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Abstract: In the present paper, we introduce the theory of four dimensional Finsler space and define geodesic 

equation with the basis of Finsler space. We also try to define geodesic equation to useful significance. 

 

I. Introduction 
Finseler geometry is a kind of differential geometry, which was originated by P. Finselerin 1918. It is 

usually considered as a generalization of Riemannian geometry. The definition of finseler space- 

 

1.1 Finseler Space: 

Suppose that we are given a function L  𝑥𝑖 , 𝑦𝑖  of the line element  𝑥𝑖 , 𝑦𝑖  of a curve defined in R. We 

shall assume L as a function of class at least C5 in all its 2n-arguments. If we define the infinitesimal distance ds 

between two points 𝑃(𝑥𝑖) and Q  𝑥𝑖 + 𝑑𝑥𝑖  of R by the relation  

                                𝑑𝑠 = 𝐿 𝑥𝑖 , 𝑑𝑥𝑖                                                                                                     ( 1.1.1) 

then the manifold 𝑀𝑛  requipped with the fundamental function L defining the metrix (1.1.1) is called a Finsler 

space .if L  𝑥𝑖 , 𝑑𝑥𝑖  satisfies the following conditions.  

Condition A- 

The function L  𝑥𝑖 , 𝑦𝑖  is positively homogeneous of degree one in 𝑦𝑖 i.e.  

                            L  𝑥𝑖 , 𝑘𝑦𝑖 = 𝑘 𝐿  𝑥𝑖 , 𝑦𝑖 , k > 0                                                                           (1.1.2) 

Condition B- 

The function L  𝑥𝑖 , 𝑦𝑖  is positively if not all 𝑦𝑖 vanish simultaneously i.e.  

                                 L  𝑥𝑖 , 𝑦𝑖 > 0 𝑤𝑖𝑡ℎ  (𝑦𝑖)2  ≠ 0𝑖                                                                  (1.1.3) 

Condition C- 
The quadratic form  

                                  𝜕𝑗 𝐿
2 𝑥, 𝑦 𝜀𝑖𝜀𝑗 =

𝜕2𝐿2 𝑥,𝑦 

𝜕𝑦 𝑖𝜕𝑦 𝑗 𝜀𝑖𝜀𝑗                                                                         (1.1.4) 

is assumed to be positive definite for any variable 𝜀𝑖 . 
Form Euler’s theorem on homogenous functions, we have  

                                       𝜕 𝑖  𝐿  𝑥, 𝑦 𝑦𝑖 = 𝐿 (𝑥, 𝑦)                                                                                (1.1.5) 

                                       𝜕𝑖 𝜕𝑗 𝐿
2 𝑥, 𝑦 𝑦𝑖 = 0                                                                                          (1.1.6) 

 
We put 

                   𝑔𝑖𝑗  𝑥, 𝑦 =
1

2
𝜕𝑖 𝜕𝑗 𝐿

2 𝑥, 𝑦                                                                                  (1.1.7) 

Using the theory of quadratic form and the condition C, we deduce form (1.1.4) that- 

                          𝑔 𝑥, 𝑦 = 𝑔𝑖𝑗  𝑥, 𝑦 > 0                                                                                       (1.1.8) 

for all line elements  𝑥𝑖 , 𝑦𝑖 .  If the function L is of particular form  

                             𝐿  𝑥𝑖 , 𝑑𝑥𝑖 = [𝑔𝑖𝑗  𝑥
𝑘 𝑑𝑥𝑖𝑑𝑥𝑗 ]1/2                                                                  (1.1.9) 

where the coefficients 𝑔𝑖𝑗  𝑥
𝑘  are independent of 𝑑𝑥𝑖 , the metric defined by this function is called 

Riemannian metric and manifold 𝑀𝑛  is called a Riemannian space. Throughout the paper,  𝐹𝑛  𝑜𝑟 (𝑀𝑛 , 𝐿) will 

denote the n-dimensional finsler space, where as n-dimensional Riemannian space will be denoted by 𝑅𝑛 .  

