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Abstract: In the present paper, we introduce the theory of four dimensional Finsler space and define geodesic
equation with the basis of Finsler space. We also try to define geodesic equation to useful significance.

I.  Introduction
Finseler geometry is a kind of differential geometry, which was originated by P. Finselerin 1918. It is
usually considered as a generalization of Riemannian geometry. The definition of finseler space-

1.1 Finseler Space:

Suppose that we are given a function L (x¢,y?) of the line element (x’, y) of a curve defined in R. We
shall assume L as a function of class at least C” in all its 2n-arguments. If we define the infinitesimal distance ds
between two points P(x') and Q (x' + dx') of R by the relation

ds = L(x!,dx") (1.1.1)
then the manifold M" requipped with the fundamental function L defining the metrix (1.1.1) is called a Finsler
space .if L (x!, dx') satisfies the following conditions.

Condition A-
The function L (x!, ¥%) is positively homogeneous of degree one in y' i.e.
L (xLky) =kL(x',y), k>0 (1.1.2)
Condition B-
The function L (x!, ¥%) is positively if not all y* vanish simultaneously i.e.
L (x%,y") > 0with X;,(y)? # 0 (1.1.3)

Condition C-
The quadratic form

L9 .o _asz(x,y) A
0L (x,y)e'e =iy ¢ f‘ 1.1.4)
is assumed to be positive definite for any variable &'.
Form Euler’s theorem on homogenous functions, we have
0L (e, y)y' =L (%) (1.1.5)
0;0,L*(x,y)y' =0 (1.1.6)
We put
1 . .
gij(x;:)’)=§aiajlf2(x;y) (117)
Using the theory of quadratic form and the condition C, we deduce form (1.1.4) that-
g9.y) = g;(xy) >0 (1.1.8)
for all line elements (x¢, y*). If the function L is of particular form
L (x',dx") = [g; (x*)dx'dx/ ]/ (1.1.9)

where the coefficients g;; (x*) are independent of dx’, the metric defined by this function is called
Riemannian metric and manifold M™ is called a Riemannian space. Throughout the paper, F" or (M",L) will
denote the n-dimensional finsler space, where as n-dimensional Riemannian space will be denoted by R™.

1.2 Intrinsic Fields of Orthonormal Frames :

Berwald theory of two-dimensional Finsler space is developed based on the intrinsic field of
orthonormal frame which consists of the normalized supporting element ' and unit vector orthonormal to ['.
Following idea Moor introduced, in a three-dimensional Finsler space, the intrinsic field of orthonormal frame
which consists of the normalized supporting elementl‘, the normalized torsion vector C!/Cand a unit vector
orthogonal to them and developed a theory of three-dimensional Finsler spaces. Generalizing the Berwald’s and
Moor’s ideas, Miron and Matsumoto[ (1986), (1977), (1989)] developed a theory of intrinsic orthonormal frame
fields on n-dimensional Finsler space as follows.
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Let L(x, y) be the fundamental function of an n-dimensional Finsler space and introduce Finsler tensor
fields of (0, 2a-1) type, « = 1,2,.....,n by
1.
— 0,

Lijiy.iggy = sa %
Then we get a sequence of covariant vectors
Layi = Lijyjs.zasiza—2 @t 9’1 e venr g/207372072
Definition-1: If (n-1) covariant vectors Ly);, @ = 1, 2,....., n-1 are linearly independent, the Finsler space is
called strongly non-Riemannian.
Assuming above n-covectorsL,); are linearly independent and put e{') = Lil) /L = l'. Here and in following we

Y S

) 12a—1

use raising and lowering of indices asLl) =g¥ Lyy;.

