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Exact solution for the flow of Oldroyd-B fluid due to constant
shear and time dependent velocity
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Abstract : In this paper, we use the finite Hankel and Laplace transforms to determine the velocity field
corresponding to the flow of Oldroyd-B fluid in the annular region between two infinitely long coaxial cylinders.
Initially, the fluid is at rest and the motion is produced by the inner cylinder pulled with a constant shear and
outer cylinder moving with time dependent velocity. The obtained solution is presented under a series form in
terms of the generalized G functions. Finally, the influence of different values of parameters, constants and
fractional coefficient on the velocity field are also analyzed using graphical illustration.
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I. Introduction

From industries and engineering point of view, various fluids with complicated rheological properties
cannot be specified as Newtonian fluids. These fluids are called Non-Newtonian fluids. Few examples of such
fluids are slurries, lava, blood, polymers etc. The flow behavior of such fluids cannot be described by classical
Navier-Stokes theory due to their non-linear viscoelastic behavior. Hence, many models have been proposed for
non-Newtonian fluids such as differential type, rate type and integral type etc. Among all of these, rate type
model has got much attention.

Ting [1] has given first exact solution corresponding to motion of second grade fluids in cylindrical
domains. The objective of his work was to apply Coleman and Noll’s theory to investigate certain non-steady
flows of second-order fluids. The first exact solution corresponding to motion of Maxwell fluids in cylindrical
domain has been determined by Srivastava [2] .Waters and King [3] published first exact solution corresponding
to motion of Oldroyd-B fluids in cylindrical domains. The first exact solution for the motion of second grade
fluids due to a shear stress on the boundary has been determined by Bandelli and Rajagopal [4].He studied a
number of unidirectional transient flows of a second grade fluid in a domain with one finite dimension.
Recently, many papers regarding such motions have been published [5-12]. Fetecau [13] used constitutive
relation as follows

(1+40,)t = u(1+4,0,)0 v(r,1), (1)
where A and /1r are relaxation and retardation times, 7 is tangential tension, & is the dynamic viscosity and

v is the velocity.
Using fractional approach, the constitutive relation of the generalized Oldroyd-B fluid is written as

(1+AD;" )z = (1 + 2,D} )3, u(r, 1), )

where Dta and D’B are fractional operators and are defined as [14]

j (T) T, 0<a<l;
F(l a)dty(t—1

Ef(t)a O{ZI,

where I'(\) is the Gamma function.

The aim of this paper is to provide exact solution for the velocity field of flow for Oldroyd-B fluid
between two infinitely long coaxial cylinders, where inner cylinder is pulled with constant shear and outer
cylinder is moving with time dependent velocity. This solution is obtained by using finite Hankel and Laplace
transform methods and the result is presented in terms of the generalized-G functions.

D} f(t) = 3)

II.  Governing equations
Let us consider the unsteady flow of an incompressible Oldroyd-B fluid in coaxial cylinders. The
following assumptions are considered during this mathematical study. The flows are assumed to be axi-
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symmmetric. The fluid velocity at the direction of the pipe radius is assumed to be zero. The axial velocity is
assumed to be only relevant to the cylinder radius.
The equation of axial flow motion is written as [5]

ov or 1 op

_— = 4 — -, 4
pat or rT Oz ®

where p is the constant density of the fluid.

Substitute Eq. (2) into Eq. (4), we get
ov t 1

(1+4D7)% = 4+ ad———+ 01+ 4, D’ {af +—8,jv(r,t), (5)
ot I'l-o) r

16}
where U = bt is the kinematical viscosity and — Ap = 8—pis the constant pressure gradient that acts on the
P 4

liquid in the z-direction.

III.  Flow through the annular region
Consider an Oldroyd-B fluid at rest between two infinitely long coaxial cylinders. Also, consider that
radius of inner and outer cylinders are R, and R, 6 R1) respectively. The inner cylinder pulled with constant

shear and outer cylinder is moving with time dependent velocity. We have to solve the next initial and boundary
problem, in the absence of a pressure gradient in the z-direction.

