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Abstract: The spread of communicable diseases is often described mathematically by compartmental models. A 

vaccine is a biological preparation that improves immunity to a particular disease. In this paper a nonlinear 

mathematical deterministic compartmental model for the dynamics of an infectious disease including the role of 

a preventive vaccine, natural birth rate and natural death rate is proposed and analyzed. The model has various 

kinds of parameter. We try to present a model for the transmission dynamics of an infectious disease and 

mathematically analyzed the stability of daisies free equilibrium and endemic equilibrium. Also we have given 

some strategy to control the epidemic by controlling the parameters. 
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I. Introduction 

Various kinds of deterministic models for the spread of infectious disease have been analyzed 

mathematically and applied to control the epidemic. Kermack and McKendrick proposed, as a particular case of 

a more general model presented in their seminal work [1]. Many epidemiological models have a disease free 

equilibrium (DFE) at which the population remains in the absence of disease [2]. The classical SIR models are 

very important as conceptual models (similar to predator-prey and competing species models in ecology). The 

SIR epidemic modeling yields the useful concept of the threshold quantity which determines when an epidemic 

occurs, and formulas for the peak infective fraction and the final susceptible fraction [3]. There are two major 

types of control strategies available to curtail the spread of infectious diseases: pharmaceutical interventions 

(drugs, vaccines etc) and non-pharmaceutical interventions (social distancing, quarantine). Vaccination is 

important for the elimination of infectious disease. Usually, the vaccination process are different schedules for 

different disease and vaccines. For some disease, such as hepatitis B virus infection, doses should be taken by 

vaccines several times and there must be some fixed time intervals between two doses. Vaccination, when it is 

available, is an effective preventive strategy. Arino et al introduced vaccination of susceptible individuals into 

an SIRS model and also considered vaccinating a fraction of newborns [4]. Buonomo et al studied the traditional 

SIR model with 100% efficacious vaccine [5]. Effective vaccines have been used successfully to control 

smallpox, polio and measles. 

In this paper we consider an SI type model when a vaccination program is in effect and there is a 

constant flow of incoming immigrants or newborns. This paper basically the extension of “Stability analysis at 

DFE of an epidemic model in the presence of a preventive vaccine” [6]. Let )(tS  be the number of population 

who are susceptible to an infection at time t, )(tI  be the number of members who are infective at time t, and 

)(tV  be the number of members who are vaccinated at time t. The total population size at time t is denoted by 

)(tN , with )()()()( tItVtStN  . Assume that each infective makes N  contacts sufficient to transmit 

infection in unit time, where  is a constant. When an infective makes contact, the probability of producing a 

new infection is NS , since the new infection can be made only when a contact is made with a susceptible 

individuals. Thus, the rate of producing new infections is SII
N

S
N  .. . The susceptible population is 

vaccinated at a constant rate  . We assume that there is no disease related death but natural death, that is, 
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unrelated to the disease is present. The population is replenished in two ways; birth and immigration. We 

assume that all newborns and immigrants enter the susceptible class at a constant rate . In summary, the 

assumptions we have in this model is as follows:  

)(tS , )(tI , )(tV  and )(tN  are the numbers of susceptible, infective, vaccinated, and total population at time t, 

respectively. 

 There is a constant flow   of new members into the susceptible population per unit time. 

 The vaccine has effect of reducing infection by a factor of  ,  so that 0  means that the vaccine 

is completely effective in preventing infection, while 1  means that the vaccine is utterly ineffective. 

 The rate at which the susceptible population is vaccinated is  . 

 There is a constant per capita natural death rate   in each class. 

 N  is the infectious contact rate per person in unit time. 

The following table shows the summary of notation. 

 

 

Table -1: Summary of notation 

 

II. Model Formulation 

In our model, we have divided the population into three compartments (susceptible, vaccinated 

susceptible and infectious) depending on the epidemiological status of individuals. We denote the population of 

those who are susceptible as S, who are vaccinated susceptible as V and those who subsequently infected as I. 

The model transfer diagram indicating the possible transitions between these compartments is shown in 

Figure 1. 

