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Abstract: In this paper, we examine techniques for the construction of the conjugate search direction, p, and

Py, ,often required in the implementation of the Extended Conjugate Gradient Method(ECGM) for optimal

control problems. The various techniques were derived analytically usingsome ideas from numerical linear
algebra. We also establish the authenticity of these approaches by presenting a proof via mathematical
induction, which when applied for the computation of these vectors proved successful most especially for the
Discrete Optimal Control Problems(DOCP).
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I.  Introduction

Optimal Control Problems entails the finding of a control vector u and a corresponding state vector X,
which enhances the minimization or the maximization of the performance index or criteria. One class of
methods that cannot be omitted when discussing the solution of optimal control problems is the conjugate
gradient methods. Conjugate gradient methods represent an important class of unconstrained optimization
algorithms, with special attention to global convergence properties(Hager and Zhang(2006)). This family of
algorithms includes a lot of variants, well known in the literature, with important convergence properties and
numerical efficiency. One of these variants is the Extended Conjugate Gradient Method(ECGM) algorithm,
proposedby Ibiejugba and Onumanyi(1984), based on the formalism of the conjugate gradient method(CGM)
algorithm due to Hestenes and Stiefel(1952). Since then several authors have worked on the algorithm with the
intent of improving the performance of the method. To mention but a few, Aderibigbe, (1988), dwelt on the
implementation of the algorithm giving it a numerical behavior that has made others have confidence in it. An
extension of the ECGM to control problems governed by linear differential delay equations was
alsopresented(seeAderibigbe, (1995)).0tunta(1991) examined the convergence of the ECGM algorithm for
continuous optimal control problems and in the processconstructed a new control operator in line with
Ibiejugba(1980). He also established a different control operator that enabled him use the ECGM algorithm to
solve Discrete Optimal control Problems(DOCP). Olorunsola, (1992) further worked on discrete optimal control
problemsas one of the means of solving continuous optimal control problems. Olotu, (2010) worked on
discretizing the constrained continuous optimal control problems. It is our desire to examine the construction
and computation of the search directions in the ECGM algorithm with the intent of improving the performance
of the method.

To accomplish this, consider the class of optimal control—(regulator) problems of the form

Kk
MinJ (x,u) = >"[x/ Px; +uf Qu;]
i1 (1.1)
Subject to X, = Ax,_, +Du, ;
where X, e[ " u, el ™ P and Q are nxn, mxmsymmetric positive definite constant matrices respectively

with A and D constant matrices. By the conventional penalty function method equation(1.1) is converted to an
unconstrained problem with the introduction of the penalty constant ¢ > 0 ,as follows:

[
Min J (X, u) = > [X' PX, +U QU + (X — AX_, —Du_, X, —Ax_, —Du, ;)] (1.2)
i=1
In order to solve the unconstrained problem, we associate with equation (1.2) the quadratic functional <Z, HZ>
to have,

Kk
(z,Hz) = 3(xu,p) =D [X P +Uf QU +¢(% — A% —Du;;)°] (1.3)
i=1
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whereW is a real Hilbert space, Z = (XO, X, Xppte, Xk,uo,ul,uz--',uk)T. H is a control operator derived by

Otunta(2003). The right hand side of equation (1.3) is a quadratic form with the associated block matrix H , of
order 2(k+1) given as follows

F N
(5 Y]

where F, N and B are matrices whose entries are defined as follows:
F is a square matrix of order k+1, with entries fij given by
f = @A"A, f; =—@A forallijsuchthat |i—j|=1,
.f i =P+o(l+A"A), f, =0, otherwise, f,.,, ., =P +ol, (15)
iJIIiL+1
where | is an identity matrix of appropriate dimension with respect to that of A.
N is a square matrix of order k+1 with entries defined as

_ T _ .. . . _ ;
'nkjjl_ @A D ,n; =D, forallij such that i =1+ j,n; =0, otherwise (1.6)
jk+

