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Abstract: Non-parametric and semi-parametric Bayesian regression is useful tools for practical data analysis.
They provide posterior mean or median estimates, confidence bands and estimates of other functional without
having to rely on approximate normality of estimators. The data that are analyzed are the rice yield in a district
of Andhra Pradesh state and also the state data. We use a Bayesian threshold model with non-linear functions
of four relevant continuous variables considered for the study. Inferences are based on Markov Chain Monte
Carlo technique. The dependence of the results on the hyper parameters of the estimated variance components
are analyzed. The effects of the covariates on rice yield in the district are compared with those of the state data.

I.  Introduction

The main scientific objective of this study is to explain the processes causing variation in the yield of
rice in West Godavari district of Andhra Pradesh. The data that are analyzed are the secondary data available for
the years 1971 to 2006. A Bayesian model with non-linear functions of continuous covariates such as rainfall,
rice irrigated area and total fertilizer consumption is considered. In particular the relationships between rice
yield and the covariates are of interest.

We cannot assume, conditional on covariate effects, yield follows a normal distribution. The
explanatory variables may have non-linear effects. The dependant variable ‘yield’ may be considered as
categorical with categories normal and not normal. Now a semi parametric binary regression is needed that
allows the simultaneous non-parametric modeling and estimation of non-linear effects of the covariates.

Let the metrical or spatially correlated covariates X, Xa,...., X, say with unknown, possibly non-linear
effects and a vector of further covariates whose influence on the predictor is assumed to be linear. Therefore an

additive predictor 77 with random effects & to account for unobserved heterogeneity or correlation is given
by

p
n:; f(x;)+wB+e (1)

Together with an exponential family observation model and a suitable link function equation (1.1)
defines a Generalized Additive Mixed Model (GAMM). In this paper we consider a Bayesian approach via
Markov Chain Monte Carlo (MCMC) sampling for inference in GAMM. The MCMC procedure provides
samples from all posteriors of interest and permits the estimation of posterior means, medians, quantiles,
confidence bands and predictive distribution (Woods, S.(2006)).\

Il.  Bayesian semi-parametric mixed model:

Let y be a response, X=(X1, X,,.... Xp) be a vector of metrical or spatial covariates and W be of
further covariates.

Generalized additive and semi parametric models(Hastie and Tibshirani 1990) assume that given X; -

=(Xi1,Xi2,- - - .,Xip) and Wi , the distribution of Yi belongs to an exponential family, with mean A4 =E(Y; /XiV\Ii )

linked to an additive semi parametric predictor 77i by

Hi=n (M M= (%) +6, (X )+ H, (Xip)+wil (RCES
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Multi-categorical time data consist of observations ( yit ’Xit,Wit ),
i=1,2,....,n; t=1, 2, ...,T for the i" individual, where the response variable y is observed in ordered or unordered
categories, say r, I € (1,2,--,k). If we consider the spatial location or site s on a spatial array

{1,2,...,8,....,8} for each unit as an additional information, multi-categorical time space data on n individuals

or units then consists of observations (yit ’Xit ’Wit 1Si ), i=1,2,....,n; t=1,2,....,T. where S € (1,2,..,5) is
the location of individual i.

2.1 Cumulative Threshold Model:
Categorical response models may be motivated from the consideration of latent variables (Fahrmeir
and Tutz, 2001). Let u be a latent variable given by

Uu=n+e¢

Where T] is a predictor dependent on covariates and parameters and € be the error variable. It is
postulated that y is a categorized version of u obtained through the threshold mechanism y=r if and only if
6, ,<u<ég,

—0=0,<0 <06,<...<f, =0

r=1, 2... k with thresholds . If the error variable & has distribution

function F, it follows that y obeys a cumulative model

p(y<r)=F(6 -n) e (23)

The most popular choices for F in (2.3) are the logistic and standard normal distribution leading to cumulative
logit or probit models.

