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Abstract: In this paper, we investigated the hydromagnetic steady flow of a viscous conducting fluid in a two-

dimensional uniform width linearly diverging channel. For this investigation the effect of an externally applied 

homogeneous magnetic field on the development of velocity profiles and internal flow separation in the 

diverging channel are observed. The solution for the flow governing non-linear differential equation is found 

using perturbation method together with Pade´ approximation technique. The investigation results reveal that 

the requirement of flow Reynolds number for the development of internal flow separation increases with an 

increase in magnetic field intensity. Furthermore, the behavior of velocity profiles under the effect of magnetic 

field is discussed. 
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I. Introduction 
The study of electrically conducting viscous fluid flowing through diverging channels under the influence 

of an external magnetic field is not only fascinating theoretically, but also finds applications in mathematical 

modeling of several industrial and biological systems such as magnetohydrodynamics (MHD) generators, 

plasma studies, nuclear reactors, industrial metal casting, controlling of molten metal flows, etc. The theoretical 

study also finds application in the area of motion of liquid metals or alloys in the cooling systems of advanced 

nuclear reactors. In the past few years, several simple flow problems associated with classical hydrodynamics 

have received new attention within the more general context of MHD. A survey of MHD studies in the 

technological fields can be found in (Moreau 1990). In modern times the theory of flow convergent-divergent 

channels has many applications in aerospace, chemical, civil, environmental, mechanical and bio-mechanical 

engineering as well as in understanding rivers and canals. A numerical investigation of the study of 

hydromagnetic flows in a slowly varying exponentially diverging channel under the effect of an externally 

applied homogeneous magnetic field was performed by Makinde and Mhone (2006). For this they have used 

perturbation method and Pade´ approximation technique (Baker Jr. 1975). The mathematical investigations of 

this type of problem have been studied by Rao and Deshikachar (1986) and (Makinde 1995). 

In the present paper, the steady hydromagnetic flows in a two-dimensional uniform width linearly 

diverging channel under the influence of an externally applied homogeneous magnetic field have been 

investigated. The objective of this study is to analyze the fluid velocity profiles and to determine numerically the 

effect of the externally applied homogeneous magnetic field on the development of internal flow separation as 

flow Reynolds number increases using perturbation method together with Pade´ approximation technique. 

 

II. Mathematical Formulation 
Consider the steady flow of an incompressible viscous conducting fluid through an uniform width 

linearly diverging channel under the influence of an externally applied homogeneous magnetic field as shown in 

Fig. 1. 
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It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is 

very small. Take a Cartesian coordinate system (x, y) where 0x lies along the centre of the channel and y is the 

distance measured in the normal section. Let u and v be the velocity components in the directions of x and y 

increasing respectively and b(x) defines the wall diverging geometrically. Then, the governing equations for the 

two-dimensional steady flow, in terms of vorticity (ω) and stream-function (ψ) as given by Rao and Deshikachar 

(1986) are 
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and the appropriate boundary conditions are 
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dyuQ is the fluid flux rate across any section of the channel, 
22222 // yx  , B0 =

 (µe.H) the electromagnetic induction, µe the magnetic permeability, H the intensity of magnetic field, σe the 

conductivity of the fluid,   the fluid density and υ is the kinematic viscosity coefficient. 

The axial and normal fluid velocity components in terms of the stream function can be written as 
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The inner surface of the walls is given by )/( Lxby  . Let  axSxb /)(   where S is the function 

of x, a is the characteristic half-width of the channel,   is a small dimensionless parameter that specifies the 

slow variation in the cross-section of the channel which is defined as 1/0  La  and L defines the 

channel characteristic length. In the limit 0 , the channel is of constant width. The introduced 

dimensionless variables and hence the reduced dimensionless governing equations together with the appropriate 

boundary conditions, (neglecting the bars for clarity) can be written as follows, 
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where the flow is considered in the boundary layer approximation or for channel with a small aspect ratio  , 

 /Re Q  is the effective flow Reynolds number and H is the magnetic field intensity parameter or 

Hartmann number. For the geometry of the channel under consideration, S is defined as S = 1+ x. 

 

III. Perturbation Expansion 
The equations (5)-(7) are non-linear in nature and therefore not possible to find its solution exactly. 

However, the solution can be found in the form of power series in Re i.e., 
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Now substitute the above expressions (8) into (5)-(7) and collect the coefficients of like powers of Re. The 

resulting equations are: 

 

 Zeroth Order : 

2
0

2

0
,0

2
0

2

yy 






 



,                                                                                                                            (9)  

0on,0
2
0

2

,0
0





 y

y


 ,                                                                                                       (10)  

Sy
y





 on,00,1

0


 .                                                                                                          (11)  

Higher Order (n 1):  
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 It is difficult to find many terms of the solution series manually. So a MAPLE program has been written that 

calculates successively the coefficients of the solution series. It consists of the following segments: 

(i)    Declaration of arrays for the solution series coefficients; ψ = array(0……..25), ω = array  

        (0……25). 