(1+AD¢ )% =v(1+4,.D’ )(af +larjv(r,t), R, <r<R,,t>0. (6)
r

The initial and boundary conditions are expressed by

v(r,0)=0, 0wv(r,0)=0, R, <r<R,, (7

u(+2,D)0,v(r,0)|,p = f1,  V(R,0)=fot”, t>0, p=0, (8)

where f|, f, are constant.
Making the change to unknown function

v(r,t) =V (r)+u(r,t), ©9)

where

V(r) =R1—f11n(r/R2). (10)

U

Substitute Eq. (9) into Eq. (6), we get

1+ ,11),“)8”’((3—:’1) =u(l+ 4 D’ )(af +16r]u(r,t). (11
r

Substitute Eq. (9) into Egs. (7) and (8), we get

u(r,0)=-rV(r), ou(r,0)=0, (12)

-8
w1+ D)0 u(R ) =—fh ——  w(R,0)=fit’, t>0, p=0. (13)

ra-py’°

The Hankel Transform method with respect to r is used and is defined as follows [14]
u= Iru(r, )P, (s,,r)dr. (14)
R,

The inverse Hankel Transform as defined by [14]
ﬂ_ziSrZLJ()Z(RZSn)u(sn’S)¢1(sn’r)
253 le(RlSn)_Jg(RZ‘Sn)
where @, (s,,7)=J,(R;s,)Y,(s,r) =Y, (R;s,)J,(5,F), S,is the positive root of @ (s, ,R,) = 0.
Applying the Hankel transform to Eq. (11), we obtain

u(r,s)=

(15)
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(1 + ﬂ’Dta) aLl(és‘n Jt)

- 2 b 2uf,t" J, (R
s (1 4,00 (s, p) + 202 L7207 SR,
w.u T1-p) 7 Jy(R,s,)
_ 20f2/1r Jl (Rlsn) F(p + 1) tpfﬂ (16)
m Jy(Rys,) T(p—f+1)
Applying the Hankel transform to Eq. (12), we obtain

u(s, 0) = j—fg . 0,u(s,,0)=0. (17)

Applying Laplace transform to Eq. (16), we obtain
(1+As” +vs2A,.s")
(s+As“" +uvs) +usA,s")
204 f, 1
+ 1-8 a+l 2 29 B
mus, s T(s+As”T +us; +usiAs")
20AT(p+1) Jy(Rs,) !
T Jo(Rys,) s” (s + As®" +us’ +usi A s”)
_ 2Ulrf21—‘(p + 1) Jl (Rlsn) 1 (18)
T Jo(Rys,) s" P (s + A" +us? +usi A sP)
Substitute Eq. (17) into Eq. (18), we obtain
=( ) 2f, (1+As* +vs A"
u(s ,s)=
! s, s2(s+As“" +vs +usi A s”)
204 f, 1
+ 1-8 a+l 2 29 B
s, s T(s+As“T +us, +us,As")
C20T(p+D) J(Rss,) !
T Jo(Rys,) s” (s + As“" +us’ +usi A s”)
_ 2Uj’if2r(p + 1) Jl (Rlsn) 1 (19)
i Jy(Rys,) s" P (s + As“ +us? +usi A s?)
Applying Inverse-Laplace transform to Eq. (19) and taking into account the following result [15]

G, (dt)=L" 4
abe (1) {(q“—d)C}

© djr(c + J) t(c+j)afb71 '
ST+ I(c+ j)a-b]

u(s, ) =u(s, 0)

n’

Re(ac—-b) >0,

- <1, (20)
q

we obtain
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m+1
_ 2](‘1 0 Usz n (m f ]
N=——15 -5, )" — Gy ppmamn (A1
u(s, 1) s o2 ij;( ) [lj kz(‘?[k}' a,ﬂka,ml( )

m+1
0,0 1 &, fuosl) &(m .
+ —1S_2 Z(_l) [7] Z[k Jlf{ Ga,ﬁk—m+ﬁ—2,m+1 (_/1 ] ?t)

k=0

C2AT(p+D) Ji(Rs,) 1 " k B
Jo(Rys n)S Z( b [ J ; kJirGa,,BkmpZ,mH( A1)

V4 n m=0

m+l
2]/ fzr(p+1) J(RS ) 1 n (m ; ]
) G ) N )

