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Abstract: The acceptability of an algorithm is a function of its implementability and convergence. In this paper,
we examine some features of the extended conjugate gradient method (ECGM) algorithm, one of the
optimization techniques for solving continuous/or discrete optimal control problems It is observed while using
this algorithm, there is a consistent demand for some of the features of the algorithm. Among these are the step-
size, alpha, the gradient(the partial derivatives), the search directions e.t.c. One of these features closely

examined is the computation of VJ , the gradient of J, the performance index J =<Z, HZ>,Z =(x,u)",
which is foremost while implementing the algorithm. In the light of this, we develop an explicit expression for

VJ .Furthermore, a generalization of the expression for VJ , for all positive integers n was attained, via
mathematical induction.
Keywords: Step-size, Operator,Conjugate Search Directions

I.  Introduction
Most algorithms for solving discrete optimal control problems based on a class of descent methods,
demand gradient evaluation of the performance functional. Efficient, within this class are Steepest descent
method (SDM), Fletcher-Reeves method (FRM), Polak-Rebiere method (PRM), Newton methods and the
Extended Conjugate gradient method (ECGM). However, none of these algorithms have been able to provide an
explicit expression for VJ , the gradient of the performance functional. It is in the light of this, that we desire to
present an explicit expression for computing the partial derivatives ofperformance functional J ,where

J= <Z, HZ> L= (X, u)T .Let us consider the class of optimal control problems

[
Min J, (x,u) =>_ f(x,u;), k <oo (1.1)

i=1
with dynamic constraint of type X, = AX,_, + BU, , ,(see Oliviera (2002), Polak (1971)).

This class of problems which fits into a closed loop or feedback control system and maintains an output
level to a desired value without interference or fluctuation are known as regulator problems.Such problems
often emanate from systems like water storage and supply engineering. In such systems, the state of the system
at any instant automatically sets the control. This implies that the state is “fed back™ to the control mechanism
which adjusts itself without external influence, Ibiejugba (1985). Thus in solving these problems, we shall be
interested in finding a control L € R™ and a corresponding trajectory x € R™, such that the cost functional

k
Jk(x,u):z f(xi!ui (1.2)
i=1

is minimized over a class of all admissible control and state vectors, where f: R™ x R™ — R is continuously
differentiable and k, denotes the duration of the control process. Let us consider a direct numerical solution to

the linear quadratic optimal control problem formed as we let f (X,u.) = XiT Px; +uiTQui in equation (1.2) be

subject to some discrete time linear dynamical constraint. Then, the resulting problem may be stated as

K

Minimize J, (X;,U;) = > [X/ Px +u/ Qu;] (1.3)
i=1

Subjectto X, = AX, , +Du, , (1.4

www.iosrjournals.org 16 | Page



On The Extended Conjugate Gradient Method(ECGM) Algorithm For Discrete Optimal ....

where x; € R™, u; € R™Pand Qare nxn, mxm symmetric positive definite constant matrices respectively

with A and D both constant matrices. The conventional penalty function method demands the transformation of
the constrained problem in equations (1.3) and (1.4) into an unconstrained problem with the introduction of the

penalty constant ¢ > 0 ,(Macki and Straues(1980)). Hence we have,

Kk
Min J, (%, U;) = D_[X Px + U Qu; + (X — Ax_, — DU, ;, X — A, — Du, ;)] (1.5)
i=1
where @ >0, the penalty constant, the superscript T denotes the transpose of a designated vector and the

symbol (., ) , denotes the inner product in a suitable Hilbert space.