(ii)   Input the leading order term and their derivatives i.e. ψ0, ω0. 

(iii)  Input the modeled channel geometry slope (i.e. dS/dx).  

(iv)  Using a MAPLE loop procedure, iterate to solve equations (12)-(14) for the higher order  

        terms i.e. ψn, ωn, n = 1,2,3,……  . 

(v)   Compute the wall shear stress and the axial pressure gradient. 

The first two terms of the solution for stream-function and vorticity are obtained as 
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where η = y/S. The shear stress at the boundary of the channel is given by 
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where σyy , σxx , σxy are the usual stress components, i.e., 
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The subscripts (x, y) denote partial differentiation with respect to (x, y), respectively. The dimensionless form of 

wall shear stress can be written as 
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and for 0 < ε <<1 obtain 
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IV. Internal Flow Separation 
We have investigated the solution behavior by algebraic programming language (MAPLE). The first 19 

coefficients for the above solution series have been obtained which represent the flow characteristics. The above 

series are reformed into several diagonal Pade´ approximants of order N = M +M as  
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This method fails when the denominator of the fraction is evaluated near the zeros. By equating the numerator 

of equation (21) to zero we have computed the Reynolds number at which separation occurs in the flow field 

(i.e. 0G ) for different values of H at position S = 1 on the channel, as shown in Table 1.  

 

Table 1. Computations showing the Reynolds number for internal flow separation 

Development at S = 1 in the diverging channel. 

 
 

V. Results And Discussion 
Since the fluid is incompressible and viscous, the above mathematical analysis is very suitable for liquid. 

Flow separations have been observed in the diverging channel and computed numerically as shown in Table 1, 

which represents that the flow Reynolds number increases as the magnetic field intensity increases in 

magnitude. But the increasing rate of the flow Reynolds numbers is not so high as given in Makinde and Mhone 

(2006). 

Fig. 2(a) below shows the axial velocity component (u) profile at S = 1 in the diverging channel. A 

parabolic axial velocity profile is observed with maximum value at the channel centerline and minimum value at 

the boundaries. Around the centerline of the channel it is observed that the effect of increasing values of the 

magnetic field intensity is to decrease the magnitude of the axial fluid velocity. Fig. 2(b) shows the normal 

velocity component (v) profile in the diverging channel where the maximum value is observed near the middle 

position of the channel centerline and the boundary. But at the channel centerline and boundary the minimum 

value of the normal velocity profile is observed. However, a general increase in the magnitude of normal 

velocity profile is noticed with an increase in magnetic field intensity. 

 



Hydromagnetic Effects on Fluid Flow and Internal Flow Separation in a Linearly Diverging Channel 

www.iosrjournals.org                                                             53 | Page 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-1 -0.5 0 0.5 1

H = 0
H = 1
 H = 1.5

u 



(a )

    

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

H = 0
H = 1
H = 1.5

v



(b )

 
Fig. 2. Axial and normal velocity profiles for different values of H; S = 1 and Re = 1. 

 

Fig. 3 represents the wall shear stress (G) with respect to flow Reynolds number at S = 1 in the diverging 

channel. The magnitude of wall shear stress decrease with an increase in flow Reynolds number for every value 

of magnetic field intensity. Here it is observed that the requirement of flow Reynolds number for the 

development of internal flow separation increases as the magnetic field intensity increases in magnitude. This 

situation is identical to those of Makinde and Mhone (2006), but in this case the separation occurs more earlier.  
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Fig. 3. Wall shear stress at S = 1 for different values of H. 

 

Since the flow Reynolds number increases gradually with an increase in magnetic field intensity, so for 

the further development of internal flow separation it is possible to get reasonable values of flow Reynolds 

number for some higher values of H such as H = 2, 2.5. But a further increase in magnetic field intensity may 

suppress or totally prevent the development of internal flow separation in the diverging channel. From Table 1 

and Fig. 3 it is also clear that internal flow separation is still possible at low magnetic field intensity if flow 

Reynolds number is sufficiently high. Hence, in order to prevent the occurrence of internal flow separation in 

the diverging channel, the imposed external magnetic field intensity on the conducting fluid must be sufficiently 

high. 

 

VI. Conclusions 
We investigated the effects of the externally applied homogeneous magnetic field on the flow for the 

development of velocity profiles and internal flow separation at a given position in the diverging channel. Our 

results revealed that early separation occurred with a decrease in magnetic field intensity. We also noticed that 

the effect of increasing values of the magnetic field intensity is to decrease the magnitude of the axial fluid 

velocity around the centerline of the channel, but between the centerline and boundary the normal fluid velocity 

increases by magnetic field. Hence, magnetic field has great influence on fluid velocity components and for the 

development internal flow separation in the diverging channel. 
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