The covariates W enter the model through the predictorn. To consider possible non-linear functions
of the continuous covariates, the linear predictor is given by

p
— 1
T]_E ,fi (Xi )"_W n e (24)
i=1
Here fl;fz; ----- 1fp are possibly non-linear functions of the continuous covariates X=(xy, Xo,....

xp)l. The term W177 corresponds to

effects of covariates W .

I1l.  Prior Model
For Bayesian inference, unknown functions f11f21 ------ 1fp and 77 are considered as random
variables and have to be supplemented by appropriate prior distributions. For the fixed effect parameters 0

and77 . We assume diffuse priors p (O) a const., P (77) X const. and functions fl,fz, ------ ,fp of

continuous metrical covariates are specified by p-splines, which were introduced by Eilers and Marx (1996) in a
frequentist setting and by Lang and Brezger (2004) in a Bayesian version. The basic assumption is that an

unknown function fj of a covariate Xj can be approximated by a polynomial spline of degree | defined on a

min
set of equally spaced knots Xj = §0<§1< ...... <§d_1<Cd :X;nax within the domain of Xj. The spline can

be written in terms of a linear combination of Mj=d+| B-spline  functions B,

M

ie. f,(X;)=D BBy (x;)

m=1
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Bayesian appropriate, the first or second order random walks used as a prior for the regression coefficients.
More details about the Bayesian p-splines can be found in Lang and Brezger(2004). First and second order
random walks are defined by

Bjm :Bj,m-l+ujm or Bjm :2Bj,m—1_Bjm-2 +ujm

2
With Gaussian errors Ujm JN (O,’Cjz ) For a fully Bayesian analysis hyper priors for Tj are introduced

in a further stage of the hierarchy. This allows for a simultaneous estimation of the unknown function and the
amount of smoothness. Common choices are highly dispersed inverse gamma priors

(proper)p(rf)D IG(aj,bj). A possible choice for @;andb;ared;=1; b;=0.005.

Alternatively we may setaj:bj=0-001. In some situations, the estimated non-linear functions may be

sensitive to the particular choice of hyper parameters a; and bj . The Bayesian model specification is completed
by the following conditional independence assumptions.

i) For given covariates and parameters f, B and € , Observations yi are conditionally independent.

2
iii) Priors for fixed and random effects and hyper priors Tj ,j=1,2... p are mutually independent.

IV.  Markov Chain Monte Carlo Inference:
Full Bayesian inference is based on the entire posterior distribution

The conditional likelihood p(yi /Ui):z I (Gr_l<u<9r).1(yi=r) MCMC simultaneous is based on
r

drawings from full conditionals of blocks of parameters, given the other parameters and the data. In the analysis
of data the following full conditionals are used:

a) The full conditionals for the U,are truncated normal with Ui/. N TNtlth (T]i 91) . The

truncation points depend on the observed yi .

b) The full conditionals for the regression parameters Bj 5 j:l ,2,----,13 are multivariate Gaussian with
covariance matrix and mean given by
-1
> = xx +Lk =>X:(U.-
j NN M it=im

J

Where T is the part of the predictor N that is associated with the remaining effects in the model and K; is
the penalty matrix for p-splines. For example,
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1 -1
-1 2 -1
K, =
-1 2 -1
-1 1
For p-splines with a first order random-walk penalty.
c) The full conditionals for the linear effects parameters Y are Gaussian with mean and covariance
matrix given by
-1 -1
w=(ww) w(u-7), > =(w'w)
n n
2'2
d) The full conditionals for the variance parameters 1 are inverse gamma with parameters
1__ 1 __ 1 1
a-=a . +rank(K:)/2 and b.=b.+—pK .
J J J J J 2 I L
. 6,r=1,2. . .
e) The full conditionals for threshold ~* is uniform on the interval.