Now associate with equation (1.5) the control operator H such that

y k
<z, Hz>W = >"[X Px +u/Qu; + (X — A, — Du;_;, X, — Ax,_; — Du, )] (1.6)
i=1

where w is a real Hilbert space and z=(X,, X, X,, Xz,""", xk,uo,ul,u2,u3,---,uk)T and H is
control operator constructed by Otunta(2003). The right hand side of equation (1.6) is a quadratic form with the
associated block matrix H , of order (2k+2) given as

~ F N
A E Y

where F,N and B are matrices whose entries are defined as follows:
F is a square matrix of order (k+1), with entries 1‘ij given by

f,=@A"A f; =—A foralli,jsuchthat |i— j|=1,

LR
T
fi=p+o(l+A A, fiy.=p+ol, (1.8)
j#l
il
where | is an identity matrix of appropriate dimension with respect to that of A.
N is a square matrix of order (k+1) with entries defined as

n; =@A'D, foralli,jsuchthat i =1+ j,n, =0, otherwise (1.9)
j#k+1

NT is the usual transpose of the matrix N.
B is a square diagonal matrix of order (k+1) with entries,
bij =q+¢D’ D,b, :¢DTD1bk+1k+l =(q. (1.10)
o
With this control operator H , We can conveniently solve our problem in equation (1.6).

The rest parts of the paper is outlined as follows: section two discusses the development of the explicit
expression for VJ section three examinesthe generalization of our expression for VJ as required by the

Extended Conjugate Gradient Method algorithm on Discrete Optimal Control Problems and we proceeds
concluding comments in section four.

Il.  Development of An Explicit Expression for the gradient Computation
In solving equation (1.6), we will at various times, demand the evaluation of the derivative of

J= <Z, HZ>. Thus it becomes pertinent to develop an explicit expression for its evaluation.. Knowing that

every polynomial function f is differentiable and that every polynomial function f of degree greater than one is
at least twice differentiable, (Taha(1996)), we proceed withour development by considering the one dimensional
problem as below.

k

Minimize Z:[I’Xi2 +qu’] (2.1a)
i-1

Subjectto X; =VX_; +SU;_; (2.1b)
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X, specified, where r,q,v and s are constants.

By the conventional penalty function method(Polak(1971)), the constrained problem in equation (2.1)
is converted to the unconstrained problem

[
Minimize > [rx? +quZ + (% —VX_; —SU; ;)’] (2.2)
i=1
where @ > O is the penalty constant.

By associating equation (2.2) with the quadratic functional J = <Z, HZ> ,defined on the real Hilbert space w,
we have,

Kk
J(xU,0) =(z,Hz) = > [rx? +qu? + (X —VX_, —SU, ;)’] (2.3)
i=1
On expanding equation (2.3), we have,

k
J (x,u,0)=(z,Hz) = DI +qul + (X7 +VAXE +S°U2 ) — 2V X,y — 2SXU;; + 2SX,_U; )]
i=1
(2.4) and to avoid any form of ambiguity, loss of purpose and contradiction in using Jk ,we shall
henceforth use J , in its place. Thus,
When K =1, equation (2.4) becomes,

J(XU, @) = 1 +quf + (X +V2XZ + 87U — 2VX X, — 28X U, + 2VSX,U,) (2.5)
From equation (2.5), Let J =J, +¢@J,, (2.6)
where J, (X, U, @) = rx’ +qu12, 2.7)
J, (X, U, @) = X2 +V?XZ +S°UZ — 2VX X, — 25X, + 2VSX,U, 2.8)
Then VJ(X,U, ) = %+% +¢ %+% ,J=0,1 (2.9)
OX; 0z OX; 0z
So that
v J- aJ aJ =01
) 8x axJ
(2.10)
V,Jd= (Y a‘] ,j=0,1. (2.11)
: 8u é‘u i
Thus using equations (2.7),(2.8), (2.10) and (2.11),we have,
0J
V J=—=@(2x,V* —2Vx, +2vsu
Xo aXO q)( Xl 0)
V, . =2rx + (2% — 2vX, —2sU) (2.12)
VI = 9(2U,8° — 25, + 2vsX,)
V,J=2qu,

When kK =2 equation (2.4) become,

J=(z,Hz), Z[rx +qu’ + (X + VX, +S°UZ, — 2V X, — 2SXU, , +2VSX, U, ;)]
i=1
2
I U, @) = D [ +qu’ + (X2 + VX2, +S°UZ, — 2VX X,y — 25KU;_; + 2VSX U, ;)]
=1 (2.13)
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O +X2) +V2 (X +Xx7) + (Ul +u/)

