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Abstract: Logistic regression is widely used as a popular model for the analysis of binary data with the areas 

of applications including physical, biomedical and behavioral sciences. In this study, the logistic regression 
model, as well as the maximum likelihood procedure for the estimation of its parameters, are introduced in 

detail. The study has been necessited with the fact that authors looked at the simulation studies of the logistic 

models but did not test sensitivity of the normal plots. The fundamental assumption underlying classical results 

on the properties of MLE is that the stochastic law which determines the behaviour of the phenomenon 

investigated is known to lie within a specified parameter family of probability distribution (the model). This 

study focuses on investigating the asymptotic properties of maximum likelihood estimators for logistic 

regression models. More precisely, we show that the maximum likelihood estimators converge under conditions 

of fixed number of predictor variables to the real value of the parameters as the number of observations tends to 

infinity.We also show that the parameters estimates are normal in distribution by plotting the quantile plots and 

undertaking the Kolmogorov -Smirnov an the Shapiro-Wilks test for normality,where the result shows that the 

null hypothesis is to reject at 0.05% and conclude that parameters came from a normal distribution. 
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I. Introduction 
Regression analysis is one of the most useful and the most frequently used statistical methods [24, 3]. 

The aim of the regression methods is to describe the relationship between a response variable and one or more 

explanatory variables. Among the different regression models, logistic regression plays a particular role. The 

basic concept, however, is universal. The linear regression model is, under certain conditions, in many 

circumstances a valuable tool for quantifying the effects of several explanatory variables on one dependent 

continuous variable. For situations where the dependent variable is qualitative, however, other methods have 

been developed. One of these is the logistic regression model, which specifically covers the case of a binary 
(dichotomous) response. [6] discussed an overview of the development of the logistic regression model. He 

identifies three sources that had a profound impact on the model: applied mathematics, experimental statistics, 

and economic theory. [?] also provided details of the development on logistic regression in different areas. He 

states that, “Sir [5] introduced many statisticians to logistic regression through his 1958 article and 1970 book, 

“The Analysis of Binary Data”. However, logistic regression is widely used as a popular model for the analysis 

of binary data with the areas of applications including physical, biomedical, and behavioral sciences. 

In this study, the logistic regression models, as well as the maximum likelihood procedure for the 

estimation of their parameters, are introduced in detail. Based on real data set, an attempt has been made to 

illustrate the application of the logistic regression model. 

Simulation is used in the study since it involves construction of complicated integrals that do not exists 

in a closed form that can be evaluated. Simulation methods can be used to evaluate it to within acceptable 
degrees of approximation by estimating the expectation of the mean of a random sample. 

 

II. Literature Review 
The method of maximum likelihood is the estimation method used in the logistic regression models, 

however, two other methods have been and may still be used for estimating the coefficient . These methods are 

the least squares and the discriminant function analysis. The linear model approach of analysis of categorical 

data proposed by Grizzle et al.(1969) used estimaton based on NonLinear Weighted S(NLWS). They 

demostrated that logistic model can be handled by the method of maximum likelihood using an iterative 

reweighted least squares algorithm. The discriminant approach to estimation of the coefficients is of historical 
importance as popularized by [4]. [14] compared the two methods when the model is dichotomous and 
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concluded that the discriminat function was sensitive to the assumption of normality. In particular, the 

estimation of the coefficient for the nonnormal distributed variables are biased away from zero, when the 

coefficient is in fact different from zero. This implies that for the dichotomous independent variable the 

discrimnant function will overestimate the magnitude of the coefficient. 

According to [13], the fact concerning the interpretability of the coefficients is the fundamental reason 

why logistic regression has proven such a powerful analytic tool for epidemiologic research. At least, this 

argumentation holds whenever the explanatory variables x  are quantitative. [9] investigate the asymptotic 

properties of various discrete and qualitative response models (including logit model) and provided conditions 

under which the MLE has its usual asymptotic properties, that is, the p -vector   of coefficients of linear 

combinations  ,x  has to be estimated from a finite sample of n  observations. The method of analysis of 

generalized linear models can be used since logistic models are sub-category [17]. 