N7 is the usual transpose of the matrix N.
B is a square diagonal matrix of order k+1 with entries,

b =Q+¢D'D,b, =¢pD'D,by ., =Q. 1.7)
j#l
j#k+1

With this control operatorH(see Otunta(2003)), we can now implement the ECGM algorithm to solve the

problem on equation (1.3)

The outline of the rest part of our paper is as follows. In Section 2, we begin with a recall of the
Extended Conjugate Gradient Method Algorithm, and the necessary tools for the construction of conjugate
search directions. Also consider some theorems that shed some light on the ways of constructing the search
directions.In section 3, we present the techniques for constructing the . In section 4, we look atthe
implementation procedure of the ECGMalgorithm on a one-dimensional discrete optimal control problem.
Section 5, present our conclusion and indicate areas of future research.

Il.  Necessary Tools For The Construction Of P, And p,, IN The Ecgm Algorithm

The ECGM algorithm as proposed by Ibiejugba and Onumanyi(1984) for solving the equation (1.3) is
as follows:

Step 1: Initialize the sequence by guessing the first element z(0) = (x(0),u(0))" e w

Pro=-9
Step 2: Set 0 o @.1)
pu,O = _gu,O
Step 3: Compute X, =X, +;P,; and U, =U; + &P, ; 22)
Next upgrade the gradient and descent directions by computing
gx,i+1 = gx,i +ai Apx,i (23)
gu,i+l = gu,i +ai Apu,i (24)
px,i+1 = _gx,i+1 +ﬁxi pxi (2'5)
pu,i+l = _gu,i+1 + ﬂui pui (26)
2
where o; = ”g'” _ <givgi> 2.7

<pi’Api> <pivApi>
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_ ||gi+1||2 _ I (2.8)

fi= lalf (g9:)

gxi pxi
gi:{ ’leiz[ J (2.9)
gu,i pu,i

Step 4: If p, orp,, = 0, or i =K, the specified duration of control process. Go To step 5. Otherwise set

I =1+1, and Go To step 2.
Step 5: Stopand set Z = (X ,u; )"

Next we consider some basic concepts that will enable us undertake the construction of the gradient vectors and
descent directions.

a. Conjugacy
Consider a quadratic function given by

F(x):%xTGx+bTx+c (2.10)

whereGis a positive definite symmetric matrix, b a vector and c a scalar. Then the directions represented by two
vectors U # Qand v # 0 are conjugate(or orthogonal) with respect to G if

u'Gv=0 (2.11)
Geometrically(for simplicity within two-dimensions), the level curves
F(X) =y (2.12)

for different values of y are concentric ellipses.The concept of conjugacy has its origin in the theory of poles

and polars of an ellipseHestenes(1980).The following theorems formulated on the properties of conjugate
directions will be useful and so they are in order.

Theorem 1
If the vectors pp,are mutually conjugate (i.e. piTGpj =0) for i# J, for all i and j), then they are

linearly independent.
This theorem implies that thereexists at least one set of n independent vectors mutually conjugate with respect to
the matrixG; the set of eigenvectors of Gforms such a set.

On the minimization of the function F(x) subject to X €[] ", we state the theorem below without proof.

Theorem 2.( Navon and Legler(1987))
Suppose xiand Xy.iare consecutive current points in a minimization of F(x). If

0] X, minimizes F(x) in direction [, .
(i) X1minimizes F(x) in the direction P, .
(iii) P, and p,, are conjugate-directions, then X,.,also minimizes F(x) in the direction [, .

