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Abstract: Non-parametric and semi-parametric Bayesian regression is useful tools for practical data analysis. 

They provide posterior mean or median estimates, confidence bands and estimates of other functional without 

having to rely on approximate normality of estimators. The data that are analyzed are the rice yield in a district 

of Andhra Pradesh state and also the state data. We use a Bayesian threshold model with non-linear functions 

of four relevant continuous variables considered for the study. Inferences are based on Markov Chain Monte 

Carlo technique. The dependence of the results on the hyper parameters of the estimated variance components 

are analyzed. The effects of the covariates on rice yield in the district are compared with those of the state data. 

 

I. Introduction 

The main scientific objective of this study is to explain the processes causing variation in the yield of 

rice in West Godavari district of Andhra Pradesh. The data that are analyzed are the secondary data available for 

the years 1971 to 2006. A Bayesian model with non-linear functions of continuous covariates such as rainfall, 

rice irrigated area and total fertilizer consumption is considered. In particular the relationships between rice 

yield and the covariates are of interest. 

We cannot assume, conditional on covariate effects, yield follows a normal distribution. The 

explanatory variables may have non-linear effects. The dependant variable ‘yield’ may be considered as 

categorical with categories normal and not normal. Now a semi parametric binary regression is needed that 

allows the simultaneous non-parametric modeling and estimation of non-linear effects of the covariates. 

 Let the metrical or spatially correlated covariates x1, x2,…., xp say with unknown, possibly non-linear 

effects and a vector of further covariates whose influence on the predictor is assumed to be linear. Therefore an 

additive predictor   with random effects   to account for unobserved heterogeneity or correlation is given 

by 

                
 

p
1

i

i=1

η= f x +w β+ε   ………    (1.1) 

 Together with an exponential family observation model and a suitable link function equation (1.1) 

defines a Generalized Additive Mixed Model (GAMM). In this paper we consider a Bayesian approach via 

Markov Chain Monte Carlo (MCMC) sampling for inference in GAMM. The MCMC procedure provides 

samples from all posteriors of interest and permits the estimation of posterior means, medians, quantiles, 

confidence bands and predictive distribution (Woods, S.(2006)).\ 

 

II. Bayesian semi-parametric mixed model: 

 Let y be a response, X=(x1, x2,…. xp) be a vector of metrical or spatial covariates and w  be of 

further covariates. 

 Generalized additive and semi parametric models(Hastie and Tibshirani 1990) assume that given  ix -

=(xi1,xi2,….,xip) and iw , the distribution of iy
 belongs to an exponential family, with mean i =E( i i iy /x w ) 

linked to an additive semi parametric predictor i  by 

  i =h ( iη ) , iη =       1

1 i1 2 i2 p ip if x +f x +.......+f x +w   ….(2.1) 
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 Multi-categorical time data consist of observations ( it it, ity ,x w ),  

i =1, 2,…, n; t=1, 2, ..,T for the i
th

 individual, where the response variable y is observed in ordered or unordered 

categories, say r,  r  (1,2,..,k) . If we consider the spatial location or site s on a spatial array 

 1,2,...,s,....,S  for each unit as an additional information, multi-categorical time space data on n individuals 

or units then consists of observations ( it it it iy ,x ,w ,s ), i=1,2,…,n; t=1,2,….,T. where  s  (1,2,..,S) is 

the location of individual i. 

 

2.1   Cumulative Threshold Model: 

Categorical response models may be motivated from the consideration of latent variables (Fahrmeir 

and Tutz, 2001). Let u be a latent variable given by                   

                                 u                ….… (2.2)  

Where η  is a predictor dependent on covariates and parameters and   be the error variable. It is 

postulated that y is a categorized version of u obtained through the threshold mechanism y=r if and only if 

1r ru      

r=1, 2… k with thresholds 0 1 2 .... k         
. If the error variable 


 has distribution 

function F, it follows that y obeys a cumulative model 

                                 
   rp y r F    

                    ….... (2.3) 

The most popular choices for F in (2.3) are the logistic and standard normal distribution leading to cumulative 

logit or probit models. 

 The covariates w  enter the model through the predictor


. To consider possible non-linear functions 

of the continuous covariates, the linear predictor is given by 

                      
p

1

i i

i=1

η= f x +w       …..….. (2.4) 

 Here 1 2 pf ,f ,.....,f  are possibly non-linear functions of the continuous covariates X=(x1, x2,…. 

xp)
1
. The term 

1w  corresponds to  

effects of covariates w . 

