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Abstract: Treatment is of great importance in fighting against infectious diseases. Backward bifurcation of SIR 

epidemic model with treatment rate is proposed and analyzed by Wang W. We have reinvestigated the above 

model by considering a backward bifurcation of SIR epidemic model with non-monotone incidence rate under 

treatment. It is assumed that the treatment rate is proportional to the number of patients as long as this number 

is below a certain capacity and it becomes constant when that number of patients exceeds this capacity. 

Mathematical models have become important tools in analyzing the spread and control of infectious diseases. It 

is shown that this kind of treatment rate leads to the existence of multiple endemic equilibria where the basic 

reproduction number plays a big role in determining their stability. Moreover, numerical calculations are 

support to analyze the global stability of unique endemic equilibrium. 

Keywords: Backward Bifurcation, Basic reproduction number, Endemic, Epidemic, Incidence rate, Treatment 

function. 

 

I. Introduction 
  The asymptotic behavior of epidemic models has been studied by many researchers.       Various 

epidemic models have been formulated and analyzed by many researchers. In the course of disease control, the 

treatment is an important method to decrease the spread of diseases. Recently, many researchers have explored 

the role of treatment function T(I), which represents the number of infectious individuals of healing, within 

epidemic disease models. In classical epidemic models, the treatment rate is assumed to be proportional to the 

number of the infective. Assumed that the capacity for the treatment of a disease in a community is a constant 

treatment rate 0 ≤ r ≤ 1, in this case the treatment function is rI. i.e., T(I) = rI. For recent work, using an SIR 

model, Wang and Ruan [14] supposed that the treatment function has the form  

                                                           T(I) =  r,  if  I > 0 

                                                                      0,  if I = 0 

Where r is a constant value. They discussed the stability of equilibria and proved the model exhibits 

Bogdanov-Takens bifurcation, Hopf bifurcation and Homo-clinic bifurcation. Mena Lorca and Hethcote [13] 

also analyzed an SIRS model with the same saturation incidence. Non-linear incidence rate of the form bIpSq 

were investigated by Liu. et. al. [12]. A very general form of non-linear incidence rate was considered by 

Derrick and Driessche [3]. A more general incidence λIpS / (1+αIq) was proposed by many other researchers 

[2,4,6,8,10]. Xiao and Ruan [15] proposed an epidemic model with non-monotonic incidence rate λIS / (1+αI2). 

Besides the rate and nature of incidence, treatment plays an important role to control the spread of diseases. This 

model is investigated and analyzed by Kar and Batabyal [11]. Also this model is modified by Gajendra. et. al. 

[5]. As the improving of the hospital’s treatment conditions, such as effective medicines, skillful techniques, the 
treatment rate will be increased. At last, the treatment rate of the disease won’t increase until a plateau is 

reached. Therefore, constant recovery is a poor description of real-world infections. Aiming at this kind of 

improvement of circumstance, Wang incorporated the following piecewise linear treatment function into an SIR 

model. Wang [1] proposed a treatment function 

                                        T(I) =  rI,  if  0 ≤ I ≤ I0                                                                        (1) 

                                                          K1′   if I > I0 

Where K1= rI0 for some fixed value I0. For classical epidemic models, it is common that a basic 

reproduction number is a threshold in a sense that a disease is persistent if the basic reproduction number is 

greater than 1, and dies out if it is below 1.  In this case, the bifurcation leading from a disease free equilibrium 

to an endemic equilibrium is forward. In recent years, papers found backward bifurcations due to social groups 
with different susceptibilities, pair formation, macro parasite infection, nonlinear incidences, and age structures 

in epidemic models. In this case, the basic reproduction number does not describe the necessary elimination 

effort; rather the effort is described by the value of the critical parameter at the turning point.  Thus, it is 

important to identify backward bifurcations to obtain thresholds for the control of diseases. 

 The treatment is an important method to decrease the spread of diseases such as measles, tuberculosis 

and flu.  In classical epidemic models, the treatment rate of infective is assumed to be proportional to the 

number of the infective.  This is unsatisfactory because the resources for treatment should be quite large.  In 
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fact, every community should have a suitable capacity for treatment.  If it is too large, the community pays for 

unnecessary cost.  If it is too small, the community has the risk of the outbreak of a disease.  Thus, it is 

important to determine a suitable capacity for the treatment of a disease, we adopt a constant treatment, which 
simulates a limited capacity for treatment.  Note that a constant treatment is suitable when the number of 

infective is large.  In this paper, we modify it into 

 










,II if       k,

,I0 if      rI,
)(

0

0I
IT                                                                                           (1) 

where,  k = rI0.  This means that the treatment rate is proportional to the number of the   infective when 

the capacity of treatment is not reached, and otherwise, takes the maximal capacity.  This renders for example 

the situation where patients have to be hospitalized: the number of hospital beds is limited. This is true also for 

the case where medicines are not sufficient.  Evidently, this improves the classical proportional treatment and 

the constant treatment.  