 

1.2 Intrinsic Fields of Orthonormal Frames : 
Berwald theory of two-dimensional Finsler space is developed based on the intrinsic field of 

orthonormal frame which consists of the normalized supporting element 𝑙𝑖  and unit vector orthonormal to 𝑙𝑖 . 
Following idea Moor introduced, in a three-dimensional Finsler space, the intrinsic field of orthonormal frame 

which consists of the normalized supporting element𝑙𝑖 , the normalized torsion vector 𝐶 𝑖 𝐶 and a unit vector 

orthogonal to them and developed a theory of three-dimensional Finsler spaces. Generalizing the Berwald’s and 

Moor’s ideas, Miron and Matsumoto[ (1986), (1977), (1989)] developed a theory of intrinsic orthonormal frame 

fields on n-dimensional Finsler space as follows. 
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         Let L(x, y) be the fundamental function of an n-dimensional Finsler space and introduce Finsler tensor 

fields of (0, 2𝛼-1) type, 𝛼 = 1,2,…..,n by 

𝐿𝑖1𝑖2…..𝑖2𝛼−1
=

1

2𝛼
𝜕 𝑖1𝜕

 
𝑖2
…… .𝜕 𝑖2𝛼−1

𝐿2 

 Then we get a sequence of covariant vectors 

 𝐿𝛼)𝑖 = 𝐿𝑖𝑗1𝑗2…..𝑗2𝛼−3 .𝑗2𝛼−2
𝑔𝑗1𝑔𝑗1 …… . 𝑔𝑗2𝛼−3 .𝑗2𝛼−2 

Definition-1: If (n-1) covariant vectors 𝐿𝛼)𝑖 , 𝛼 = 1, 2,….., n-1 are linearly independent, the Finsler space is 

called strongly non-Riemannian. 

Assuming above n-covectors𝐿𝛼)𝑖  are linearly independent and put 𝑒1)
𝑖 = 𝐿1)

𝑖 𝐿 = 𝑙𝑖 . Here and in following we 

use raising and lowering of indices as𝐿1)
𝑖 = 𝑔𝑖𝑗 𝐿1)𝑗 . 

Further putting 𝑁1)𝑖𝑗 = 𝑔𝑖𝑗 − 𝑒1)𝑖𝑒1)𝑗  and matrix 𝑁1) = 𝑁1)𝑖𝑗  is of rank (n-1). Second vector 𝒆𝟐) is introduced by 

𝑒2)
𝑖 = 𝐿2)

𝑖 𝐿2 ,  

where, 𝐿2 is the length of𝐿2)
𝑖  relative to 𝑦𝑖. Next we put 𝑁2)𝑖𝑗 = 𝑁1)𝑖𝑗 − 𝑒2)𝑖𝑒2)𝑗 ,𝐸3)

𝑖 =𝑁2)𝑗
𝑖 𝐿3)

𝑗
 and so third 

vector𝑒3) is defined by, 

𝑒3)
𝑖 = 𝐸3)

𝑖 𝐸3  ,  

where, 𝐸2is the length of 𝐸2)
𝑖 relative to 𝒚𝒊.The repetition of above process gives a  

vector 𝑒𝑟+1), r = 1, 2,……, n-1 defined by 

𝑒𝑟+1)
𝑖 = 𝐸𝑟+1)

𝑖 𝐸𝑟+1  

where, 𝐸𝑟+1)
𝑖 =𝑁𝑟)𝑗

𝑖 𝐿𝑟+1)
𝑗

𝐸𝑟+1 is the length of 𝐸𝑟+1)
𝑖  relative to 𝑦𝑖and 𝑁𝑟)𝑖𝑗 = 𝑁𝑟−1)𝑖𝑗 − 𝑒𝑟)𝑖𝑒2)𝑗 . 

Definition-2: The orthonormal frame {𝑒𝛼}, 𝛼 = 1, 2,…..,n as above defined in every in every co-ordinate 
neighborhood of a strongly non-Riemannian Finsler space is called the ‘Miron Frame’. 

 Consider the Miron frame {𝑒𝛼}, If a tensor 𝑇𝑗
𝑖  of (1, 1)-type, for instance, is given then 

 𝑇𝑗
𝑖 = 𝑇𝛼𝛽 𝑒𝛼)

𝑖 𝑒𝛽)𝑗  

where, the scalars 𝑇𝛼𝛽  are defined as 

𝑇𝛼𝛽 = 𝑇𝑗
𝑖𝑒𝛼)𝑖𝑒𝛼)

𝑗
 

These scalars 𝑇𝛼𝛽  are called the scalar components of 𝑇𝑗
𝑖with respect to Miron frame. 