The above theorem most especially conditions (i) and (iii)implies that{ pk} (9 = VF(Xk) is the gradient of
F(x))for i=0,1---,1 and p/ Gp,, =0. Hence for a quadratic function F, we have
Jr — Ik =G (Xea — %)
and from (ii) X, ; = X, + &, P,
where @, is determined by the line minimization
FO +ap) = mjn F (X + o Py)-
(b) Construction of a set of mutually conjugate directions
Given a set of linearly independent vectors Uy, U,,---,U._;, we can construct a set of mutually G-

conjugate directions P,, P,,---, P,_; by the following procedure. Set
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Po =Uy (2.13)
and then for 1 =1, 2,---, N —1successively define
i-1
b=y +zaij P; (2.19)
i=0
where a; are the coefficients chosen so that [, is G-conjugate to the previous direction
i1+ Pips s Po- This is possible if for | =0,1,2,---,1 -1,
T T S T
P/ Gp, =u;Gp, +>_a,;p;Gp, =0 (2.15)
j=0

If previous coefficients a; were chosen so thatat Py, P;,--+, P;; are G-conjugate, then we have

g; p, =0,if j#1Iand from (2.15) we have,
T

i Gp; : : .

T forall 1=12,---,n-1, j=12,---,i—-1. (2.16)

P; Gp;

Hence the set of search directions Py, Py, +, P, defined by (2.13) — (2.16) is G-conjugate and the subspaces

i~

spanned by Py, Py,---, P; and Uy, U;,---,U; are the same.
(c ) For a better numerical performance of the ECGM for DOCP, we introduce the use of the Polak-Ribiere-

Polyak(PRP), (1969) formulafor updating the conjugate search directions ﬂkPRP , defined as follows:

PRP _ gl (gk B gk—l)
kK 2
|9

Thus (2.17) will enable us to construct the conjugate search directions as presented in the following section.

(2.17)

I11.  Construction Of The Search Directions
In this section, we present the various ways of constructing or generating { pk} , using some ideas of
equations (2.13) to (2.17).
()] One way of generating the conjugate search directions [, is to use a linear combination of the current
(negative) gradient direction and the previous search directions to produce a new search direction which is
conjugate to all previous ones.Thus with the values Py, =9 P, =—0,8s given in the algorithm, we can

generate all other subsequent values of [, by using

P =—0 + 5" P (3.1)
where

T
PRP __ gk (gk — gk—l)
k= 2
9
The iterates are given by Z,,, =z, + &, P, ,and g, = (g(Xk), g(uk))T .Hence equation (3.1) becomes
T
+ 9« (gk — gk—l)
2
9
where |||| denotes the norm of vector in a suitable, Hilbert space W, Griffel(1993) and so with

pk = (px,kl pu’k)T we obtain

Polak(1971) (3.2)

P =—0 Py (3.3)
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g k (g k9 ,k—l)
p - gxk+ﬂxkpxk—l’ﬂxk = . 2X
gx,kflu
Oss (9us —9uin) oo
k Kk Yu,i-1
pu,k :_gu,k +ﬂu,k pu,k—l’ﬂu,k =— - ZUI
gu,k—l”
) Another way of generating the conjugate search directions is presented in the theorem below.

Theorem3.
If g, is the ith gradient of the sequence of gradients generated from equation (2.10), p; ith the search

direction in the sequence of conjugate searchdirections and assume that P, =—(,and the Polak-Ribiere-

Polyak(PRP)(1969) formula in equation(2.17).Then the descent search direction at the kth step is given by
k

Py :_<gk’gk>iz‘,<i (3.5)

0 gi’gi>

Proof: We present the proof of this theorem using mathematical induction. Let [; be as defined previously in

(2.18), p, = —0g,and <gi,gj>=0,forall i# j,thenwhen i=1,

T —
p,=-0,+ 5P, :_gl"'M Po
(90: o)

<gl1g1_go> <91,91>—<gl,90> <gl’gl>
=Gt Py =0, Po=—0; + p
{909 T {909%) T {90G)

_ (909) . (9.9) =—<gl.gl>{< %, 9 }

(9,,91) o <90190>go 01,91) (96, 90)