T J (R2 n) n = 0( ) T k r a,ﬂkfm—p+ﬂ—2,m+1( ) ( )

The expression of the velocity field can be written as

)=V )+ 73 o s, (5,1 [w{ e [ j i[;’jﬁf(;a,ﬂk”,z,ml(—w,r)

1 (Ris,) =I5 (Rs,)

m=0 =0
lf 2 m+l n (m
m+1
J(RS ) ki US2 n (m )
— fT(p+ 1) LNy 2 G
e )Jo(RzSn),;)( ) [ A J ;Lk}' a fim—p-2mi1 )

2 m+l
n (m )
_lerF(p-l- 1( 1 " Z( )m( ] Z(k ]A:fGa,ﬂk—m—p+ﬂ—2,m+l(_ﬂ’ l’t) . (22)

0 2 n k=0

IV.  Conclusions and Numerical results
The purpose of this paper is to establish exact solution for the velocity field corresponding to the flow of
Oldroyd-B fluid in the annular region between two infinitely long coaxial cylinders. The motion of the fluid is
produced by the inner cylinder pulled with a constant shear and outer cylinder is moving with time dependent
velocity. The solution is obtained by Hankel and Laplace transform methods and the result is presented under
series form in terms of the generalized-G functions. Plots between various parameters and constants are
obtained and relationship has been established.

As shown in below diagrams, the velocity v(#,¢) given by Eq. (22) has been drawn against r for different

values of the time t, constants and other relevant parameters. The velocity component v is decreasing function of
r. Figure 1 shows the influence of the time on the fluid motion. As expected, the velocity is increasing function
with respect to ¢. The kinematic viscosity U as result from Fig. 2, has a strong influence on the velocity. The

result indicates that the velocity is increasing function of U. The influences of the relaxation and retardation
times on the fluid motion are shown in the figures 3 and 4. It indicates that the velocity is decreasing function of

A and /1r . Figure 5 show the influence of the fractional parameter & on the fluid motion. It is clearly seen
from the figure that the velocity is increasing function of & . In figure 6, it is shown the influence of the
fractional parameter [ on the fluid motion. It is clearly seen from the figure that the velocity is decreasing

function /3 . Figure 7 show the influences of p on the fluid motion. It is clearly seen from the figure that the
velocity is increasing function of p. figures 8 and 9show the influences of fl and f. , on the fluid motion. Figure

10 show the influence of £ on the fluid motion. It is clearly seen from the figure that the velocity is increasing
function of 4/ .
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Fig. 1
Fig 1 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4, v=0.035,

A=12, 4. =22, =09, f=0.6,p =2, u=30and different values of t.
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Fig. 2
Fig.2 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4,t=6s,

A=9, 4 =4, =03, f=0.3,p=2, =30 and different values of v.
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Fig. 3
Fig3 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4, t=15s,

v=001, 4, =7, =0.3, f=0.3,p =2, x=30and different values of A.
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vi(r)
v2(r)

Fig. 4
Fig4 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4,t=35s,

v=0.04, 1=8, =03, =09, p=2, u =30 and different values of 4 .
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Fig. 5
Fig.5 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4,t =6s,

v=0.01, 1=25, 4, =5, f=0.5p=2, u=30 and different values of c.
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Fig. 6
Fig.6 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4,t =06s,

v=0.04, 1=8, 4, =15, a =1,p =2, u=30and different values of £.
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Fig. 7
Fig7 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4,t=5s,

v=0.04, 1=10, 4, =2, =03, f=0.9, u=30and different values of p.
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Fig. 8
Fig8 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =4,¢=55,0=0.045,

A=14, 2 =28, a=0.8, f=0.5 p=2, u =30 and different values of f,.
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Fig. 9
Fig 9 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3,t=6s, 0 =10.035,

A=10, 1. =2, a=0.7, =04, p=2, u =30 and different values of f,.
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Fig.10 Profiles of the velocity v(r,t) given by (22) for R, =0.3, R, =0.5, f, =3, f, =4,t =5s,

v=0.04, A=11, 4 =25, =09, f=0.6, p=2 and different values of x.

Cn-Dr
2(R2 - R1)

In all of above, the roots §, has been approximated by
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