| max {u;zy,=r}, min{u;y,=r+1} |
Since all full conditionals are known distributions we can use a Gibbs sampler, drawing successively
random numbers from the conditional distributions of the parameters. Numerical efficiency is obtained by

utilizing the band matrix structure of the posterior precision matrices P; of the regression parameters. The
details of the band matrix algorithms are described in George and Lim (1981). We compare different models in

terms of the DIC (Spiegelhalter etal, 2002). The DIC is defined as DIC= D+PD . Where D is the posterior

mean deviance and the PD is the difference between the posterior mean deviance and the deviance evaluated at

the posterior mean of y. credible intervals could be obtained by running the MCMC sampler several times.
Justification for the usage of the DIC as a Bayesian analogue to the Akaike information can be found for
example (Congdon (2006)).

V.  Application:
This application illustrates the appropriateness of Bayesian structured additive model. The data on rice
yield for the period 1971 to 2006 in west Godavari district of A.P. is considered. The most relevant covariates
used here are the rice irrigated area, rainfall and total fertilizers consumption. The geo additive predictor.

=Y, H, (rainfall ) +f, ( total fertilizer consumption ) +f, (riceirrigated area)

The continuous covariates assumed to have a possibly non-linear effect on the response variable ‘yield’
and are therefore modeled non-parametrically (as p-splines with second order random walk prior).

Data of East Godavari and Andhra Pradesh are analyzed separately using BayesX program available in
the public domain.

To assess the dependence of results on the hyper parameters a; and b; of variance components sz

different choices are made for the hyper parameters and the corresponding models are estimated with 20
equidistant knots.

The results for the East Godavari are presented in table 5.1 to 5.6. It can be noticed from the results that
the estimated non-linear functions are sensitive to the particular choice of the hyper parameters.
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Table 5.1 Hyper parameters aj- 1, bj= 0.001

VARIABLE POST POSTSD | POST2.5% | POST10% POST POSTR0% POST®7.5% POST POST
MEAN UANTILE | QUANTILE | MEDIAN UANTILE UANTILE MIN MAY
RAINFALL 278348 | 394.066 1.27445 204839 177.032 473963 179047 0.247036 | 2191.03
TF! 33723 | 120377 234849 10.4962 13082 337.369 486407 0381688 | 48721
RICEIA 308666 | 3T71.966 2.79646 13.3062 233437 1030.23 2607.71 211046 | 292489
FIXED T.7318 | 0.040042 T.6E918 769388 T.74839 7.80638 7.83602 - -
[95%Posterior
probability 1)
No. of iteration = 49 (at which corresponding penalized part was small relative to the linear predictor).
Deviance information enterion (DIC)= 483232
Table 5.2 Hyper parameters aj- 0.001, b= 0.001
VARIABLE POST POST POST2.53% | POSTI10% POST POSTO0% POSTR7.5% POST POST
MEAN 5D UANTILE UANTILE | MEDIAN UANTILE UANTILE MIN MAX
BAINFALL 109.601 1858 1.07684 243477 17.5428 332414 477.367 0961804 | 109338
TFC 422983 | 63.7249 3.07838 4378662 3.3407 T4.1637 207474 210046 [ 411275
RICEIA 148813 | 162.849 239333 11.3903 87.0446 317.01 479.193 0.803216 | 921.713
FIXED 7.7335% | 0.04798 7.68434 7.69477 77478 7.82203 T.8673 - -
(93%cPosterior
probability 1)
No. of tterations = 49 {at which comresponding penalized part was small relative to the linear
predictor) Deviance information crterion (DIC) = 47.43453
Table 5.3 Hyper parameters aj- 0.0001, bj=0.0001
VARIABLE POST POST POST2.3% POST10% POST POST®0% POST97.3% POST POST
MEAN 1D UANTILE UANTILE | MEDIAN | QUANTILE UANTILE 1 MAX
RAINFALL 463433 | 827.012 2.06131 791261 132.743 1036.67 374143 12338 | 440746
TF 302188 | 379346 1.62282 3.07631 17.404 35.8642 174.181 31663 | 177.169
RICEIA 164176 | 233113 2.86438 472198 66.0477 305.868 630.822 284237 | 1281.13
FLI{ED 776324 | 004134 T.60316 T.69801 7.76402 T.81387 7R3 -
i Posterior
probability 1)
No. of teration = 49 (at which comesponding penalized part was small relative to the linear
predictor). Deviance information criterion (DIC)= 439271
Table 5.4 Hyper parameters a;- 0.0005, bj= 0.0005
VARIABLE POST POSTSD | POST2.3% | POST10% POST POSTo0% POST97.5% POST POST
MEAN QUANTILE UANTILE | MEDIAN | QUANTILE | QUANTILE MDY MAX
RAINFALL 264485 | 304137 346869 28.0392 136433 634.623 1009.03 2.13984 | 139196
TFC 314782 [ 139433 0998277 3.30616 23,199 220276 385784 0.786771 | 882571
RICELA 308 370.362 190691 307791 123992 §70.39 138493 1.01132 | 332742
FIXED T.73638 | 0.042884 7.66332 7.7074 7.76094 7.81027 7.83781 - -
EFFECT
(95%Posterior
probability 1)

