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Abstract: In this article, we use the Riccati transformation technique and some inequalities, to establish 

oscillation theorems for all solutions to even-order quasilinear neutral difference equation 
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I. Introduction 

All over the world, during the last decade or two a lot of of research activity is undertaken on the study of 

the oscillation of neutral delay difference equation. Such equations appear in a number of important appilcations 

including problems in population dynamics or in "cobweb" models in Economics. Further, they are frequently 

used for the study of distributed networks containing lossleds transmission lines see the Hale[11] . Upto now, 

many studies have been done on the oscillation problem of even order difference equations, and we refer the 

reader to the papers ,29,30,31]4,25,26,2718,20,21,2,13,14,15,[2,3,4,5,8  and the references cited  

there in. 

In this paper, we consider the oscillatory behaviour of solutions to the even-order neutral difference equation  

                        
   0

1 0,=)()())(()()( nnnxnqnxnpnxm    
                   (1) 

  

We will use the following assumptions:   

    • 2m  is even and 1  is the ratio of odd positive integers.  

    • )}({ np  is a positive real sequence such that anp  )(0  is not identically zero, where a  is a 

constant  

    • )}({ nq  is a positive real sequence such that 0)( nq  for 0nn  .  

    • )(n  and )(n  are positive sequences such that 

 =)(lim=)(lim nn nn   such that 
1 , 

1 and   exist.  

 

     By a solution of (1), we mean a real sequence )}({ nx  which is defined for 1,2,....=n  and which 

satisfies Equation (1) for )}(),({ nnMaxn  . A solution )}({ nx  of (1) is said to be eventually positive if 

0>)(nx  for all large n , and eventually negative if 0<)(nx  for all large n . 

     It is said to be oscillatory if it is neither eventually positive nor eventually negative. We will also say that (1) 

is oscillatory if all of its solutions are oscillatory. 

 

I.Kubiaczyk and S.H.Sekar [16]  studied the second order sublinear delay difference equation  

    
)(1.<00,=)( 1Exqxp nnnn   

  

  

M K Yildiz and O.Ocalan [28] , studied the neutral difference equation  

     
)(0,=)( 21 Ennyqypy lnnknnn

m  


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 Where 0>>1   is a quotient of odd positive integers and }{ np  satisfies 1<<1 np . 

 

In 1998, Wan Tang Li [17]  studied the oscillatory behaviour of the following higher order nonlinear difference 

equation  

       
  )(0=),()( 30 Ennxnfxpx nnnnn   




  

 under the condition 1<0 ppn  .  

 

Guan.X, Yang.J., Liu.S.T and Cheng S.S.[9]  studied the nonlinear neutral difference equation  

     

  )(0=))(()( 4

1=

EnxfnQxpx in

i

nnn

m 


    

 and obtained some results for the oscillation of solutions of )( 4E . 

 

Pon.Sundar [22] , considered the neutral difference equation of the form  

   

  )(0=)()( 5

1=

ExfnQxpx ini

i

nnn

m 


    

 and obtained some sufficient conditions for the oscillation of solution of equation )( 5E   

 

In 2010 M.Migda [19]  considered the neutral difference equations  

   
)(0=),,()( 6Exxnfxpx nnnnn

m

    

 when }{ np  is an oscillatory sequence and obtained some sufficient conditions for the oscillation of all solutions 

of )( 6E .  

 

Y.Bolat and O.Alzabut[6]  considered the half-linear delay difference equation  

   
  )(0=))(( 70

1 Ennxxqxp
n

n
n

nn

m

n   



   

 under the condition 


<

)(

1
1

0


s

n

p

 and with using that 0 np  and derived some oscillation and 

asymptotic criteria for )( 7E . 

 

X.Zhou and J.Yan [32]  studied the difference equation  

    
  )(0=)( 8

1

1
1 Eysp nn

n
yn

  


  

 and they obtained some comparison results and necessary and sufficient conditions for the oscillation of Equation 

)( 8E .  