Further putting Nyy;; = g;; — eq);€1); and matrix Nyy = Nyy; is of rank (n-1). Second vector ey is introduced by
eé) = Li2)/ L,

where, L, is the length ofLiz) relative to y'. Next we put Nyyi; = Nyyyj — ezy€z);, E N2)1L3) and so third
vectores) is defined by,

esy = E3 /Es,
where, E,is the length of Eé)relative to ¥%. The repetition of above process gives a
vector €41y, r=1,2,...... ,n-1 defined by
;+1) = l+1)/
where, Eri+1) Nr)] Lr+1)Er+1 is the length of E; ;) relative to y and mij = Ne—1yij — €ryi€a))-

Definition-2: The orthonormal frame {e,}, @ = 1, 2,.....,n as above defined in every in every co-ordinate
neighborhood of a strongly non-Riemannian Finsler space is called the ‘Miron Frame’.

Consider the Miron frame {e, }, If a tensor T}i of (1, 1)-type, for instance, is given then

T! =T zel ez

J aB Fa)=p)j
where, the scalars T,z are defined as

Taﬁ = Eiea)ieé)

These scalars T, are called the scalar components of T;'with respect to Miron frame.

Let Hyyp, be scalar components of the h-covariant denvatlves ey and V4, /L be scalar components of the v-

a)lj

covarlant derivatives e’ |; with respect to CI" of the vector ea) belonging to the Miron frame. Then

a) l]
ey = Ha)ﬁy €)ey
€l = Vaysy €80y

where, the scalars H,p, and Vg, satisfying the following relations [Berwald (1947)].

Hoy = 0. Hogy = ~Hpyay.
Vaysy = Oy = 056y, Vaygy = —Vpyay
Definition-3: The scalars H,)p, and V5, are called connection scalars.
If Cop, /Lbe the scalar components of the (h)hv-torsion tensor C}}c ie.,
LG = Capy €ayep); ypi
then [Hambo,H(1934)], we have
Proposition-1:

I Cl/?y =0
il. Copu = LC, Csppp =i = Cpy, = Ofor n > 3, where Cis the length of C*.
Now, we consider scalar components of covariant derivatives of a tensor field, for instance, Ti Let Typ, and

Tap sy /L be the scalar components of h-and v-covariant derivatives with respect to CI’ respectlvely of a tensor T‘
ie.,

Tk = Tap v ) p); €k (1.2.1)
and
LT | = Tap,y€ayep); €pyis (122)
then we have [Hambo, H(1934)]
aﬁ b4 (516 ap )ey) H way + Ta,u H,u)ﬁy (123)
and Tz, = L(0 aﬁ)ey) + T Vinay + TawVioygy - (1.2.4)

The scalar components T, , and T,z ,, are called h-and v-scalar derivative of T, respectively.
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(i) Two-dimensional Finsler space

The Miron frame {e;), e} is called the Berwald frame. The first vector ej)is the normalized
supporting element I = y'/L and the second vector ej) = m' is the unit vector orthogonal to I'. IfChas non-
zero lengthC,them! = 4+ C'/C. The connection scalars Hgypyand Vg, of a two-dimensional Finsler space are
such that

Hoypy =0, Voypr =0, Voypa = (5;!2;,which implies
=0, mj; =0, LI'|; = m'm;, Lm'|; = —I'm;(1.2.5)
There is only one surviving scalar components ofLC;j, namelyCyy, If we putl = Cyy;.
Then LCy = Imymymy,
The scalar 7is called the main scalar of a two-dimensional Finsler space.
Proposition-2: In a two-dimensional Finsler space

i The h-curvature tensor Ry of CI' is written as,
Rpije = R(Lym; —my)(my, — [my)
ii. The hv-curvature tensor Py of CLis written as,
Ppije = L1 (lym; — lmy )mymy,
iil. The (v)hv-curvature tensor Py, is written as,

Py, = Iymymymy,

(ii) Three-dimensional Finsler space
The Miron frame of a three-dimensional Finsler space is called the Moor-frame. The first vector e{) of