[11] established that the maximum likelihood estimators are the best asympotically and strong 

consistent estimators of the logit model, other estimators have been suggested for logit model including the 

minimum   divergent estimator which are generalization of maximum likelihood and are also consistent and 

asymptotically normal [20]. 

[25] discussed the inconsistency of the generalized method of moments estimator of qualitative models 
with random regressors and suggested a suitable modification in case of the probit and not the logit. 

In the parameter estimation and inference in statistics, maximum likelihood has many optimal 

properties in estimation: sufficiency (complete information about the parameter of interest contained in its 

estimation); consistency (true parameter value that generated the data recovered asymptotically, i.e. data of 

sufficiently large samples); efficiency (lowest possible variance of parameter estimates achieved asymptotically) 

and parameterization invariance. The asymptotic normality of the maximum likelihood in logistic regression 

models are also found in [18] and [19]. [18] presents regularity conditions for a multinomial response model 

when the logit link is used. [19] presents regularity conditions that assure asymptotic normality for the logit link 

in binomial response models and further verifies that his conditions are equivalent to those of [18]. [7] discuss 

the asymptotic distribution of the MLE for constructing confidence intervals and conducting tests of 

hypotheses.[12] prove that the MLE is asymptotically normal in this setting as long as certain regularity 

conditions are satisfied 
 

2.1  Logistic function 

The function has been discussed by many reseachers like [10]. It is given by; 
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when modelling a bernoulli random variable with multivariables, one directly models the probabilities 

of group membership, as follows; 
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where g  in 1 is given by 

 

   dd XXXXg 11221110=;     (3) 

 
To illustrate, the applicability of the logistic function, the bold curve in the figure 0 shows that the 

logistic function puts more weight on the tails than the normal distribution. 
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Figure  1: Standardized Normal and Logistic CDF’s 

  

The logistic model is bounded between zero and one, this property estimates the possibility of getting 

estimated or predicted probabilities outside this range which would not make sense. Also with a proper 

transformation, one can get a linear model from the logistic function. [10] uses the logit function of the 

Bernoulli distributed response variable. Transforming 2 as in [10] we have ; 
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the function 4 is a generalized linear model (GLM) with d  independent variables. 

The motivation to the use of logistic model is that it follows the properties of the GLM. Lets define the 

hypothetical population proportion of cells for which 1=Y  as  xXYP =|1== . Then the theoretical 

proportion of cells for which 0=Y  is  xXYP =|0==1  . We estimate   by the sample proportions 

of cells for which 1=Y . In the GLM context, it is assumed that there exists a set of predictor variables, 

dXXX 11211 ,,,  , that are related to Y  and therefore provides additional information for estimating Y . For 

mathematical reasons of additivity and multiplicity, logistic model is based on linear model for the log odds in 

favour of 1.=Y  
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where 
d  of unknown parameters. 

The logistic regression (logit link)  
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and  
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thus the inverse of the logit function in terms of  ;X  is given by;  
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This model can be rewritten as 
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III. Methodology 

3.1  Maximum Likelihood Estimation of the Parameter β  

[10] pointed out that estimating the function  xXYP =|1=  in 1 is equivalent to estimating the 

function  ;Xg  2. Parametric estimation of  ;Xg  can be found in [15], [21] and [22] among other 

authors, they used the maximum likelihood estimation method. As they pointed out, one first defines the 

likelihood function. For the Bernoulli distribution case we have 
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So, taking the logarithm and upon simplification we have 
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The regularity conditions requires that the MLEs of   satisfies the usual consistency and asymptotic 

normality properties [1, 11]. 

The optimization of the function in 5 with respect to the unknown vector   requires iterative 

techniques since first derivative is nonlinear in ̂  and has no simple analytical solution for ̂  [16]. 