 

S.S.Cheng and T.Patula [7] , studied the difference equations  

    
)(0=)( 9

11

1 Eysy p

kk

p

k



   

 when 1>p  and proved an existence theorem for equation )( 9E .   

 

II. Some Preliminary Lemmas 
 In the proofs of our main theorems we shall need the following Lemmas 

 

Lemma 2.1 [1]  (Discrete Kneser’s Theorem) Let )}({ nu  be  a  sequence  of  real  numbers   in 

}{0,1,2,...=N . Let 0>)(nu  and )(num  be of constant sign with )(num , not being identically zero on 
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any subset 2,...}1,,{ 000  nnn . Then, there exists an integer l , ml 0  with lm  odd for 

0)(  num
 and lm  even for 0)(  num

 such that 1 ml  implies 0>)(1)( nukkl  
 for all 

1,,  mklNn  and 1l  implies 0>)(nuk , for all 1,1  lkNn .  

 

Lemma 2.2 [1]  Let )(nz  be as defined in Lemma 2.1 and such that 0>)(nz  and 0)(  nzm
 for all 

Nnn  0 . Then there exists a sufficiently large integer 1n , such that for all 01 nnn    

                    

)(2
1)!(

)(
)( 11

1)(

1 nz
m

nn
nz lmm

m








  

         where 
1)(

1)(  mnn  is the usual factorial notation. 

Moreover, if )}({ nz  is increasing, then  

          
11)(1

1
1)(

2
)(2

1
)(

1)!(

)(
)( nnallfornz

m

n
nz

mm

m
m










                                 

(2) 

 i.e.  

                

)(
1)!(

)(
)( 1

1)(

nz
m

n
nz m

m










                                                             

(3) 

 Where 
1)(1)(2

1
=

 mm
    and 1<<0       for  all   12nn   

 

Lemma 2.3 [23]  Assume that (2) holds., Furthermore, Assume that )(nx  is an eventually positive solution of 

(1). Then there exists 0nn   such that  

    1

1 0)(0,>)(0,>)(0,>)( nnallfornznznznz mm  
 

 

Lemma 2.4 [12]  Assume that Nxx  21,1, , If 11 21  xandx , then  

                       





 )(
2

1
21121 xxxx 


 

  

Lemma 2.5 [10]  Consider the oscillatory behavior of solutions of the following linear difference inequality  

0)()()(  rnynpnu
 
 where     0)( np  and }{ rn  is a  real sequence of integers such that  

and  =)(lim rnn , If  

                    

11

1
>)(inflim
















rn

rnn r

r
np

                                                      

(4) 

 Then the inequality has no positive solutions.  

 

 We further need the following definition. 

 

Definition 2.6 For any positive integer 0nn  , define )(1 n = },{ nintegeranismm   and 

nm =)( . The function 
1  defined above is the inverse function of )(n . Since )(n  is increasing, it is 

one - to - one.  If n  is a positive integer greater than or equal to 0n  then nn =))((1  
.  

 

III. Main Results 

 In this section, we establish some oscillation criteria for (1) . For the sake of convenience, we set  

                         
))(()()(=)( nxnpnxnz   
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  )}({0,=)(and)))((()),((=)( 11 nmaxnnqnqminnQ   


 

 

Theorem 3.1 Assume that 0>)( 0

1    n  and 0>=)( 0 n .  Further assume that there exists a 

constant 1<<0,  , such that    

0)()()(
1)!(2

1))(())(( 1

1

00

1

0

1




















 





nynQn
m

nyany m





 









                          

(5) 

 has no eventually positive solution. Then (1)  is oscillatory.  

  

Proof. Let )(nx  be a nonoscillatory solution of equation(1).Without loss of generality, we assume that there 

exists 01 nn   such that 0>))((0,>)( nxnx   and 0>))(( nx   for all 1nn  . Then 0>)(nz  for 

all 1nn  .   From (1), we obtain    

              
  0

1 0,))(()(=))(( nnnxnqnzm   

                                          
(6) 

 By lemma 2.3 with m  is even, there exists 12 nn     such that 20)( nnfornzm  .   