Let 𝐻𝛼)𝛽𝛾  be scalar components of the h-covariant derivatives 𝒆𝜶)|𝒋
𝒊  and 𝑉𝛼)𝛽𝛾 𝐿  be scalar components of the v-

covariant derivatives 𝑒𝛼)
𝑖 |𝑗  with respect to C of the vector 𝑒𝛼)

𝑖  belonging to the Miron frame. Then 

𝑒𝛼)|𝑗
𝑖 = 𝐻𝛼)𝛽𝛾 𝑒𝛽)

𝑖 𝑒𝛾)𝑗 , 

𝑒𝛼)
𝑖 |𝑗 = 𝑉𝛼)𝛽𝛾 𝑒𝛽)

𝑖 𝑒𝛾)𝑗 , 

where, the scalars 𝐻𝛼)𝛽𝛾  and 𝑉𝛼)𝛽𝛾  satisfying the following relations [Berwald (1947)]. 

 𝐻1)𝛽𝛾 = 0, 𝐻𝛼)𝛽𝛾 = −𝐻𝛽)𝛼𝛾 ,  

𝑉𝛼)𝛽𝛾 = 𝛿𝛽𝛾 − 𝛿𝛽
1𝛿𝛾

1,   𝑉𝛼)𝛽𝛾 = −𝑉𝛽)𝛼𝛾  

Definition-3: The scalars 𝐻𝛼)𝛽𝛾  and 𝑉𝛼)𝛽𝛾  are called connection scalars. 

 If 𝐶𝛼𝛽𝛾 𝐿 be the scalar components of the (h)hv-torsion tensor 𝐶𝑗𝑘
𝑖  i.e., 

𝐿𝐶𝑗𝑘
𝑖 = 𝐶𝛼𝛽𝛾 𝑒𝛼)

𝑖 𝑒𝛽)𝑗 𝑒𝛾)𝑘  

then [Hambo,H(1934)], we have 

Proposition-1: 

i. 𝐶1𝛽𝛾 = 0 

ii. 𝐶2𝜇𝜇 = 𝐿𝐶,   𝐶3𝜇𝜇 = ⋯…… = 𝐶𝑛𝜇𝜇 = 0for 𝑛 ≥ 3, where Cis the length of 𝐶 𝑖. 

Now, we consider scalar components of covariant derivatives of a tensor field, for instance, 𝑇𝑗
𝑖 . Let 𝑇𝛼𝛽 ,𝛾  and 

𝑇𝛼𝛽 ;𝛾 𝐿  be the scalar components of h-and v-covariant derivatives with respect to C respectively of a tensor 𝑇𝑗
𝑖  

i.e., 

 𝑇𝑗 |𝑘
𝑖 = 𝑇𝛼𝛽 ,𝛾𝑒𝛼)

𝑖 𝑒𝛽)𝑗 𝑒𝛾)𝑘                                                                                                             (1.2.1)      

            and                               

 𝐿𝑇𝑗
𝑖|𝑘 = 𝑇𝛼𝛽 ;𝛾𝑒𝛼)

𝑖 𝑒𝛽)𝑗 𝑒𝛾)𝑘 ,                                                                                                    (1.2.2)   

        then we have  [Hambo,H(1934)],                     

 𝑇𝛼𝛽 ,𝛾 =  𝛿𝑘𝑇𝛼𝛽  𝑒𝛾)
𝑘 + 𝑇𝜇𝛽𝐻𝜇)𝛼𝛾 + 𝑇𝛼𝜇𝐻𝜇)𝛽𝛾                                                                     (1.2.3)      

 and  𝑇𝛼𝛽 ;𝛾 = 𝐿 𝜕 𝑘𝑇𝛼𝛽  𝑒𝛾)
𝑘 + 𝑇𝜇𝛽 𝑉𝜇)𝛼𝛾 + 𝑇𝛼𝜇 𝑉𝜇 )𝛽𝛾 .                                                        (1.2.4)      

 The scalar components 𝑇𝛼𝛽 ,𝛾  and 𝑇𝛼𝛽 ;𝛾  are called h-and v-scalar derivative of 𝑇𝛼𝛽  respectively. 
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(i) Two-dimensional Finsler space 

