mutant cells in 

secondary tumor λ321 and λ320. 

 m10, m01, m20, m02 and m11 are decreasing function of death rate of normal cells µ111 and µ110. 

 m10, m20 are invariant and m01, m02 and m11 are decreasing function death rate of mutant cells µ211 and 

µ210. 

 m10, m01, m20 are invariant and, m02 and m11 are the decreasing function migration rate of mutant cells to 

in secondary tumor δ211 and δ210. 

 m10, m01, m20 are invariant and, m02 and m11 are the decreasing function death rate of mutant cells in 

secondary tumor µ321 and µ320. 

 m10, m01, m20 are invariant and, m02 and m11 are the decreasing function migration rate of mutant cells in 

secondary tumor µ321 and µ320. 

 m10, m01, m20, m02 and m11 are the increasing function of time t. 

The above findings are describing dynamics of the measures derived from the developed stochastic model and ak 

is assumed as the partial presence of drug.   
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