  We will consider a population that is divided into three types: susceptible, infective and recovered.  Let 

S, I and R denote the numbers of susceptive, infective, recovered individuals, respectively. 

 

II. Mathematical Model 
Then the model to be studied takes the following form: 

         

,
1

( ) ( )
1

( ),
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dt I
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d m I T I
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mI dR T I
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                                                                                  (2)           

where a  is the recruitment rate of the population, d  the natural death rate of the population,   is the 

proportionality constant, m  is the natural recovery rate of the infective individuals,   is the parameter 

measures of the psychological or inhibitory effect. It is assumed that all the parameters are positive constants.  

Clearly, 


3R  is positively invariant for system (2).  Since the first two equations in (2) are independent of the 

variable R, it suffices to consider the following reduced model: 
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                                                                                  (3)                   

 The purpose of this paper is to show that (3) has a backward bifurcation if the capacity for treatment is 

small.  We will prove that (3) has bi-stable endemic equilibrium if the capacity is low.  The organization of this 

paper is as follows. In the next section, we study the bifurcations of (3).  In Section 5 we present a global 

analysis and simulations of the model. 

 

III. Equilibrium 
       In this section, we first consider the equilibria of (3) and their local stability.  

E0 = (A /d, 0) is a disease free equilibrium.  An endemic equilibrium of (3) satisfies  
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                                                                                      (4)                                   

When 0 < 0II  , system (4) becomes 
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When I >I0, the system (4) becomes 
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Let              R0 = 
( ).

a

d d m r



  
 

Then R0 is a basic reproduction number of (3).  If R0 >1, (5) admits a unique positive solution of E*= (S*, I*) 

where  
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Using the definition of 0R , we get 

              I*=
0( 1)d R
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Clearly, E* is an endemic equilibrium of (3) if and only if  
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      In order to obtain positive solution of system (6), we solve S from the first equation of (6) to obtain S, 
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When I>I0, system (4) becomes 

  ( ) 0
1

SI
d m I k

I





    


 

  
(1 )

( ) 0
(1 )

a I
I d m I k

d I I


 

 

 
     

  
 

2 2[( )( ) ] [ ( ) ] 0d d m a I d dm d k d a I kd                                                  (8) 

           i.e.,           
2 0AI BI C    

where   

               
2 ( )B d dm d k d a         . 

If B   0, it clear that (8) does not have a positive solution. Let us consider the case where B< 0.                                   

            If 
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it is easy to obtain  
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Note that B < 0 is equivalent to  
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It follows that B< 0 and 0  if and only if (9) holds. Equation (8) implies 
2
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Then (8) has two positive solutions I1 and I2 where  
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 Let us consider the condition under which I1>I0.  By the definitions, we see that 
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Further, (13) implies that  
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By direct calculation, we   see that (16) is equivalent to 
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Hence I1 > I0 holds if and only if (15) and (17) are valid. Moreover, if 
10R p  or 

20R p .   

We have I1   
I0. By similar arguments as above, we see that I0 < I2  if (15) holds, or  

  102 PRp  .                                                                                                              (18) 

Furthermore,  

  02 II 
 
if  

       .,min 210 ppR                                                                                                        (19)                                                           

Summarizing the discussion above, we have the following conclusions. 

 

IV. Some Theorems 
Theorem: 4.1 

*E = (S*, I*) is an endemic equilibrium of (3) if and only if .1 20 pR 
 
Furthermore, E* is the unique 

endemic equilibrium of (3) if 201 PR   and one of the following conditions are satisfied  

(i) 00 pR   

(ii) .100 pRp   

Note that 0( )( )dr d d m I       is equivalent to that .21 pp    

Theorem: 4.2 

Endemic equilibrium E1 and E2 do not exist if .00 pR  Further, if 00 pR  , we have the following: 
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 i)   If 0( )( ) ,dr d d m I       then both ),( 111 ISE 
 
and ),( 222 ISE 

 
exist when    

                 
1 0 2.p R p   

 ii)  If 0( )( ) ,dr d d m I       then E1 does not exist but E2 exist if when .20 pR   

 iii) Let 0( )( ) ,dr d d m I         Then E1 does not exist.  Further, E2 exist when     

                  02 Rp   and E2 does not exist when .20 pR   

 We consider .10 p If 0( )( ) ,dr d d m I       a typical bifurcation diagram is  illustrated in 

figure 1, where the bifurcation from the disease free equilibrium at R0 = 1 is forward and there is a backward 

bifurcation from an endemic equilibrium at R0 = 1.5, which gives rise to the existence of multiple endemic 

equilibrium. 