Then from Lemma 2.1, there exists 23 nn   and an odd integer 1 ml  such that for some large 34 nn      

                  
10,>)(1)(   mklnzkkl

                                                   
(7) 

 and  

                  
110>)(  lknzk

                                                            
(8) 

 Hence in view of (7) and (8), we obtain 0>)(0>)( 1 nzandnz m .  

Therefore 0)(lim  nzn .  

Therefore by lemma 2.2, for any 1<<0,  , there exists N  such that, for all Nn    

                       

)()(
1)!(

)( 11)( nzn
m

nz mm  





                                                

(9) 

 It follows from (1)  that  

                

 
0=)())((

))((

)))((( 1

1

11

nxnq
n

nzm







 










                                          

(10) 

 Furthermore, from the above inequality and the definition of )(nz , we obtain,  

         

   
))((

)))((((

))((

)))(((
1

11

1

11

n

nza

n

nz mm







 

















 

         
0=))(())(()())(( 11 nxnqanxnq    

                         
(11) 

  

By(1) and the definition of Q, we obtain  

 ))(()()())(())(()())(( 11 nxanxnQnxnqanxnq    
 

                                                

 


 ))(()()(
2

1
1

naxnxnQ 


 

                                                

)()(
2

1
1

nznQ 

 
                                      (12) 

 It follows from (11) and (12) that  

 

     

   
0)()(

2

1

))((

))))((((

))((

)))(((
11

11

1

11


















nznQ
n

nza

n

nz mm














                    

(13) 

 From the inequality, 0>))((0>))(( 00

1    nandn ,   we obtain  
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   
0)()(

2

1)))(((()))(((
1

00

11

0

11











nznQ
nzanz mm















                      

(14) 

 Set   0>)(=)( 1 
nznz m .   From (9) and (13), we see that )(ny  is an eventually positive solution of  

    

0)()()(
1 ) !(2

1))(())(( 1)(

1

00

1

0

1




















 





nynQn
m

nyany m





 








 

 The proof is complete.  

 

 

Theorem 3.2 Let 
1  exist. Assume that 0>))((,)( 0

1    nnn  and 0>))(( 0  n .  

Moreover, assume that there exists a constant 1<<0,  , such that    

        

0)))((()()(
1)!(1

2

1
)( 11

000

1





















 



nUnQn
ma

nu m 









                     

(15) 

 has no eventually positive solution. Then Equation (1)  is oscillatory.  

  

Proof. Let )(nx  be a nonoscillatory solution of equation(1). 

         Without loss of generality, we assume that there exists 01 nn   such that 0>))((0,>)( nxnx   and 

0>))(( nx   for all 1nn  . Then 0>)(nz  for all 1nn  .  

 

Proceeding as in the proof of the Theorem 3.1, we obtain that  

  0>)(=)( 1 
nzny m    is non-increasing and satisfies the inequality (5), Define  

           

)))(((
))((

=)( 1

000

1

ny
any

nu 


 




  

 Then, from 
1)(   andnn   being increasing, we have    

            

))).(((
1

)( 1

000

ny
a

nu 















  

 Substituting the above formula in (5), we find )(nu  is an eventually positive solution of    

          

0)))((()()(
1)!(1

2

1
)( 11

000

1





















 



nUnQn
ma

nu m 









                   

(16) 

 The proof is complete.  

 

From Theorem 3.2 and Lemma 2.5, we establish the following Corollary. 

 

Corollary 3.3     Let 
1  exist. Assume  

nnnandnnn <))((0.>))((0>))((,)( 1

00

1      and  

         

   
1

000

11
1

))((1 1
1)!(

1
2>)()(liminf
















































 m

a
ssQ m

n

n
n

         

(17) 

 Then Equation(1) is oscillatory.  

Proof. Taking   nnandnn =)(=)( ,   Applying Lemma 2.5 to Equation(16), one can choose a 

positive constant 1<<0   such that  
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   
1

000

11
1

1
1)!(

1
2>)()(liminf





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






































 m

a
ssQ m

n

nn

 

 This completes the proof.  