 

   ij

ijj

d

i

ijj

d

i

iiji

d

i

' x

Xexp

Xexp

nxyXYL

































1=

1=

1=
1

=;,  (6) 

 

 

 ijiiiji

d

i

xnxy 
1=

=  (7) 

 

In matrix form, 7 can be rewritten in the form; 
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The equation,  



On the Estimation and Properties of Logistic Regression Parameters 

www.iosrjournals.org                                                    61 | Page 

 
























ijj

d

i

ijj

d

i

i

Xexp

Xexp







1=

1=

1

=  

is strictly increasing function (monotone) of j  and approaches 0  as j  and approaches n  as 

.j  The second derivative of 6 is strictly negative for all sj '  and as such the solution is a maximum 

[2, 23]. 

 

3.2  Numerical Optimization 

The Newton-Rapson method requires that the starting values be sufficiently close to the solution to 
ensure convergence. Under this condition the Newton-Raphson iteration converge quadratically to at least a 

local optimum. When the method is used to the problem of maximizing the likelihood function, it produces a 

squence of values 
      ,,, 10   that under ideal conditions converge to the MLEs .ˆ

mle  

the motivation to the use of the method is that this approximation is valid provided the unknown 

parameter 
1j  is in the neighbourhood of 

j . Since  ;, XYL  corresponds to the objective function to be 

minimized,  ;, XYL'
 represents the gradient vector, the vector of first order partial derivative and  I  to 

the negative of the Hessian matrix  H  which is a matrix of the second order derivative of the objective 

function  ;, XYL''
. Then the Hessian matrix is used to determine whether the minimum of the objective 

function  ;, XYL  is achieved by the solution ̂  for the equation   0=;, XYL'
, that is, whether ̂  is a 

stationary point of  ;, XYL . If this is the case the ̂  is the maximum likelihood estimate of the matrix of   

the iterative formula for finding a maximum or minimum of a function  xf  is given by ; 
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In otherwords, 
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which is the iterative generator. 

But from 9 
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The matrix  I  is a    11  pp  matrix. The matrix plays a key role in the estimation procedure and 
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yields the logit estimates obtained by inverting the Hessian (or expected Hessian ) matrix or the information 

matrix. Then the Newton-Raphson iterative solution of the system of equations can be used to obtain the 

solution of s'  . At the 
thi  iteration, estimates are obtained as; 
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where the least square estimates of the s'  are used as initial estimates. 

Continue applying Equation 10 until there is essentially no change between the elements of   from 

one iteration to the next. At that point, the maximum likelihood estimates are said to converge. 

 

IV. Simulation study 
4.1  Checking consistency of the maximum likelihood Estimators 

Nonlinear system of equations arise commonly in statistic. In some cases, there will be a naturally 

associated scalar function of parameters which can be optimized to obtain parameter estimates. The MLE cannot 

be written in closed form expression, thus substantialy complicating the task of evaluating the characteristic of 

its (finite sample) distribution, whether the variables are random or not. Maximum likelihood estimator 

simulation for large samples are carried out using the Monte-Carlo simulation method. The simulations of the 

study involves the regressor variables which are fixed and for each model parameter, n-simulation binomial data 

set are generated for each of the regressor variable nxxx ,,, 21  . We consider the complete model to be 

simulated as;  
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where iy  is the dependent variable to incorporate the effects of the independent variables. The row 

vector iX  represents the 
thi  observations on all predictor variables. 

The basic model can be structured as  
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For the logit model; 
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which is the cdf of the logistic distribution. 

For each generated data set, the mle for ̂  is computed and saved. This procedure is repeated for 

0,200,300,50=n  and 700  at each of the regressor levels. 

The following table gives the results of the simulation study for different sample sizes. 

Table  1: Estimated-parameter values and their standard errors using the regression model for different sample 

sizes 
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 -
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 -
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 -22.872   
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2.947  
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 3.425   

2.173  

 3.236   

0.436  

 3.177   

0.357  

2   
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4.085  

 0.136   

0.079  

 0.129   

0.057  

 0.127   

0.047  

3   
 

0.039  

 

0.716  

 0.036   

0.024  

 0.034   

0.018  

 0.033   

0.015  

4   
 

1.501  

 

2.204  

 0.983   

0.29  

 0.937   

0.206  

 0.920   

0.169  
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 As seen in the table 0, as the sample size increases from 200=n  to 700=n  the estimated values 

of the parameters are very close to the true values 43210 and,,,,   and the standard deviations of the 

estimates are noticeably smaller. This indicates that this simulation study performs well in showing the 

consistency of the maximum likelihood estimators for parameters of the logistic model. 