=r(x? +x2)+q(u’ +u?) +
(X1 2) q( 1 2) % _2VX1(XO+X2)—28(X1U0+X2u1)+2VS(X0u0+X1ul)
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3, (%,U, ) = r(x +%;) +0(u; +u3) (2.14)
) | 05 PRV ) 5705 ) o1
—2VX, (X, + %,) —2S(X Uy + X,U, ) + 2VS(X,U, + XU, )
From equations (2.14) and (2.15), we have,
2 (ad, aJ aJ, a .
VI(X,u,p) = —L 42 4| —2L+—2|]j=0,12. 2.16
(x.u.¢) ,—Z:(;Haxj GZJ w[axj 0z H : (219
So that
V. J= a‘J 6“] ,]=0,12.
% 8x axJ
(2.17)
v, J 9 (DaJ ,]=0,1,2. (2.18)
8uj ou,
Thusfor j=0,1,2
V.= 2—‘] = @(2%V? — 2%, +2VsU,) V, J = 2rx, + (2% (1+V?) = 2V(X, + X,) — 25U, + 2vsu, )
Xo
oJ oJ )
V. J=—=2r%+¢(2x, —2vx, —2su,) V, J = — = @(2u,S° — 2SX, + 2VsX,))
)& °  0u,

v, J= 9 _ 2qu, +@(2u,5° — 25X, +2vsx, ) V, J = A 2qu,
ooy, ? ou,
When K =k equation (2.4) becomes,
J=(z,Hz), Z[rx +qu + (X7 + VX, +S°U7, — 2V X, — 2SXU, ; +2vsX, U, ;)] (2.19)
i=1
=1 + X5+ + X))+ U7 +UZ +---+U) +
O+ X5+ + XY +VE(XE + X+ X2 )+ 82 (U +U7 +UZ +--+Uf ) —
2V(X X 4+ + X Xy ) — 2S(XUq + -+ X Uy _1) + 2VS (XU ++ -+ + X, U, )

:J1+§0‘]2
where J, = (X2 + X5 + -+ X )+ q(UZ + U5 +---+U7) (2.20)
LG X)) V(X X e X )+ 57 (Ug U U U ) — 1)
2 2V(X Xy + 4+ X Xy 1) = 2S(XUg + -+ -4+ X U, ;) +2VS(X Uy + -+ X, U, ) '
From equations (2.20) and (2.21), we have
([ ad, dd a), a .
VI(X,u,p) = L4+ 2 4| —2+—21|,j=0,12,---,k. 2.22
Out®) JZA;HGXJ aZJ] (p[axj aszJ %)
So
VJ A, q)aJ ,]=0,12,--- k. (2.23)
8xj OX;
V,J= o, —l—goaJ ,]=0,1,2,--- k. (2.24)
I ou; ou;

Using equations (2.23) and (2.24), for j =0,1,2,---,K., we have,
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vV, J= 2—‘] = @(2xV* —2VX, + 2vsu,) , V, J = 2rx, + @(2x (L+V?) — 2V(X, + X,) — 25U, + 2VsU, )
Xo '

V.3 =§—J= 2%, + p(2(L+V2)X, — 2V, 25U, + 28U,) ...
X

’ 2
V.= SX—J =2rx, +@(2(L+V?)X, —2vX,_, —2sU, , +2vsu, ,)
k

0J oJ

vV, J= T P(2U,8% — 28X, +2vsX,), V,, J = 9(2u,s* — 25X, +2vsx,), V, J = o 2qu,
o uO 1 k Uk
Therefore the expression below
[ ad, od aJ, adJ .
VI(X,u,p) = L+ 2 4| —2+—21|,j=0,12,---,k. 2.25
(x,u,9) JZ;‘K@X, azj] (P[axj 6J-HJ (2.25)

is the explicit expression for generating the gradient of the cost functional (2.4).