Moor-frame {e;y, €,, e3)} is the normalized supporting element I%, the second vector eé) is the normalized
torsion vector m* = C!/Cand the thirdeé) = n! is constructed by,

n' = el e); e, where, ek = g~/

Now, following two Finsler vector fields are defined [Mastsumoto(1986)]
h; =h,e,;andv; = v, e, then we have, (1.2.6)

)i V)i
0 0 0 o & &
Haypy = [8 }(: h, l’ Vaygy = |67 0 Uy
- 3
B TR = R
mf; = n'hyLm!|; = =I'm; + n'v; (1.2.7)
nj = —m'hyln'|; = —l'n; —m'y

Definition-4: The Finsler vector fields h; and v;defined in (2.2.6) are called the h-and v-connection vectors of a
three-dimensional Finsler space.

The (h)hv-torsion tensor of a three-dimensional Finsler space is given by [Mastusmoto(1986)],

LCy = Hmymymy, — Jrp y(mymyny) + I (mymyny.) + Jnyngmy (1.2.8)
The three scalar fields H, landJ of (1.2.8) are called the main scalars of a three-dimensional Finsler space and
Tjk) represent cyclic sum of the terms obtained by cyclic permutation of i, j, .

The h-and v-connection vectors of a three-dimensional space has been firstly solved, in terms of main
scalars explicitly, by Ikeda (1994).

(iii) Four-dimensional Finslar space

Prof. T. N. Pandey and D. K. Dwevidi developed the theory of four-dimensional Finsler spaces in the
year 1997 in terms of scalars, taking I, m’, n' and a unit vector p' perpendicular to I', m', n' as p' = € ;mn,.
The orthonormal frame (I', m', n!, p') as above defined in every coordinate neighborhood of a strongly non-
Riemannian Finsler space is called Miron frame.

M. Matsumoto defines the scalar component of a tensor in Miron frame as follows:-

If a tensor T]‘k of (1, 2) type for instance is given, we define scalars
— i J ok
' Tapy = Ticeayiep) &y

Then T is written in the form,

T = Topy€0)€p)i €9k
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TheseT,g,, are called scalar components of Tiik with respect to Miron frame
eil) =1i eiz) =mi, ei3) =nl, ein =pl.
From the equations
gijlilj = gijmimj = gijninj = gijpipi =1
and
gijlimj = gijlini = gijlipj = gijminj = gijmipj = gijnipj =0
we have,
g = LI + mym; + nyn; + p;p;
Next, the C-tensorCy, = %E)kgij sa‘[isﬁesCiikli = Ci]-kli = Ci]-klk = 0. So we have the expression of Cyj, in the
form
LCyy = Hmym;my + Jnynyn, + H'p;p;py + In(i]-k){min]-nk} (1.2.9)
+K7t(ijk){mipj P} + ],n(ijk){nipj p}— 0+ ],)Tc(ijk){nimjmk}
g {mnypi} = (H + Vg {mimypi} + Ko {minpi}
where, H, I, J, K, H,, 1, ], K are called main scalars satisfying  + I + K = LC.
Now we denote the h-and v-covariant differentiations of a tensor field with respect to

Ciby the short line () and long line (|i) respectively, the following equations are derived

{Lli =0, Ly =0 my =nih;—p;j;, (12.10)
n;; = pik; — mihy,  p;; = myjj — nik; -

{ Llj; = hy, Lm;|; = =Lim; + nu; + pyv; (2.11)
Lni|j = —lin; — myu; + p;w;, Lpy; = —lip; — myv; — nyw; -

where, h;, j;, k; are components of vectors called h-connection vector and u;, v;, w; are called components
of v-connection vector respectively.
The equation (1.2.10) and (1.2.11) may be written as