 

III. Prior Model 

  For Bayesian inference, unknown functions 1 2 pf ,f ,......,f  and 
 
are considered as random 

variables and have to be supplemented by appropriate prior distributions. For the fixed effect parameters   

and . We assume diffuse priors  p θ   const.,  p   const. and functions 1 2 pf ,f ,......,f  of 

continuous metrical covariates are specified by p-splines, which were introduced by Eilers and Marx (1996) in a 

frequentist setting and by Lang and Brezger (2004) in a Bayesian version. The basic assumption is that an 

unknown function jf of a covariate jx  can be approximated by a polynomial spline of degree l defined on a 

set of equally spaced knots 
min

jx =
max

0 1 d-1 d j< <......< < =x     within the domain of jx . The spline can 

be written in terms of a linear combination of 
jM =d+l  B-spline functions mB , 

   
jM

j j jm m j

m=1

i.e.   f x = β B x  
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 Here  j j1 jmβ = β ,.....,β  corresponds to the vector of unknown regression coefficients.In a 

Bayesian appropriate, the first or second order random walks used as a prior for the regression coefficients. 

More details about the Bayesian p-splines can be found in Lang and Brezger(2004). First and second order 

random walks are defined by  

               jm j,m-1 jm jm j,m-1 jm-2 jmβ =β +u or β =2β -β +u  

With Gaussian errors  2

jm ju N 0,τ . For a fully Bayesian analysis hyper priors for 
2

j are introduced 

in a further stage of the hierarchy. This allows for a simultaneous estimation of the unknown function and the 

amount of smoothness. Common choices are highly dispersed inverse gamma priors 

(proper)    2

j j jp τ IG a ,b . A possible choice for j ja and b are j ja =1; b =0.005 . 

Alternatively we may set j ja =b =0.001. In some situations, the estimated non-linear functions may be 

sensitive to the particular choice of hyper parameters
j ja and b . The Bayesian model specification is completed 

by the following conditional independence assumptions. 

i) For given covariates and parameters f,βand ε , observations iy  are conditionally independent. 

ii) Priors  2

j jp f /τ , j=1,2,.....,p  are conditionally independent. 

iii) Priors for fixed and random effects and hyper priors
2

jτ , j=1, 2… p are mutually independent. 

 

IV. Markov Chain Monte Carlo Inference: 
 Full Bayesian inference is based on the entire posterior distribution 

         
p

1 2 p 1 2 p 1 2 p j j j

i=1

p β ,β ,......,β ,τ ,τ ,....,τ , ,u/y α p y/u p u/β ,β ,......,β ,γ p β /τ p τ     

The conditional likelihood      i i r-1 r i

r

p y /u = I θ <u<θ .I y =r  MCMC simultaneous is based on 

drawings from full conditionals of blocks of parameters, given the other parameters and the data. In the analysis 

of data the following full conditionals are used: 

a) The full conditionals for the iu are truncated normal with  
1 2i t ,t iu /. TN η ,1 . The 

truncation points depend on the observed iy . 

b) The full conditionals for the regression parameters jβ , j=1,2,....,p  are multivariate Gaussian with 

covariance matrix and mean given by                       

                        
-1

1 1

j j j j j j j2

j

1
= X X + K , μ = X U -η

τ

 
   

 
 

 Where η  is the part of the predictor η  that is associated with the remaining effects in the model and Kj is 

the penalty matrix for p-splines. For example, 
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j

1    -1   

-1    2     -1

K =         .      .     .

       -1    2    -1

             -1     1

 
 
 
 
 
 


  

 For p-splines with a first order random-walk penalty. 

c) The full conditionals for the linear effects parameters 


 are Gaussian with mean and covariance 

matrix given by 

        
-1 -1

1 1 1= u- , =μ w w w w w


  . 

d) The full conditionals for the variance parameters 

2

j
 are inverse gamma with parameters   

                

 1 1 1

j j j j j j j j

1
a =a +rank /2 and b =b + β β

2
K K              

e) The full conditionals for threshold 
, 1,2r r 

 is uniform on the interval.   

      i i i imax u :y =r ,min u :y =r+1    

Since all full conditionals are known distributions we can use a Gibbs sampler, drawing successively 

random numbers from the conditional distributions of the parameters. Numerical efficiency is obtained by 

utilizing the band matrix structure of the posterior precision matrices 
jp  of the regression parameters. The 

details of the band matrix algorithms are described in George and Lim (1981). We compare different models in 

terms of the DIC (Spiegelhalter etal, 2002). The DIC is defined as DIC= D+PD . Where D  is the posterior 

mean deviance and the DP  is the difference between the posterior mean deviance and the deviance evaluated at 

the posterior mean of y. credible intervals could be obtained by running the MCMC sampler several times. 

Justification for the usage of the DIC as a Bayesian analogue to the Akaike information can be found for 

example (Congdon (2006)). 

 

V. Application: 
This application illustrates the appropriateness of Bayesian structured additive model. The data on rice 

yield for the period 1971 to 2006 in west Godavari district of A.P. is considered. The most relevant covariates 

used here are the rice irrigated area, rainfall and total fertilizers consumption. The geo additive predictor. 