 

 
Populations enter the susceptible class at constant rate . Natural death rate are assumed to be  . The 

population is assumed to undergo homogeneous mixing. We assume that each infective individual contacts an 

average number   with other individuals per unit time. Hence, the total number of contact by infective per unit 

time is I . Susceptible individuals are vaccinated at the rate . Since the vaccine only provides partial 

protection to the infection, vaccinated individuals may still become infected but at the lower infection rate   

Notation Explanation 

)(tS  Number of susceptible at time t 

)(tV  Number of vaccinated individuals at time t 

)(tI  Number of infective at time t 

)(tN  Total number of population at time t 

  Birth rate 

  Contact rate 

  Vaccination rate 

  Factor by which the vaccine reduces infection 

  Natural death rate unrelated to the disease 
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than fully susceptible individuals. Here ]1,0[1   describes vaccine efficacy. When 0 , the vaccine is 

perfectly effective and when 1 , the vaccine has no effect at all on the immunity of vaccinated individuals.  

The differential equations of the model are given by: 
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     (1) 

  

III. Equilibrium Conditions 

We can write the equilibrium conditions by letting the right hand side of equations of (1) to be zero. 

Thus the equilibrium conditions are 

 0 SSSI   (2) 

 0 VIVS   (3) 

 0 ISIVI   (4) 

From (2) we get 
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Again from (3) we get 
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Now from (4) factoring out the disease free equilibrium  (DFE), we get 

 0I  

Then from (5)  and (6), we get    

 
 


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and  
)( 
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Therefore the disease free equilibrium is 
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In order to study the stability of steady states we linearize (2), obtaining the Jacobean matrix. 
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IV. Stability of  DFE. 

  

The Jacobean matrix at the DFE 
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0J  has three real  eigenvalues as follows  
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 Since all parameters are positive then clearly 01   and 02  , So the  DFE is locally stable if and only if 

03  . 

Definition (Basic reproductive number): The basic reproductive number, 0R , is the expected number of 

secondary infections arising from a single individual during his or her entire infectious period, in the population 

of susceptible [7]. 

Lemma: The disease free equilibrium  0p  is locally stable if and only if  10 R  where 0R  is the basic 

reproductive number.  

Since the above linear system (1) is locally stable if and only if 03  , i.e.,  
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V. Controlling The Epidemic 

Since for 1
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11 D ). So if all parameters except   are constant, then we can control the epidemic by decreasing the value of 
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stable  otherwise unstable. Therefore if all parameters except   are constant, then we can control the epidemic 

by decreasing the value of   (decreasing the contact rate with infected individual) so that 0  . Similarly we 

can reduce the value of 0R  by decreasing the value of   and we get a bifurcation value 









)(2

0  of   

such that if 0 , then 10 R  and if 0 , then 10 R ,  i.e., if 0 , then the DFE 0P  is locally stable  

otherwise unstable. Therefore if all parameters except   are constant, then we can control the epidemic by 

decreasing the value of   so that 0 . Finally suppose 0R  is a function of  . i.e., 
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a bifurcation value of   such that if 0  , then 10 R  and if 0  , then 10 R ,  i.e., if 0  , then the DFE 

0P  is locally stable  otherwise unstable. Therefore we can control the epidemic by increasing the value of   so 

that 0  . 

Discussion: In the above simulations we consider the initial value of infected individual is 1, i.e., 10 I  . We 

see that if all parameters except   are fixed, there exist a bifurcation value 0 . If  0  , then the number of 

infected individuals is decreasing  as t . On the other hand if 0  , then the number of infected 

individuals  is increasing as t . Similarly we see that if all parameters except   are fixed, there exist a 

bifurcation value 0 . If  0  , then the number of infected individuals is decreasing as t . On the other 

hand if 0  , then the number of infected individuals  is increasing as t . Again there exist a bifurcation 

value 0 . If  0 , then the number of infected individuals is  decreasing as t . On the other hand 

if 0 , then the number of infected individuals is increasing as t . Finally there exist a bifurcation 

value 0 . If  0  , then the number of infected individuals is increasing as t . On the other hand if 0  , 

then the number of infected individuals is decreasing  as t . 