I1l.  Generalization Of The Explicit Expression For VJ .
We present inthis section, the generalization of the expression in equation(2.11) using the idea of
mathematical induction (Griffel(1993)). This is presented in the following theorem.
Theorem 3.1

If X;and u;are the state and control variables of a system; V. Jand V J are the respective partial
derivatives of J with respect to X, and u;. Then, for j=0,1,2,---,k—1., kis the duration of the control
process, we have

k o), 0J al, al )
VJ(X,u,p) = L2 4y =2+=21]j=012,--- k. 2.26
(x.u, ) JZOK@( p» j ¢[axj pe HJ (2.26)

i i i
is true.
Proof: We present the proof of this theorem using mathematical induction. Thus given,

VI(x,u,p) = <Z, HZ) as in equation (2.4) and using mathematical induction we establish the proof of the
theorem as follows:
J=(z,Hz) = Zk:[rxi2 +qu’ + (X + VX, +S°U7, — 2V X, — 25X, +2VSX, U, ,)].(2.27)
Step 1: When N :I_:< =1, we have,
L\[aJ, ad aJ, ad .
and with J = J, +@J, , where from equation (2.27), J,(X,U, @) = rx> +qu’

J,(X,U, ) = X2 + VX +S2Ug — 2vX X, — 2SX,U, + 2VSX,U, , We can obtain the gradient of J with respect

to X and Uas V, J = %+¢% and V, J = %+§0% ,]=0,1. (2.28)
: OX; OX; : ou; ou

j j j
Step 2. Since it is true for N = K =1, we assume next that it is true for N =K =K , i.e.

[ ad, ad oJ;, dJ :
V‘] Xlul = _1+_2 + _1+_2 y =0)112!“.)k.
(u.0) ,-Z;‘Haxj 821} ¢[ax. oz, H :

] ]

Also J =J,+¢J,, where J, =r(X? + X2 +--+ %) +qu +u> +---+u’)
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O+ X5+ X)) AV (X + X+ X2 )+ 87 (U + U+ U+ +uZ ) —
2V(X X+ + X Xy 4 ) — 2S(X Uy 4+ X Uy ;) +2VS(XoUy + -+ -+ X, U, ;)

From these we can obtain VXJJ = %+(p% and V, J = 8J1 +g0aJ2

OX. oX. g au,

j j Uj
Step 3. Next we show that it is true for N =K =k +1.

L 0J o), 0dJ 2\ (a3, ad o), aJ
VI(X,u,p) = it it +22 ||+ b I PN B S
(x.t.0) ,Z;‘ OX, O Pl OX; 0z, JZ;‘ OX; O ¢ ox. oz

i i i i i i

for j=0,1,---,k.

K k+1
Y &] 8‘] + %Jr% +> %Jr% +o %ﬁta\]—z

= 0z, ox; 0z, |\ OX; 0z Ox; 0z,
k+1
-3 33 53 pol Byl 01 k4l (2.30)
i=0 0z ox; oz

andwith J, = r(x’ +x§ et X)) QU UL Ul )
OF +X2 +-+ X2 ) +VP O+ X+ + X))+ 82 (U2 +UZ +UZ +---+U7) —
2V(X Xy + X Xeip) — 2S(XUg ++ -+ X, U, ) +2VS(XUg +- -+ X, U, )

0J, oJd, 0J, oJ .
We can generate V, J =| —t+¢p—=% |andV, J =| —2+9p—2 |, for j=0,1,---,k+1.(2.31)
J OX; OX; ! ou; ou,
Since the above expression is true for N = K =K +1, we conclude that it is true for all integers n.
This completes the proof of the theorem above.

IV.  Conclusion
An efficient explicit expression is proposed to enable us obtain the partial derivatives of

J(X,u,) = (Z, HZ> , necessary for the application of the ECGM algorithm on DOCP. The main contributions
of this paper are the development of the explicit expression and its generalization using mathematical induction.
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