No. of iteration = 49

predictor). Deviance information erterion (DIC)Y= 437097

(at which corresponding penalized part was small

Table 5.5 Hyper parameters aj- 1, bj= 00005

relative to the

linear

VARIABLE POST POSTSD | POSTZ.3% POST10% POST POSTO0%: | POST97.3% POST POST
MEAN UANTILE | QUANTILE | MEDIAN UANTILE UANTILE MIV MAX
916488 307 420629 36.53261 846937 1909.06 205193 3.33445 | 231596
g 709637 11e 279373 1801.99 206381 171575 | 428098
19.1333 158.148 660.171 207761 281128 2.93337 | 4736.17
766671 7.69207 7.76073 7.801 T.81479 - -
(93%Posterior
probability 1)

No. of iteration = 49

predictor). Deviance information criterion (DIC) =43 2811

(at which corresponding penalized part was small

relative to the linear
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Table 5.6 Hyper parameters aj= 1, by = 0.0001

VARIARLE POST POST POST2.5% POST10% POST POST20% POST97.3% POST POST

5D QUANTILE | QUANTILE | MEDIAN | QUANTILE QUANTILE MIN MAX
RAINFATL 441946 10,471 025797 1340.84 10319 16032.7 6.00033 | 198706
TFC 319724 47.7476 322 3006.68 4772.43 13.1374 | 493423
RICEIA 301861 33.3639 102189 1489153 322488 | 197061
FIXED T.68316 TG9876 7.7492 7.80404 7.81023 - -
EFFECT
(93%Posterior
probability 1)

No. of tteration = 49

(at which comresponding penalized part was zmall relative to the linear predictor).
Deviance information criterion (DIC) = 44 6188,

Predicted Means

LNYIELD RAINFALL TFC RICEIA
7.1468 798.9 8.62 320.15
7.4128 1077.1 35.29 315.89
7.3759 887.7 41.49 289.33
7.4116 1085.3 43.61 295.51
7.5522 1201.15 19.75 316.12
7.5148 1317 51.3 328.08
7.6257 1103 62.79 329.45
7.5512 1116 54.22 330.82
7.6629 897 94.6 351.75
7.6358 1230 82.65 313.58

7.72 972 67.27 349.37
7.7711 867 72.79 360.46
7.8051 805 79.71 353.05
7.7133 743 100.52 398.82
7.7965 1045 103.24 347.03
7.7928 1062 64.93 360.11
7.4378 1166 117.33 381.12
7.7493 1577 78.87 378.19
7.8782 1988 118.4 403.08
7.8176 959 186.45 404.99
7.5838 1283 192.96 357.6
7.7174 1084 142.33 355.92
7.8517 937 152.02 336.87
8.0275 1546 148.11 380.5
7.8296 1246 156.72 379.9
7.9128 1616 156.92 367.87