The Miron frame {𝑒1), 𝑒2)} is called the Berwald frame. The first vector 𝑒1)
𝑖 is the normalized 

supporting element 𝑙𝑖 = 𝑦𝑖 𝐿  and the second vector 𝑒2)
𝑖 = 𝑚𝑖  is the unit vector orthogonal to 𝑙𝑖 . If𝐶 𝑖has non-

zero lengthC,the𝑚𝑖 = ±𝐶 𝑖 𝐶 . The connection scalars 𝐻𝛼)𝛽𝛾 and 𝑉𝛼)𝛽𝛾  of a two-dimensional Finsler space are 

such that  

 𝐻𝛼)𝛽𝛾 = 0,   𝑉𝛼)𝛽1 = 0,   𝑉𝛼)𝛽2 = 𝛿𝛼𝛽
12 ,which implies 

 𝑙|𝑗
𝑖 = 0,   𝑚|𝑗

𝑖 = 0, 𝐿𝑙𝑖|𝑗 = 𝑚𝑖𝑚𝑗 ,   𝐿𝑚𝑖|𝑗 = −𝑙𝑖𝑚𝑗 (1.2.5)      

There is only one surviving scalar components of𝐿𝐶𝑖𝑗𝑘 namely𝐶222 .If we put𝐼 = 𝐶222 . 

                 Then                  𝐿𝐶𝑖𝑗𝑘 = 𝐼𝑚𝑖𝑚𝑗𝑚𝑘  

 The scalar Iis called the main scalar of a two-dimensional Finsler space. 

Proposition-2: In a two-dimensional Finsler space 

i. The h-curvature tensor 𝑅ℎ𝑖𝑗𝑘 of C is written as, 

𝑅ℎ𝑖𝑗𝑘 = 𝑅(𝑙ℎ𝑚𝑖 − 𝑙𝑖𝑚ℎ)(𝑙𝑗𝑚𝑘 − 𝑙𝑘𝑚𝑗 ) 

ii. The hv-curvature tensor 𝑃ℎ𝑖𝑗𝑘  of Cis written as, 

 𝑃ℎ𝑖𝑗𝑘 = 𝐼,1(𝑙ℎ𝑚𝑖 − 𝑙𝑖𝑚ℎ)𝑚𝑗𝑚𝑘 

iii. The (v)hv-curvature tensor 𝑃𝑖𝑗𝑘  is written as, 

 𝑃𝑖𝑗𝑘 = 𝐼,1𝑚𝑖𝑚𝑗𝑚𝑘  

 

(ii) Three-dimensional Finsler space 

The Miron frame of a three-dimensional Finsler space is called the Moor-frame. The first vector 𝑒1)
𝑖  of 

Moor-frame {𝑒1), 𝑒2), 𝑒3)} is the normalized supporting element 𝒍𝒊, the second vector 𝑒2)
𝑖  is the normalized 

torsion vector 𝑚𝑖 = 𝐶 𝑖 𝐶 and the third𝑒3)
𝑖 = 𝑛𝑖 is constructed by, 

 𝑛𝑖 = 𝜀𝑖𝑗𝑘 𝑒1)𝑗𝑒2)𝑘where, 𝜀𝑖𝑗𝑘 = 𝑔−(1 2) 𝛿123
𝑖𝑗𝑘

 

 

Now, following two Finsler vector fields are defined [Mastsumoto(1986)] 

 h𝑖 = h𝛾𝑒𝛾)𝑖and 𝑣𝑖 = 𝑣𝛾𝑒𝛾)𝑖 then we have,                                                                   (1.2.6)      

𝐻𝛼)𝛽𝛾 =  
0        0   0    
0       0 
0    −hγ

hγ

0

 ,          𝑉𝛼)𝛽𝛾 =  

0      𝛿𝛾
2 𝛿𝛾

3

−𝛿𝛾
2  0 

−𝛿𝛾
3 −𝑣𝛾

𝑣𝛾
0

  

  

𝑙|𝑗
𝑖 = 0                                     𝐿𝑙𝑖|𝑗 = hj

i

𝑚|𝑗
𝑖 = 𝑛𝑖hj𝐿𝑚

𝑖|𝑗 = −𝑙𝑖𝑚𝑗 + 𝑛𝑖𝑣𝑗

𝑛|𝑗
𝑖 = −𝑚𝑖h𝑗𝐿𝑛

𝑖|𝑗 = −𝑙𝑖𝑛𝑗 −𝑚𝑖𝑣𝑗

                                                                              (1.2.7)      

Definition-4: The Finsler vector fields h𝑖  and 𝑣𝑖defined in (2.2.6) are called the h-and v-connection vectors of a 

three-dimensional Finsler space. 