ey = Huypyep ey,

€yl = Vi ) ey)
The surviving scalar components ofHyp,and Vg, are given by
Viyiy = Vayoy = V)3 = Vayay = 0, Vayry = Viyay = =82y, Vay3y = —Vaypy = Wy, Vapay = —Vaypy = vy,
Vayay = =Vipzy =Wy, Vayyy = =Viygy = =83, Vayyy = —Vajay = =04y, Haysp = hy = —Hzypp,  Happp =
Jp = "Hayap.  Hajap = ky = —Hayay. | ‘
whereh,, j, ko) and(u,, v, Ww,)( are scalar components ofh; and virespectively h, = hiep), j, = j;ey,

i

0> Wo = wiea). The first scalar componentv, = Vili vanishes identically in a

k, = kiefx), Vy = Vieix), u, = ue
four-dimensional Finsler space.
The h-scalar derivative of the adopted components 7, of the tensor T; of (1, 1) type is defined as

+ TauHu)BY

TGB N
Topy = Sxk N + TygHpay

7

5 2 . .
where— = — — Gy —and Gjare non-linear connection of CT.
8x’ ox ay"

Similarly the v-scalar derivative of the adopted components T,g of 7'is defined as,

oy 4
T Looen T TV + T Vigsy

oy = = ou woy

Thus T, and T, are adopted components of T}|k and LT} | respectively. i. e.
Tii = Tupy €0 epicpk (1.2.12)
LTjli = Tope08p)i€nk (1.2.13)

II.  Geodesics
The curve for shortest length, measured along the surface between any two points on the surface is called
geodesic curve or geodesic.
Geodesic Equation from Geodesic Curve with Finsler Space
We know that

dr “av ”
& =g & ¢
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&’
- f @ f (~90 G )"
To extremize length taked [ & =0
According to the Euler’s — Lagrange equation

d i
(9 ua) =G0 g1 U —@.1)

o ar @

Where(—‘gty,} ) =lad u” ~
tjl a

Hence;(‘glﬁ ”a) =9y o tIa puu’ - (2.2
Hence equation (2.1) becomes

2/1,[2’ Ji

9 a5 7 +zz”zz”(gl¢,_y—§ga,,_ﬁ)=0 - (2.3

Now we use

b
uu” gy, = ”a”}/g(gqg,y + 95 a)
And multiply equation (2.3) by gﬁ’ to obtain
x7 1 P a},_dz/r’ L a7
Q’S‘Z+§‘g (‘q@ﬁ_,,'*'g;ﬁ,a_gay,ﬁ)H u _d;,z-l_ralf & &
Since a co-ordinate form

1
I“j/,l:} (gav,/'l + ga/l,v—gvm )gua

=0 — (24

1
= Fzy = E (gﬁa,y + 9py.a — gay.ﬂ)grﬂ
dx“ , dxY
ds '’ u ds

u® =

Again from (1.1.1) &(1.1.9) We have
1
ds = L(x',dx") =[g;; (x*)dx'dx/ ]2 - (2.5
From geodesics integral

dx! dxJ
9ap =_g1}( )d:“deﬁ _(26)
Again from (2.2) we have
d du® |
apy = [ _(gaﬁ ua)_gaﬁ :_S]W - (27)
ul.
Iypa = [ = (9w )-Gys i Sy - 28
o
Jayp = E(gay ) gay ds ]u ayB —(29)
From (2.6),(2.7),(2.8)&(2.9) we have the geodesws equatlon of the form
d’x* ] dxt dx* dxt dx/ dx* dx) |
d52 + glk(-x )dxa dx? gu( )dx”‘ dxﬁ gk]( ) xyw =0 —(2]0
Theorem-

The geodesic of the velocity space metric defined in ds? = dy’ + sinh?y(d6? + sin’6d@?).

where the magnitude of the velocity is v = tanhy are paths of minimum fuel for a rocket ship changing its
velocity.

Proof —the geodesic is the path between two velocities which minimizes the arc —length between them, but arc —
length in the velocity space is just the magnitude of a small change of velocity. Science a rocket expends fuel
monotonically for the boost it requires the geodesic of velocity space are paths of minimum fuel use.
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