 

VI. Stability of Endemic Equilibrium 

 Usually the stability analysis at endemic equilibrium (here 0I ) is very difficult. Now solving (2), (3) 

and (4) we get 
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i.e., The endemic equilibrium is  
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Theorem  (Routh–Hurwitz stability criterion [8]) : Given the characteristics polynomial  
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where the coefficients ia  are real constant for ni ,......3,2,1 , define the Hurwitz matrices using the coefficients 
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ia  of the characteristics polynomial as follows 
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where 0ja  if nj  . All of the roots of the polynomial equation 0)( P  are negative or have negative real 

part iff the determinants of all Hurwitz matrices are positive.  

i.e., 0)det( jH , for nj ,.......,3,2,1 . 

When 2n , the Routh–Hurwitz stability criterion simplify to  
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or, 01 a  and 02 a . For polynomial of degree 3,2n  and 4, the Routh–Hurwitz stability criterion is 

summarized as follows: 

 2n : 01 a  and 02 a . 

 3n : 01 a , 03 a  and 321 aaa  . 

 4n : 01 a , 03 a , 04 a  and 4

2

1

2

3321 aaaaaa  . 

In order to study the stability of steady states we consider the equilibrium conditions (2), (3) , (4) and the 

Jacobean matrix  
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Using the condition (4), i.e., 0 ISIVI  , i.e., 0  SV , we get 























0

0

II

VI

SI

J







 

Again from the equilibrium condition (2), we get 
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Use the above value, we get 
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Again from the equilibrium condition (3), we get 
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Use the above value, we get 
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After calculating by wxMaxima we get the characteristic equation of the above matrix as 
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where 
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By the Routh-Hurwitz criterion, the endemic equilibrium is stable if and only if  

 01 a , 03 a  and 0321  aaa  

Clearly  
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So the endemic equilibrium is stable if and only if 0321  aaa . 
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i.e.,  
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i.e.,     0222222222  SVVSIIS   

 

where  

0 SSSI   

0 VIVS   

0  SV  
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VII. Conclusion 

In this paper a new deterministic epidemic model is constructed and used to analyze the effect of a 

preventive vaccine on the transmission dynamics of an infectious disease. The model is thoroughly analyzed to 

investigate the stability. From the theoretical discussion and numerical simulations for the DFE, we see that if 

the parameters satisfy any of the equivalent conditions 0  , 0  , 0  and 0    then there is no 

epidemic. So, in the initial stage (when the number of infected individuals is not large), we shall control the 

epidemic successfully by controlling the parameters. Also for the endemic equilibrium we give a condition for 

stability (if there exist an endemic equilibrium). 

 

References 
[1]. Kermack, W.O., & McKendrick, A.G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal 

Society of London. Series A, 115, 700–721. 

[2]. Driessche P.V.D. and Watmough J. (2002).  Reproduction numbers and sub-threshold endemic equilibria for compartmental models 

of disease transmission. Mtahematical Bioscience, 180, 29-48.  

[3]. Hethcote, H.W. (2000). The Mathematics of Infectious Diseases. Society for Industrial and Applied Mathematics, 42(4), 599-653. 

[4]. Arino, J., McCluskey, C.C., & Driessche, P.V.D. (2003). Global results for an epidemic model with vaccination that exhibits 

backward bifurcation. SIAM J. Appl. Math., 64, 260–276. 

[5]. Buonomo, d’Onofrio, B. A., & Lacitignola, D. (2008). Global stability of an SIR epidemic model with information dependent 

vaccination, Mathematical Biosciences, 216, 9–16. 

[6]. Islam, M.S., Asaduzzaman, M., & Mondal, M. N. I. (2012). Stability analysis at DFE of an epidemic model in the presence of a 

preventive vaccine. IOSR Journal of Mathematics, 3(2), 25-31. 

[7]. Diekmann, O., Heesterbeek, J.A.P., & Metz, J.S.J. (1990). On the definition and the Computation of the basic reproduction number 

ratio R0  in models for infectious diseases in heterogeneous population. J. Math. Bio 28, 365- 382. 

[8]. Routh-Hurwitz Criterion. Retrieved from http://web.abo.fi/fak/mnf/mate/kurser/dynsyst/2009/R-Hcriteria.pdf 

 