 

4.2  Regularity conditions of the asymptotic normality of a Binomial Response model  

[9] present regularity conditions for a very general class of generalized linear models. In this section, 

we explain the regularity conditions under the Binomial response model and then we apply Theorem 1 to show 

the asymptotic properties of ML estimators for the Binomial response model. 

(C1): The pdf  ;Xg  is distinct, that is 
'   implying that    'XgXg  ;;  , thus the 

model is identifiable. 

The proof of this assumption has been well documented by [23] 

(C2): The pdf have common support for all  , the true parameter vector is in the interior of this space. 

This condition holds if the domain (support) of X  is a closed set [18]. 

[18] noted that the restriction that true parameter vector in the interior excludes some cases where 

consistent and asymptotically normal (CAN) breaks down. This is not a restrictive assumption in most 

application, but it is for some. 

(C3): The response model is measurable in x , and for almost all x  is continous in the parameters. The 

standard models such as the probit, logit and the linear probability model are all continous in their argument and 

in x , so that this assumption holds. 

(C4): The model satisfies a global identification (that is it guarantees that there is at most one global 
maxima, see [18]. 

The proof of this assumption has been discussed well by [23]. The concavity of the log-likelihood of an 

observation for the logit guarantees global identification, provided only that the sx  are not linearly 

independent. 

(C5): The assumption states that the model log likelihood is twice or three times differentiable, this is 
true provided the parameters do not give observations on the boundary in the linear or log linear models where 

probabilities are zero or one. [8] shows that these conditions are specifically satisfied for the binomial model. 

(C6): The log likelihood and its derivative have bounds independent of the parameters in some 

neighbourhood of the true parameter values. The first derivative have the Lipschitz property in the 

neighbourhood. This property is satisfied by the logistic model since it is continously differentiable 

(McFadden,1999). 

(C7): The pdf  ;Xg  is three times differentiable as a function of   . Further, for all   , 

there exists a constant c  and a function  xM  such that for all cc  00 <<   and all x  in the support 

of X . 
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for all cc  00 <<   and all x  in the support of X . The proof of this assumption has been done by 

many authors like [2, 23]. This implies that the information matrix, equal to the expectation of the outer product 

of the score of an observation is non-singular at the true parameter. 

The conditions    7,,1 CC   may seem restrictive at first, but are met for a wide range of link 

functions. The results guarantee that the MLE estimates of   is essentially carried out by linearizing the first 

order condition for the estimator using a Taylor’s expansion. Since the binomial model satisfies the above 

conditions, then following theorem holds for the parameter 


.  

1 Let nxxxx ,,,, 321   be iid each with a density );( xg . Then, with probability tending to 1 as 
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n , there exists solutions ),,(ˆ=ˆ
1 nn xx   of the likelihood equations.  
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(c) jn̂  is asymptotically efficient in the sense that  
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4.3  Normality of the ML estimators 

 Under some assumptions that allows among several analytical properties, the use of the delta method, 

the central limit theorem holds. We conducted a simulation study via the freeware package R. We show how the 
properties of an estimator are affected by changing conditions such as its sample size and the value of the 

underlying parameters. Employing it in practice, we illustrate the large sample behavior of the estimated 

parameters )ˆand,ˆ,ˆ,ˆ,ˆ(=ˆ
43210
  and also look at the sensitivity of the QQ-plots using the Shapiro-

Wilks and the Kolmogorov-Smornov test, we show that;  
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For different sample sizes of 2000and,150000,500,700,10=n , we calculate the Equation 11 

and repeat it 5,000 times. The results are presented in the Figures 1, 2, 3, 4 and 5, through the quantile-quantile 

normal plot for ̂ . 