 The (h)hv-torsion tensor of a three-dimensional Finsler space is given by [Mastusmoto(1986)], 

 𝐿𝐶𝑖𝑗𝑘 = 𝐻𝑚𝑖𝑚𝑗𝑚𝑘 − 𝐽𝜋 𝑖𝑗𝑘  (𝑚𝑖𝑚𝑗𝑛𝑘) + 𝐼𝜋 𝑖𝑗𝑘  (𝑚𝑖𝑛𝑗𝑛𝑘) + Jni njnk                         (1.2.8)      

The three scalar fields H, IandJ of (1.2.8) are called the main scalars of a three-dimensional Finsler space and 

π ijk   represent cyclic sum of the terms obtained by cyclic permutation of i, j, k. 

 The h-and v-connection vectors of a three-dimensional space has been firstly solved, in terms of main 

scalars explicitly, by Ikeda (1994).  

 

(iii) Four-dimensional Finslar space 

Prof. T. N. Pandey and D. K. Dwevidi developed the theory of four-dimensional Finsler spaces in the 

year 1997  in terms of scalars, taking li, mi, ni and a unit vector pi perpendicular to li, mi, ni as pi = ϵijkl ljmknl. 

The orthonormal frame (li, mi, ni, pi) as above defined in every coordinate neighborhood of a strongly non-
Riemannian Finsler space is called Miron frame. 

 M. Matsumoto defines the scalar component of a tensor in Miron frame as follows:- 

 

If a tensor Tjk
i of (1, 2) type for instance is given, we define scalars 

Tαβγ = Tjk
i eα)ieβ)

j
eγ)

k  

Then Tjk
i  is written in the form, 

Tjk
i = Tαβγeα)

i eβ)jeγ)k 
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 These𝐓𝛂𝛃𝛄 are called scalar components of 𝐓𝐣𝐤
𝐢  with respect to Miron frame 

    e1)
i = li,      e2)

i = mi,     e3)
i = ni ,      e4)

i = pi.  

From the equations 

gij l
ilj = gij m

imj = gij n
inj = gij p

ipj = 1 

and 

gij l
imj = gij l

inj = gij l
ipj = gij m

inj = gij m
ipj = gij n

ipj = 0 

we have, 

  gij = lilj + mimj + ni nj + pi pj  

Next, the C-tensorCijk =
1

2
∂ kgij  satisfiesCijk li = Cijk lj = Cijk lk = 0. So we have the expression of Cijk  in the 

form  

LCijk = Hmimjmk + Jninjnk + H′pipjpk + Iπ ijk   minjnk                                                         (1.2.9)      

  +Kπ ijk   mipjpk + J′π ijk   nipjpk −  J + J′ π ijk   ni mjmk  

 +I′π ijk   ninjpk −  H′ + I′ π ijk   mimjpk + K′π ijk   minjpk  

where, H, I, J, K, H′, I′, J′, K′ are called main scalars satisfying H + I + K = LC. 
Now we denote the h-and v-covariant differentiations of a tensor field with respect to  

 

𝐂𝐢by the short line (|i) and long line (|i) respectively, the following equations are derived                                                                                                                                                                                                                                                                                                   

   
L|i = 0,      li|j = 0,       mi|j = nihj − pijj ,

ni|j = pi kj − mihj ,     pi|j = mijj − ni kj

                                                            (1.2.10)      

  
Lli|j = hij ,            Lmi|j = −li mj + niuj + pivj

Lni|j = −linj − miuj + piwj ,    Lpi|j = −lipj − mivj − ni wj

                           (1.2.11)      

where, hi ,    ji ,   ki  are components of vectors called h-connection vector and ui ,    vi ,   wi are called components 

of v-connection vector respectively. 