7.789 1062 148.69 401.44
7.8236 1692 162.95 361.39

7.832 1012 170.66 393.81
8.0507 1021 201.19 389.98
8.0953 997 203.63 396.87
8.0953 707 199.76 346.08
8.1505 1078 192.28 295.29
8.3131 873 187.62 387.49
8.268 1389 203.55 363.09
8.3047 1167 211.27 366.64

The least Deviance Information Criterion (DIC) is obtained for the hyper parameter values a=1 and
b;=0.0001 as 44.6188. Therefore the corresponding linear functions as given in table 5.6 best predict the
response variable. Hence the corresponding model best fits the East Godavari data.

The following tables present the model fit for the A.P data

Table 5.7 Hyper parameters g; = 0.0001, by= 0.0005
VAFIAELE FOST FOSTI. % POSTIU% 05T POST90% FOSTH7.7% FOST PFOET
MEAN QUANTILE QUANTILE QUANTILE MIN MAX

RATNFALL 171343 3 35589 z [.I5547 AT
TFC 18.6037 96.3297 0.734736 | 20476
RICEIA 11,4873 384996 0.381212 103201
FIHED 7.59611 7.39635 - -
EFFECT
(95 %Postenor
probability 1)

No. of iteration = 49 (at which corresponding penalized part was small relative to the linear predictor). Deviance

thformation eriterion (DICYy= 320127,
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Table 5.5 Hyper parameters a;- 0.0001, by= 0.0001

VARIABLE POST POSTSD | POST2.3% POST10% POST POST90% POST97.3% POST POST

MEAN UANTILE UANTILE | MEDIAN UANTILE UANTILE MIN MAX

RAINFALL 51088 101.106 0.537833 0.7833 149131 117.2% 374.76 0.177401 520
TEC 21.6299 | 286771 2.69347 364781 098341 37.7891 110.707 1.36369 | 124687
RICEIA 207801 | 37.2306 115213 6.30782 155231 30.8447 152.701 0.880892 | 217.026
FIXED 7.39609 [ 0.000269 7.39364 7.39379 7.39606 7.39642 73967 - -

[95%Posterior
probability 1)

MNo. of tteration = 49 {at which corresponding penalized part was small relative to the linear
predictor). Deviance information criterion (DIC) = 31.2981

Table 5.9 Hyper parameters aj= 0.001, bj= 0.001
VARIARLE POST POST 8D | POST23% | POST10% POST POSTO0% | POST97.3% POST
MEAN UANTILE UANTILE | MEDIAN | QUANTILE UANTILE MIN
RAINFALL 220288 | 227811 0297333 0473373 1.32078 6.08240 740076 0206346
TF 12,6498 | 14.1193 0.596392 135147 80673 374407 0424739
RICEIA 12,6498 | 14.1193 0.396932 135147 8.0673 3343 374407 0424739
FIXED 7.50308 | 0.000282 7.59339 7.3936 739602 730635 7.3063 - -

(93%Posterior
probability 1)
No. of tteration = 49 {at which corresponding penalized part was small relative to the linear

predictor) Deviance information criterion (DIC) = 50.8236

Table 5,10 Hyper parameters aj= 1, b= 0.001
VARIABLE POST POSTSD | POST2.3% | POST10% POST POSTO0% | POST97.3% POST POST
MEAN UANTILE UANTILE | MEDIAN | QUANTILE UANTILE MIN MAX
RAINFALL 34.8423 29 1.68948 2.80468 26.3036 86.3443 80.7078 002088 | 973109
TFC 26.6964 28.63 1.6617 205712 17.1255 60.5413 93.1239 1.13735 | 166.33
RICEIA 201694 [ 276674 1.76357 D3675 19.1987 T1.2962 98.7243 0.763203 | 100.006
FIXED 7.50612 | 0.000217 7.59376 50382 7.30614 7.50638 7.59635 - -

bt

(05%Posterior

probability 1)
No. of iteration = 49 (at which corresponding penalized part was small relative to the linear predictor).
Deviance information criterion (DIC) = 494493