A quantile-quantile normal graph, plots the quantiles of the data set against the theoretical quantiles of 
the standard normal distribution. If the data set appears to be a sample from a normal population, then the points 

will fall roughly along the line. The computation results indicates that the distribution of parameters 

approximates normal distribution as sample size, n  increases. 
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Figure  2: Monte Carlo Simulation of finite sample behaviour for normality of the parameter 0̂  

Table  2: Test for Nomality 0  

   Kolmogorov-Smirnov test  Shapiro-Wilks test 

Sample size(n)   Test 

statistic (D)  

 P-value   Test 

statistic (D)  

 P-value 

500  0.0501  0.09864 0.9948 0.0016 

700  0.0664  0.0100 0.9961 0.0119 

1000  0.0389  0.3246 0.9964        0.01997 

1500  0.0325  0.5600 0.9987 0.3417 

2000  0.0323  0.5567 0.9986 0.0462 

 

 

Figure  3: Monte Carlo Simulation of finite sample behaviour for normality of the parameter 1̂  

Table  3: Test for Nomality 
  Kolmogorov-Smirnov test   Shapiro-Wilks test 

Sample size(n)   Test 

statistic (D)  
 P-value  

 Test 

statistic (D)  
 P-value  

500  0.0600  0.0015   0.0600   0.0015 

700  0.0584   0.0037   0.0654   0.0004 

1000  0.0493   0.0156   0.0493   0.0156 

1500  0.0431   0.0491   0.0431   0.0491 

2000  0.0312   0.2846   0.0312   0.2846 
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Figure  4: Monte Carlo Simulation of finite sample behaviour for normality of the parameter 2̂  

 

Table  4: Test for Nomality 
   Kolmogorov-Smirnov test   Shapiro-Wilks test 

Sample size(n)           Test  

statistic (D)  

  

P-value  

        Test  

statistic (D)  

  

P-value  

500  0.0309   0.2948   0.9998   0.0899 

700  0.0346   0.1831   0.9970   0.1934 

1000  0.0326   0.2378   0.9961   0.05678 

1500  0.0295   0.3457   0.9974   0.0403 

2000  0.0291   0.3661   0.9995   0.1101 

 

Figure  5: Monte Carlo Simulation of finite sample behaviour for normality of the parameter 3̂  
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Table  5:  Test for Nomality 
   Kolmogorov-Smirnov test   Shapiro-Wilks test 

Sample size(n)   Test  

statistic (D)  

 P-value   Test 

statistic (D)  

 P-value  

500  0.0315   0.2731   0.9930   0.0001 

700  0.0287   0.3825   0.9952   0.0029 

1000  0.0167   0.5498   0.9969   0.0471 

1500  0.0122   0.8700   0.9945   0.0707 

2000  0.0096   0.8374   0.9988   0.7674 

 

 

Figure  6: Monte Carlo Simulation of finite sample behaviour for normality of the parameter 4̂  

Table  6:  Test for Nomality 
  Kolmogorov-Smirnov test   Shapiro-Wilks test 

Sample size(n)   Test 

statistic (D)  

 P-value   Test 

statistic (D)  

 P-value 

500  0.0426   0.0529   0.9958   0.0084 

700  0.0363   0.1431   0.9916   .01843 

1000  0.0459   0.2952   0.9968   .04791 

1500  0.0225   0.6946   0.9973         0.09807 

2000  0.0187   0.9001   0.9995   0.9980 

 

V. Conclusion 
The study shows that the asymptotic properies of the maximum likelihood estimates of the logistic 

regression model can be obtained by some transformation of the regularity conditions of the linear regression 
model. The simulation studies done show that there is consistency in the parameter estimates, where fixed 

values of regression parameters are used, this shows that simulated estimates converge well to the fixed values 

as the sample size approaches infinity. The finite behaviour of consistency is upheld. 

On the otherhand, simulated result on the normality were taken using the Q-Q-plots and using the the 

Kolmogorov-Smirnov and Shapiro-Wilks test. The analysis shows that the parameters are normally distributed, 

this can be checked on the decrease of the statistic values on both tests and also from tables 1, 2, 3, 4 and 5, we 

see that we fail to reject the null hypothesis at 5%=  as the sample size increases and conclude that the 

samples are taken from the normal distribution. 
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