 Further, if 0( )( ) ,dr d d m I       a typical bifurcation diagram is illustrated in Fig. 2, where 

the bifurcation at 10 R  is forward and (3) has one unique endemic equilibrium for all .10 R    

Note that a backward bifurcation with endemic equilibrium when 10 R  is very interesting in 

applications.  We present the following corollary to give conditions for such a backward bifurcation to occur. 

 
Fig. 1 

 The figure of infective sizes at equilibrium versus R0   when I0 = 40, m = 0.01, ε = 0.01, 
d = 0.8, r = 1.5, where (i) of theorem 4.2 holds.  The bifurcation from the disease free equilibrium at R0 =1 is 

forward and there is a backward bifurcation from an endemic equilibrium at R0 =1.5, which leads to the 

existence of multiple endemic equilibrium. 

Corollary: 4.3  

 System (3) has a backward bifurcation with endemic equilibrium when R0<1 if 

0( )( ) ,dr d d m I      and p0< 1. 
Proof: 

This corollary is a simple consequence of (i) of theorem 4.2 

Example:  

    Fix I0 = 20, λ = 0.01, ε = 0.01, d = 1, α = 0.1, k = 0.2, m = 0.3 and r = 6.  Then 

0 1 20.2060, 0.9707, 3.2p p p   and  0( )( ) 3.12.dr d d m I         Thus, (3) has a 

backward bifurcation with endemic equilibrium this case (by fig3). 

   As I0 (the capacity of treatment resources) increases, by the definition we see that p0 increases.  When 

I0 is so large that p0 > 1, it follows from Theorem 3.2 that there is no backward bifurcation with endemic 

equilibrium when R0 < 1.  If we increase I0  to 0 0R p , (3) does not have a backward bifurcation because 

endemic equilibrium  E1 and E2 do not exist.  This means that an insufficient capacity for treatment is a source 

of the backward bifurcation.  
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Fig. 2 

 The diagram of I*, I2 versus R0 when I0 = 40, 0.2, 0.1, 0.01,m     d = 0.8, r = 0.6, where (iii) 

of Theorem 4.2 holds. The bifurcation at R0 =1 is forward and (3) has a unique endemic equilibrium for R0 > 1. 

 
Fig. 3 

  The figure of I*, I1 and I2 versus R0 that shows a backward bifurcation with endemic equilibrium when 

R0 < 1, where Corollary 4.3 holds. 
Theorem: 4.4 

 0E  is asymptotically stable if 10 R  and .10 R   
*E  is asymptotically stable if .0

* II    1E  is 

saddle whenever it exists. For 2E , we have 

i) 2E is stable if either 

2 3( ) 3 ( ) 2 / ( ) ( )d a d d m d m d k                                                            (20) 

                                      (or) 
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(21) 

ii) 2E  is unstable if 
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(22) 
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V. Global Analysis and Simulation 
We begin from the global stability of the disease free equilibrium E0 

Theorem: 5.1 

 The disease free equilibrium E0 is globally stable, i.e., the disease dies out, if one of the following 
conditions is satisfied: 

(i) 10 R  and 10 p . 

(ii) 10 R ,  0p < 1 and 11 p  

Proof 

 10 R  implies that 
*E  does not exist.  Suppose 10 p . It follows from the Theorem 4.2 that E1 

exists or E2 exist only if  R0 > p0, which is possible since we have 10 R .  Let us now suppose p0 <1 and 

11 p .   If 0( )( )dr d d m I      , since 21 pp  , it follows from the discussions for (i), (ii) of 

Theorem 4.2 that 1E or 2E  exists only if 10 pR  , which is impossible since we have 10 R . If 

0( )( )dr d d m I      , since 21 p , it follows from (iii) of Theorem 4.2 that 1E  and 2E  do not 

exist. In summary, endemic equilibrium do not exist under the assumptions. 

It is easy to verify that positive solutions of (3) are ultimately bounded. Note that the nonnegative S-

axis is positively invariant and that the non negative I-axis repels positive solutions of (3).  Since E0 is 

asymptotically stable, it follows from the Bendixson Theorem that every positive solution of (3) approaches E0 

as t approaches infinity. The limit cycles of (3) play crucial roles on the structure of dynamical behaviors of the 

model.  For example, if there is no limit cycle and its endemic equilibrium is unique, the unique endemic 

equilibrium is globally stable. For this reason, we adopt Dulac functions to obtain conditions for the 

nonexistence of a limit cycle in (3). We denote the right–hand sides of (3) by f1 and f2. Then we get 

     

0
)()( 21 










I

Df

S

Df
 

then (3) does not have a limit cycle. 

Theorem: 5.2  

 System (3) does not have a limit cycle if r < d. 