 The equation (1.2.10) and (1.2.11) may be written as 

eα)|j
i = Hα)βγeβ)

i eγ)j  

eα)
i |j = Vα)βγeβ)

i eγ)j 

The surviving scalar components ofHα)βγand Vα)βγ are given by  

V1)1γ = V2)2γ = V3)3γ = V4)4γ = 0,              V2)1γ = V1)2γ = −δ2γ, V2)3γ = −V3)2γ = uγ,V2)4γ = −V4)2γ = vγ,   

V3)4γ = −V4)3γ = wγ,   V3)1γ = −V1)3γ = −δ3γ, V4)1γ = −V1)4γ = −δ4γ,       H2)3β = hβ = −H3)2β,   H4)2β =

jβ = −H2)4β,     H3)4β = kβ = −H4)3β. 

where,hα,    j
α
,   kα) and(uα,    vα ,   wα)( are scalar components ofhi and virespectively hα = hieα)

i ,   j
α

= j
i
eα)

i ,    

kα = kieα)
i ,  vα = vieα)

i ,    uα = uieα)
i ,wα = wieα)

i . The first scalar componentv1 = vil
i
 vanishes identically in a 

four-dimensional Finsler space. 

 The h-scalar derivative of the adopted components 𝑇 𝛼𝛽  of the tensor Tj
i of (1, 1) type is defined as 

Tαβ,γ =
δTαβ

δxk
eγ)

k + TμβHμ)αγ + TαμHμ)βγ 

where
δ

δxk
=

∂

∂xk
− Gk

r ∂

∂yr
and Gk

r
are non-linear connection of CΓ. 

 

Similarly the v-scalar derivative of the adopted components Tαβ of T is defined as, 

  Tαβ;γ = L
∂Tαβ

∂yγ
eγ)

k + TμβVμ)αγ + TαμVμ)βγ 

Thus Tαβ,γ and Tαβ;γ are adopted components of Tj|k
i  and LTj

i|k respectively. i. e. 

 Tj|k
i = Tαβ,γeα)

i eβ)jeγ)k                                                                                               (1.2.12)      

           LTj
i|k = Tαβ;γeα)

i eβ)jeγ)k                                                                                             (1.2.13)    

 

II. Geodesics 
The curve for shortest length, measured along the surface between any two points on the surface is called 

geodesic curve or geodesic. 

Geodesic Equation from Geodesic Curve with Finsler Space  

We know that  

𝑑𝑠 =  −𝑔 𝛼𝛽

𝑑𝑥 𝛼

𝑑𝑠

𝑑𝑥 𝛽

𝑑𝑠
𝑑𝑠  
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⇨  𝑑𝑠 =  ( − 𝑔 𝛼𝛽

𝑑𝑥 𝛼

𝑑𝑠

𝑑𝑥 𝛽

𝑑𝑠
)

1
2 𝑑𝑠  

To extremize length take𝛿  𝑑𝑠 = 0 

According to the Euler’s – Lagrange equation  

                                              
𝑑

 𝑑𝑠
 𝑔 𝛼𝛽  𝑢 𝛼  =

1

2
𝑔 𝛼𝛾 ,𝛽 𝑢

𝛼𝑢 𝛾                                                                     −(2.1) 

Where −𝑔 𝛼𝛽
𝑑𝑥 𝛼

𝑑𝑠

𝑑𝑥 𝛽

𝑑𝑠
 = 1𝑎𝑛𝑑 𝑢 𝛼 =  

𝑑𝑥 𝛼

𝑑𝑠
 

Hence 
𝑑

𝑑𝑠
 𝑔 𝛼𝛽  𝑢 𝛼  = 𝑔 𝛼𝛽

𝑑𝑢 𝛼

𝑑𝑠
+ 𝑔 𝛼𝛾 ,𝛽𝑢

𝛼𝑢 𝛾                                                                          −   (2.2) 

Hence equation (2.1) becomes 

𝑔 𝛼𝛽

𝑑 2𝑥 𝛼

𝑑𝑠 2 + 𝑢 𝛼 𝑢 𝛾 (𝑔
𝛼𝛽 ,𝛾

−
1

2
𝑔 𝛼𝛾 ,𝛽 ) = 0                                                                             − (2.3) 

Now we use 

𝑢 𝛼 𝑢 𝛾 𝑔 𝛼𝛽 ,𝛾 = 𝑢 𝛼 𝑢 𝛾 1

2
(𝑔

𝛼𝛽 ,𝛾
+ 𝑔 𝛾𝛽 ,𝛼 ) 