     0 1 2 3η=γ +f rainfall +f totalfertilizer consumption +f riceirrigatedarea

 The continuous covariates assumed to have a possibly non-linear effect on the response variable ‘yield’ 

and are therefore modeled non-parametrically (as p-splines with second order random walk prior). 

 Data of East Godavari and Andhra Pradesh are analyzed separately using BayesX program available in 

the public domain. 

 To assess the dependence of results on the hyper parameters aj and bj of variance components 
2

j  

different choices are made for the hyper parameters and the corresponding models are estimated with 20 

equidistant knots. 

 The results for the East Godavari are presented in table 5.1 to 5.6. It can be noticed from the results that 

the estimated non-linear functions are sensitive to the particular choice of the hyper parameters. 
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Predicted Means 
LNYIELD RAINFALL TFC RICEIA 

7.1468 798.9 8.62 320.15 

7.4128 1077.1 35.29 315.89 

7.3759 887.7 41.49 289.33 

7.4116 1085.3 43.61 295.51 

7.5522 1201.15 19.75 316.12 

7.5148 1317 51.3 328.08 

7.6257 1103 62.79 329.45 

7.5512 1116 54.22 330.82 

7.6629 897 94.6 351.75 

7.6358 1230 82.65 313.58 

7.72 972 67.27 349.37 

7.7711 867 72.79 360.46 

7.8051 805 79.71 353.05 

7.7133 743 100.52 398.82 

7.7965 1045 103.24 347.03 

7.7928 1062 64.93 360.11 

7.4378 1166 117.33 381.12 

7.7493 1577 78.87 378.19 

7.8782 1988 118.4 403.08 

7.8176 959 186.45 404.99 

7.5838 1283 192.96 357.6 

7.7174 1084 142.33 355.92 

7.8517 937 152.02 336.87 

8.0275 1546 148.11 380.5 

7.8296 1246 156.72 379.9 

7.9128 1616 156.92 367.87 

7.789 1062 148.69 401.44 

7.8236 1692 162.95 361.39 

7.832 1012 170.66 393.81 

8.0507 1021 201.19 389.98 

8.0953 997 203.63 396.87 

8.0953 707 199.76 346.08 

8.1505 1078 192.28 295.29 

8.3131 873 187.62 387.49 

8.268 1389 203.55 363.09 

8.3047 1167 211.27 366.64 

The least Deviance Information Criterion (DIC) is obtained for the hyper parameter values aj=1 and 

bj=0.0001 as 44.6188. Therefore the corresponding linear functions as given in table 5.6 best predict the 

response variable. Hence the corresponding model best fits the East Godavari data. 

  

The following tables present the model fit for the A.P data                                                               
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 Predicted Means 
LNYIELD RAINFALL TFC RICEIA 

7.5863 968.88 19.956 158.153 

7.5868 722.53 23.07 136.14 

7.58731 725.93 21.968 130.986 

7.58782 894.52 19.136 152.597 

7.58832 856.96 21.092 160.935 

7.58883 1088.81 27.114 175.182 

7.58934 1025.15 36.587 179.264 

7.58984 921.35 42.768 177.158 

7.59035 1123.75 50.498 178.56 

7.59085 783.15 44.575 142.752 

7.59136 835.35 46.236 146.862 

7.59186 953.6 52.103 156.953 

7.59237 829.2 56.828 148.96 

7.59287 1086.69 74.095 170.63 

7.59337 793.99 80.696 143.761 

7.59388 786.84 74.094 141.283 

7.59438 874.29 78.206 141.69 

7.59488 926.18 80.734 133.407 

7.59539 1161.99 101.987 201.193 

7.59589 1074.28 116.549 174.051 

7.59639 1322.76 122.851 166.528 

7.59689 1016.82 128.254 162.422 

7.5974 860.35 123.604 148.027 

7.5979 827.09 125.239 146.466 

7.5984 879.41 130.365 149.798 

7.5989 964.95 164.662 156.948 

7.5994 1105.5 134.542 170.783 

7.5999 865.5 145.92 146.657 

7.6004 1083.05 150.319 180.042 

7.6009 822.82 165.685 167.021 

7.6014 905.55 166.662 183.667 

7.6019 874.68 159.056 152.953 

7.6024 621.5 153.151 122.24 

7.6029 940.82 156.316 127.48 

7.6034 713.95 165.541 128.25 

7.6039 1146.5 198.339 129 

 

 The least DIC value of 43.943 is obtained for the hyper parameter value of aj=1, bj=0.0005 which are 

different from the model of East Godavari data. Therefore the corresponding linear functions given in table 5.12 

best predict the response variable. Hence the corresponding model best fits the A.P. data. 

 

5.5. Future Work: 

 Applicability of the model to the other districts can be studied. Plausible interactions between 

covariates can also be considered. 
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