<gl,gl>i< > a’

i=0

2
wheni=2, p, =—g, +A.p, :—gz+<<92’92> P :_<gza92>z_.g| -

gl’gl> i=0 g|1g|>
Assume that the above result is true for 1 =K, i.e. py,--+, Py.,
Kk
P() = Py + Py +oee Py =< 0y Gy > @9
i=0 <gi’g|>

Then we shall show that it is true for i = K +1,
Pk+)=p,, =P +P,+-+ P+ Py
=(py+ Py +e+ P )+ (pm)

I <gk+l’gk+l>
=| — R ——
gk+1 <gk’gk> pk
[ <gk+l’gk+l>[ <gk’gk> ]
== Gka o Gt P
T (9090 U (GG

<gk+1’gk+1> +<gk+1’gk+1> <gkfgk>
<gk'gk> ‘ <gk’gk> <gk—ligk—l

= =0k — > Py
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<9k+1:9k+1> <9k+1:gk+1> <gk+1’gk+1>[ <gk—1lgk—l> J
e D Oy + — Ot P
(e Oia) 7 (9080 (BBl T ~

(961 9a) (O 901) -~ (9 Yea) +<9k+1,gk+1><9k,1,gk,1>

29 2)

(9 ) (0080 (@ 00) T (900 0a) (92 Gie)

B <gk+11gk+l> Ous — <gk+1igk+l> B <gk+l’gk+1> g, + <gk+ligk+1> <gk—l1gk—1> (_g N <gk2!gk2>Jp
<gk+l1gk+l> o <gk!gk> ‘ <gk—l1gk—l> - <gk—1lgk—l><gk—27gk—2> 2 <k—3’gk—3> e
<gk+1’ gk+1> <gk+11 gk+l> <gk+1’ gk+l> <gk+1’ gk+1> [ <gk—2’ gk2>]

- +1 - —l+— - - to— -

e 0er) (0000 2 (000 0) 7 (G Gl 7 (GeanGa) )
_ <gk+1’gk+l> _ <gk+l1gk+l> _ <gk+l1gk+l> _ <gk+l1gk+l> _ <gk+1! gk+l> _
(GearGea) 7 {9080 (GnOia) 0 (GenBa) 0 (GeaOis)
o <gk+11gk+l> ' _<gk+1’gk+l> _<gk+l’gk+l> _<gk+1'gk+1>
<gk—j+l7gk—j+l> 029, 7 (909) T (9090)
Oy Oy Oy O3
+ + + +
( (\P )+ <gklgk> <gk—1lgk—l> <gk—21gk—2> <gk—3'gk—3>
_ ~(9r Gen) (9 Gha) ey 929 . Go
(929,) (91:9:) (90:90)

gk+1 y gj
= — g + 'g + " (37)
(Gierr G 1>{<gk+1,9k+1> £j20<gj’gl>J}

As required is the (k+1)st step descent search direction for generating p; = (pXi ' Py, )T. Hence we have shown
that the expression is true for all integers n.

IV.  Implementation Of The Ecgm Algorithm For Docp.
We will now employ the foregoing in the computation of the search directions of the ECGM for
discrete optimal control problems(DOCP). First we recall the algorithm proposed by Otunta(2003).

Docp Algorithm(Otunta 2003)
Step I: Select z, = (Xo,uo)T from w, the domain of the problem, X, specified.
Step 2.Compute the partial derivatives of J , in equation (3) with respect to X, and U,

Respectively for all i.Seti =0 and let p ="y Py, =—0,

(9,.0,)  _(009)

Step 3. Compute a, = 0y =
(pHp, ) " (p, Hp,)
with Hg, =Hp, . and Hg, = Hp, . 4.2)
1 1 pXi: 1 1 pLIi:
Xi+1 = Xi +ax,i px, ’ui+1 = ui +au,i pui

and next
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i+1 gX
Py = (9 gxiﬁ)ZW

j=0

_ i+1 guj
P = <9ui+u9um>jZo—<guj o (42)

Step4If p %, O P, = Oor 1 =Kk, the specified duration of the control process; GO TO step 5. Otherwise set

i =i+1 and Go To step 2.
Step 5 Stop and set z* = (X, U.)