Table 5.11 Hyper parameters aj= 1, bj = 0.0001
POST POSTSD | POST2.3% | POST10% POST POSTO0% | POST97.3% POST POST
MEAN QUANTILE UANTILE | MEDIAN | QUANTILE | QUANTILE MIN MAX
178.067 216.33 0.803018 2.04183 108.812 413584 828438 069422 | 104341
79069 | 63.3733 2.1489 159446 63.7255 180.988 272567 067412 | 280.343
109.863 | 129.309 348709 13.8822 382661 323976 430077 0067388 | 396.006
7.39606 | 0.000243 7.39363 1.58375 7.59607 7.59644 7.39649 - -

(95%Posterior

probability 1)
No. of iteration = 49 (at which corresponding penalized part was small relative to the linear
predictor). Deviance information criterion (DIC) = 48 2099

Table £.12 Hyper parameters aj= 1, bj= 0.0005

VARIABLE POST POSTSD | POST2.3% POST10% POST POST20% POSTO7 POST POST
MEAN QUANTILE | MEDIAN | QUANTILE | QUANTILE MY MAX

BAINFALL 83.1002 | 350739 267444 13.0815 31.6843 153.759 228123 210443 | 233983
TEC 31.1997 | 326114 791293 154381 303106 100.736 150.748 6.24313 | 190.848
RICEIA 346377 | 332243 292948 8.77207 381442 104203 194109 262616 | 311403
FIXED 739617 | 0.000248 7.30578 7.39381 7.3962 7.39643 7.39661 - -

(93%Posterior
probability 1)

MNo. of tteration = 49 (at which comesponding penalized part was small relative to the linear
predictor). Deviance information criterion (DIC)=43.943.

www.iosrjournals.org 107 | Page



A Bayesian model for a crop yield in a district of Andhra Pradesh, India

Predicted Means

LNYIELD RAINFALL TFC RICEIA
7.5863 968.88 19.956 158.153
7.5868 722.53 23.07 136.14
7.58731 725.93 21.968 130.986
7.58782 894.52 19.136 152.597
7.58832 856.96 21.092 160.935
7.58883 1088.81 27.114 175.182
7.58934 1025.15 36.587 179.264
7.58984 921.35 42.768 177.158
7.59035 1123.75 50.498 178.56
7.59085 783.15 44.575 142.752
7.59136 835.35 46.236 146.862
7.59186 953.6 52.103 156.953
7.59237 829.2 56.828 148.96
7.59287 1086.69 74.095 170.63
7.59337 793.99 80.696 143.761
7.59388 786.84 74.094 141.283
7.59438 874.29 78.206 141.69
7.59488 926.18 80.734 133.407
7.59539 1161.99 101.987 201.193
7.59589 1074.28 116.549 174.051
7.59639 1322.76 122.851 166.528
7.59689 1016.82 128.254 162.422
7.5974 860.35 123.604 148.027
7.5979 827.09 125.239 146.466
7.5984 879.41 130.365 149.798
7.5989 964.95 164.662 156.948
7.5994 1105.5 134.542 170.783
7.5999 865.5 145.92 146.657
7.6004 1083.05 150.319 180.042
7.6009 822.82 165.685 167.021
7.6014 905.55 166.662 183.667
7.6019 874.68 159.056 152.953
7.6024 621.5 153.151 122.24
7.6029 940.82 156.316 127.48
7.6034 713.95 165.541 128.25
7.6039 1146.5 198.339 129

The least DIC value of 43.943 is obtained for the hyper parameter value of a;=1, b;=0.0005 which are

different from the model of East Godavari data. Therefore the corresponding linear functions given in table 5.12
best predict the response variable. Hence the corresponding model best fits the A.P. data.

5.5. Future Work:

Applicability of the model to the other districts can be studied. Plausible interactions between

covariates can also be considered.
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