And multiply equation (2.3) by 𝑔 𝛽𝛾    to obtain 

𝑑 2𝑥 𝜏

𝑑𝑠 2 +
1

2
𝑔 𝛽𝛾 (𝑔

𝛼𝛽 ,𝛾
+ 𝑔 𝛾𝛽 ,𝛼 − 𝑔 𝛼𝛾 ,𝛽 )𝑢 𝛼𝑢 𝛾 =

𝑑 2𝑥 𝜏

𝑑𝑠 2 + ᴦ𝛼𝛾
𝜏

𝑑𝑥 𝛼

𝑑𝑠

𝑑𝑥 𝛾

𝑑𝑠
= 0                   − (2.4) 

Since a co-ordinate form 

ᴦ𝜈𝜆
𝜇

=
1

2
(𝑔𝛼𝜈 ,𝜆 + 𝑔𝛼𝜆 ,𝜈−𝑔𝜈𝜆𝛼

)𝑔𝜇𝛼  

⇨ ᴦ𝛼𝛾
𝜏 =

1

2
(𝑔𝛽𝛼 ,𝛾 + 𝑔𝛽𝛾 ,𝛼 − 𝑔𝛼𝛾 ,𝛽 )𝑔𝜏𝛽  

𝑢𝛼 =  
𝑑𝑥𝛼

𝑑𝑠
  , 𝑢𝛾 =  

𝑑𝑥𝛾

𝑑𝑠
 

Again from (1.1.1) &(1.1.9)  We have 

                                     𝑑𝑠 = 𝐿 𝑥𝑖 , 𝑑𝑥𝑖  =[𝑔𝑖𝑗  𝑥
𝑘 𝑑𝑥𝑖𝑑𝑥𝑗 ]

1

2                                                         − (2.5) 

From geodesics integral 

                              𝑔𝛼𝛽 = −𝑔𝑖𝑗  𝑥
𝑘 

𝑑𝑥 𝑖

𝑑𝑥 𝛼

𝑑𝑥 𝑗

𝑑𝑥 𝛽                                                                              − (2.6) 

Again from (2.2) we have 

                                        𝑔𝛼𝛽 ,𝛾  = [    
𝑑

𝑑𝑠
 𝑔𝛼𝛽   𝑢

𝛼   ̶ 𝑔𝛼𝛽
𝑑𝑢 𝛼

𝑑𝑠
]

1

𝑢𝛾𝑢𝛼                                                  − (2.7) 

                                        𝑔𝛾𝛽 ,𝛼   = [    
𝑑

𝑑𝑠
 𝑔𝛾𝛽  𝑢

𝛾   ̶ 𝑔𝛾𝛽
𝑑𝑢 𝛾

𝑑𝑠
]

1

𝑢𝛼𝑢𝛾                                                    − (2.8) 

                                         𝑔𝛼𝛾 ,𝛽   = [    
𝑑

𝑑𝑠
 𝑔𝛼𝛾  𝑢

𝛼   ̶ 𝑔𝛼𝛾
𝑑𝑢 𝛼

𝑑𝑠
]

1

𝑢𝛼𝑢𝛽                                                  − (2.9) 

From (2.6),(2.7),(2.8)&(2.9) we have the geodesics equation of the form  

𝑑2𝑥𝜏

𝑑𝑠2
+

1

2
𝑔𝛽𝛾  𝑔𝑖𝑘  𝑥

𝑗  
𝑑𝑥𝑖

𝑑𝑥𝛼

𝑑𝑥𝑘

𝑑𝑥𝛾
 − 𝑔𝑖𝑗  𝑥

𝑘 
𝑑𝑥𝑖

𝑑𝑥𝛼

𝑑𝑥𝑗

𝑑𝑥𝛽
   ‒ 𝑔𝑘𝑗  𝑥

𝑖 
𝑑𝑥𝑘

𝑑𝑥𝑦

𝑑𝑥𝑗

𝑑𝑥𝛽
  = 0             ̶(2.10 

Theorem- 

 The geodesic of the velocity space metric defined in 𝑑𝑠2 = 𝑑𝜒2 + 𝑠𝑖𝑛ℎ2𝜒 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2 . 
where the magnitude of the velocity is v = tanh𝜒 are paths of minimum fuel for a rocket ship changing its 

velocity. 

Proof –the geodesic is the path between two velocities which minimizes the arc –length between them, but arc –

length in the velocity space is just the magnitude of a small change of velocity. Science a rocket expends fuel 

monotonically for the boost it requires the geodesic of velocity space are paths of minimum fuel use.  
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