Next we consider a one-dimensional problem to illustrate how to apply the ECGM algorithm on DOCP.
Example | One dimensional case

k
Minimize>_[rx? +qu/]
i=1
Subject to (4.3)
X; = VX;_; +SU,_;, X, specified,

1
where r,g, v and s are constants
By the conventional penalty method, Ibiejugba, et al(1992), the constrained problem is converted to the
unconstrained problem

k
Minimize>"[rx? +qu? + (X —VX,_; —Su;_,)*] (4.4)
i=1
Next associate with the quadratic functional J = <Z, HZ>, defined on the real Hilbert spaceW in line with
Ibiejugba(1980); this satisfies

k
J=(z,Hz),, = > [ +qui + @ (X —VX_; —SU,_;, X —VX_, —SU, ;)] (4.5)
i=1
where w is a real Hilbert space Griffel(1993) and Z = (XO, X Xy, X Uy Uy, Uy ey Uk)

In order for us to make the application of this algorithmworthwhile, we require the partial derivatives
of the quadratic functional and the elements of the matrix operator H. Thus from equation (4.5) we obtain

V.J= %4‘(0% ,1=0,12,---,k. (4.6a)
i ij é)xj
voi=| D P2 o012k
i 8uj 6uj

(4.6b)

Of importance also, are the elements of the matrix operator H defined in equations (1.5) — (1.7)
whichcan now be obtained with respect to the one — dimensional case problem as follows:

Vv° -V 0 o - 0 0

-V r+o(l+v) -V o - 0 0

F=| 0 -V r+el+v) —-ov --- 0 0
0 0 0 0 - —ov r+o

(4.8)
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ovs 0O o 0 - 0 O
-os ovs 0O O - 0 O
N=| 0O —-¢s e 0O --- 0 O], (4.9)
0 0 0 O -¢s 0
@S’ 0 0 0 0 0
0 qg+gs’ 0 0 00
B=| 0 0 q+¢s’ 0 00
0 0 0 0 0 ¢ (4.10)
Thus the matrix operator H takes the form:
oV —ov 0 0o - 0 0 es O O O .- 0 O
-~ M —-ev 0 - 0 0 —-¢ps ovs 0 O 0 O
0O —ov M —pv -+ O 0 0 -—¢s ovs O 0 O
b 0 0 0 0 -V r+¢ O2 0 0 O -¢s 0 (4.11)
ovs —-¢ps 0O o - 0 0 s 0 0 O 0 O
0O e —-s O - O 0 0 N 0 O 0 O
0 0 evs —-@s .- O 0 0 0 N O 0 O
: : : : oS —pSs . Do 0 O
0 0 0 o - 0 0 0 0 0 O 0 ¢
Where M =T +@(L+V), N = g+ ¢Ss*, Then the matrix-vector product Hp.
Py,
o -ov 0 0 - 0 0 e 0 0 O 0 0
-V M —ov 0 - 0 0 —-ps ovs 0 O 0 O Py
0 v M —ov - 0 0 0 —gs ous O 0 o0} Pe
_ - Py,
Hp. = 0 0 0 0 o r+¢ O2 0 0 0 s O | (a12)
ovs —¢ps O 0 0 0 s 0 0 O 0 0| p,
0 ¢ovs —ps O 0 0 0 N 0 0 0 O P,,
0 0 o@vs —@s 0 0 0 0 N O 0 O D
: VS —@S : ;0 ;2
0 0 0 0 0 0 0 0 0 0 0 q b
yields
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PVZ Py —PVPy, +PVSPy,
—PVPy +LF+@ (1+V)] Py —@SPy, +9VSPy,

— VP, I+ (L4+V) Py, —pVP,, — Py, +oVSPy,

~ VP H(T+9) Py —0SPy; 4
Hp; =
PVSPy —9SPy, +9S% Py,
PSPy, —9SPy, +(A+95%) Py,

PSPy, 5Py +(A+0S7) Py,

apy,
(4.13)

Hence we can determine pri or Hpui respectively by keeping P, or p, = O for each i.