Proof  

By the first equation of (3), it is easy to see that positive solutions of (3) eventually enter and remain in 

the region 

 

: ( , ) : .
a

P S I S
d

 
  
 

 

Thus, a limit cycle, if it exists, must lie in the region P. Take a Dulac function 

1
D

SI


.    

Then we have 

 

1 2

2

( ) ( )
0

Df Df a

S I S I

 
   

 
 

if 00 II  .   If 0II   , it is easy to see that 

 

01 2

2 2 2 2 2 2

( ) ( ) 1
( ) ( ) 0

aIDf Df a k
aI kS r d

S I S I SI S I dS I

 
         

 
 

Hence  (3) does not have a limit cycle. 

Theorem 5.2 implies that there is no limit cycle in (3) if the treatment rate is less than the death rate. 

We now present a different condition for the nonexistence of limit cycles of (3) which is independent of the 

treatment 

 

Theorem: 5.3  

   System (3) does not have a limit cycle if   

 
( ) (2 ) .d a d m d                                                                                             (23)                                                                                                       

Proof 

 We consider a Dulac function D defined by, 
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












,
1

,
SI

1

0SI

D     

if

if

  

,

,

0

0

II

II





                      

Then we have 

 

1 2

2

( ) ( )
0

Df Df a

S I S I

 
   

 
 

if 00 II  .  Note that (23) implies that 

2 2

/[ ( ) ( ) ] ( )( ) ( )( )S a d

a a
a d S d m S a d d m

d d
                                                                        

                

2
2

2

2 2 2 2 2

2

2 2 2

2

( )

a ma a
a a a

d d d

ad a d a ad mad ad

d

a d ad a d md d

d

 


  

  

      

     


     


2 2 2
2

/ 2

( )
[ ( ) ( ) ] 0S a d

a d ad a d md d
a d S d m S

d

  
   

     
         

It follows that for 0II   

   

21 2

2

0

( ) ( ) 1
[ ( ) ( ) ] 0

Df Df
a d S d m S

S I S I
  

 
        

 
 

where the domain P is considered. Therefore, (3) does not have a limit cycle. 

 

 
Fig. 4 

E* is globally stable when a = 220, I0 = 40,   = 0.01, m = 0.01,  = 0.01,  
d = 0.8, k = 0.01, r = 1.5 and α = 0.2 



Backward Bifurcation of Sir Epidemic Model with Non-Monotonic Incidence Rate under Treatment 

www.iosrjournals.org                                                    31 | Page 

 
Fig.5 

 One region of disease persistence and one region of disease extinction where  

a = 500, I0 = 20, k = 0.01,   = 0.1, 01.0  m = 0.1, d = 1 and r = 6, where Corollary 2.3 holds. 

 

 
Fig.6 

 A bi-stable case where endemic equilibria E* and E2 are stable when a =260, I0 = 40,  

 =0.01, m  0.01, 01.0 , d = 0.8, r =1.5, where (i) of theorem 4.2 holds. 

  If the conditions of theorem 4.1, 5.2 or 5.3 are satisfied, then E* is one unique endemic equilibrium and 

is globally stable.  Numerical calculations shows that the unique endemic equilibrium E* is also globally stable 
if Theorems 5.3 and 5.4 are not satisfied (see Fig. 5).  If R0 > p2.  Theorem 4.2 implies that E2 is a unique 

endemic equilibrium of (3).  Numerical calculations shows that this unique endemic equilibrium is also globally 

stable.  However, by direct calculations, we see that I2 > I* if R0 > p2.  This means that we have more infected 

members in the limited resources for treatment than those with the unlimited resources for treatment.  Let the 

conditions of Corollary 4.3 hold.  If R0 < 1, the stable manifolds of the saddle E1 split R0 into two regions.  The 

disease is persistent in the upper region and dies out in the lower region (see Fig. 6).  

            The stable manifolds of the saddle E split the feasible region into two parts; positive orbits in the lower 

part approach to the endemic equilibrium E* and positive orbits in the upper part approach to the endemic 

equilibrium E*.  Thus, we have a bi-stable case. 

 

Concluding Remarks 
   In this paper, we have proposed an epidemic model to simulate the limited resources for the treatment 

of patients, which can occur because patients have to be hospitalized but there are limited beds in hospitals, or 

there is not enough medicine for treatments.  We have shown in Corollary 4.3 that backward bifurcations occur 

because of the insufficient capacity of treatment.  We have also shown that (3) has bi-stable endemic 

equilibrium because of the limited resources.  This means that driving the basic reproduction number below 1 is 

not enough to eradicate the disease. The level of initial infectious invasion must be lowered to a threshold so 

that the disease dies out or approaches a lower endemic steady state for a range of parameter 
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