  

Theorem 3.4 Assume that 0>))(( 0

1    n  and ,)(0,>))(( 0 nnn     Furthermore, assume 

that there exists a constant 1<<0,  , such that    

         

0))(()()(
1)!(1

2

1
)( 1)(

000

1





















 



nUnQn
ma

nu m 









                      

(18) 

 has no eventually positive solution. Then Equation (1)  is oscillatory.  

  

Proof. Let )(nx  be a nonoscillatory solution of Equation(1).Without loss of generality, we assume that there 

exists a 01 nn   such that 0>))((0,>)( nxnx   and 0>))(( nx   for all 1nn  . Then 0>)(nz  for 

all 1nn  .   Proceeding as in the proof of the Theorem 3.1, we obtain that     0>)(=)( 1 
nzny m    is 

non-increasing and satisfies the inequality (5), Define  

                   

)))(((
))((

=)( 1

000

1

ny
any

nu 


 




  

 Then, from nn )(    we have  

                   

)).((
1

)( 1

000

ny
a

nu 











 





 

 Substituting the above formula in (5), we find )(nu  is an eventually positive solution of    

           

0))(()()(
1)!(1

2

1
)( 1)(

000

1




















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

nUnQn
ma

nu m 









                       

(19) 

 The proof is complete.  

 

From Theorem 3.3 and Lemma 2.5, we establish the following Corollary. 

 

Corollary 3.5 Assume that 0>))(( 0

1    n  and nnnnn <)(,)(0>)( 0     and  

      

 
1

000

11)(
1

)( 1
1)!(

1
2>))((liminf














































 m

a
ssQ m

n

nn
                          

(20) 

 Then Equation(1) is oscillatory.  

  

Proof. Taking   nnandnn =)(=)( ,   Applying Lemma 2.5 to Equation(19), one can choose a 
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 This completes the proof.  

 

By employing Riccati transformation, we obtain the following oscillation criteria. 
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Theorem 3.6 Let 0>))(())((,)(0,>))(( 0

11

0

1    nandnnnnn .  Assume 

that there exists )(n  such that  

           

 

 




































 =

)(1)(

)(
1

)()(
2

1
limsup

2)(1

1

000

1

1

0 sMn

s
a

sQs
m

n

nn













                           

(21) 

 holds for some constant 0>M . Then the Equation(1) is oscilltory.  

  

Proof. Let )(nx  be a nonoscillatory solution of equation(1).Without loss of generality, we assume that there 

exists 01 nn   such that 0>))((0,>)( nxnx   and 0>))(( nx   for all 1nn  . Then 0>)(nz  for 

all 1nn  .   Proceeding as in the proof of the Theorem 3.1, there exists 12 nn   such that (7), (8) and (14) hold 
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 Then for .0>)( 2nnfornw   Taking differencing of (22), we obtain  
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 In view of lemma 2.2, we have 
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 Next, We define the Sequence  
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 Then 0>)(n    for   2nn  , Differencing (25), we see that  
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 In view of lemma 2.2, we have  
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 Therefore, from (24) and (27), it follows that  
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 Thus, from the above inequality and (14),we have  
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 Summing the above inequality from 2n    to   1n , we have  
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 Which contradicts (21). The proof is complete.  

 

Remark: From (29),Define a Philos-type sequence ),( snH , and obtain some oscillation criteria for Equation 

(1), the details are left to the reader. 
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 Then the Equation (1) is oscillatory.  
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The remainder of the proof is similar to that of Theorem 3.6  

 

IV. Applications 
Example 1. Consider the even-order difference equation  
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 By applying corollary 3.3, Equation (32) is oscillatory when  
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 Example 2. Consider the even-order neutral difference equation  
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By applying corollary 3.5, Equation (33) is oscillatory. 

One such solution of Equation (33) is 
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 Example 3. Consider the even-order neutral difference equation  
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 Then by Theorem 3.6, Every solution of Equation (34) is oscillatory. 
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One such solution of equation (34) is 
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