Next we need to find <px_,HpXA> and <pUA,HpUA>as in «a, and ¢, respectively, as well as

a, P, and a,, p,, as contained in X;,,and u,_,. From step 3 of the algorithm for DOCP with i =0, we have

=—<g*°’g*0> and ¢ =—<g“°’g“°> (4.14)
(gt ) (b, Hp, ) |

From the algorithm again, we deduce,

2

(b Hp )= 00", =0 [p | =7]o, |

aXO

(P, Hp, )= 0570% =05° b, [ =050, @15)
(o0,) o] 1 Coe) o] 1
Y = = 5 =——5.anda, = = S=—. (416)
<pr’pr0> oV* 9, PV <pu0’Hpu0> oV° 9, PS
LX X P =X, O =% —(D—\X/‘Jzand LU= U Py Uy =t O, =Ug - ;“2 (4.17)
When i =1, from step3 of the algorithm, we have
(P, Hp,, ) =[r +o@+V)]p and (p,, Hp, ) =[q+¢s’1p’ . (4.18)
Hence,
ap, (9..9.) (959, (9.9) 19

“(poHp ) ¢ Dree@vle; T Ir+pev)n,

C{9n9,) o (9n9) o (949,)
P o, ) P T Tares Il ™ T lareslin, o
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k
Using  equation  (3.5),i.e. P, = <gk 0, >Z— we  generate Py, or p,, as

p, ==(9,. gxl)zloj - <gX1,gX1>[< g’xo . g’xll}

(9..9,)
9,)

=—g, —
(9,:9.)

X

:—gxl(gxo,gxo) (9,.9, )9,

<g%’g%>
La,p, = <9x1’ gx1>
[r +(p(1+v)][_gx1 <gXo O, > _<gX1 9 > 9% ]
(9:0%)
_ (9,:9, (9,95 ) .
[r +p+V)][-9, (9.0, )~ (0,9, ) O, ]
Similarly
i (94,194, )(94 9, ) )
[a+¢5°11-9, (9., 9., )~ (9, s, ) 0y, ]
and so,
_ _ (95:0.)(9::9,)
B R VI, (9,0, )~ (9.0, )8.] 2
_ <gu1 g“1><g“0 g“0>

R T s, (9,9, )9y, 9, )9, ] e
Hence for K > 2, we can generate values for X, and U, from the expressions

X, =Xy + (9:.9..) E— (4.25)

[r + o+ V[~ (g, ,. ng>; o0, >]

and

u =u,_, + <g”“’ o, >k1 : (4.26)

291_ Ui
[a+9s°11-(g,, . guk_l>§< o >]

Thus we have illustrated that we can analytically find the various parts of the DOCP algorithm and also

generate the descent sequence Z = ()(1, Xoyee ey Xy Upy Uy ey uk) ,which solve our problem.
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V.  Conclusions
We have successfully presented two approaches for constructing the conjugate search directions p,

and p, as required in the ECGM algorithm for discrete optimal hcontrol problems (DOCP).We alsohave
shown that the expression for the conjugate search direction P; is true for all positive integers n.

i and its

Finally, we have demonstratedthat we can find p, , p, ,c, , ¢, control vector U
corresponding trajectory X; by considering a one — dimensional discrete optimal control problem in an attempt

to minimize the performance index. Implementing this algorithm either through analytical means or a computer
programming language will be less burdensome. We encourage other researchers to look into generating search
directions for ECGM algorithm for the case of continuous optimal control problems. Furthermore, re-examine

(Gi:Gia)
<gi’ gi>

performance of the algorithm for the continuous optimal control problems.

the parameter . = , used to update the search directions, with the intent of improving the
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