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Abstract: Mathematical models have been useful in the area of modeling of real life situations; its application 

can be found in virtually all spheres of scientific researches. As such, we adopt its use in the field of ecology 

where preys have to compete with other prey for survival. In this paper, we considered Lotka-Volterra type 

systems, consisting of two first order differential equations which were used to model the population size of 

prey–predator interaction. We also proposed a system of first order differential equations to model the 

population sizes of a prey and two predators. Under these conditions one of the predators dies out while the 

remaining predator and prey approach periodic behavior as time increases. Also we model the population size 

of two preys and one predator where there may be interaction between the preys. Under these conditions we 

found that one of the preys died out while the remaining preys and predators approached periodic behavior as 

time increased. For critical cases, each positive solution of the system was seen to be periodic in nature. 

Various examples and results were presented and further study was proposed.  

Keywords: Mathematical Models, Lotka-Volterra, differential equation, habitat, predator, prey. 

 

I. Introduction 
Ecologists strive to understand how interspecies interaction contributes to distribution and abundance 

of particular species. Decades of modeling, observation studies and experimental approaches have led ecologists 

to conclude that species sharing the same habitat often play important but highly diverse roles in affecting each 

other according to Chesson [1]. Keddy [2], mentioned that interactions among species were viewed as a simple 

mutually negative interaction either directly through interferences or indirectly through exploitation of shared 

resources. Understanding such mutually negative interactions among competing species remains a cornerstone 

of community ecology. Keddy showed apparent competition occurs when two or more prey species share a 
common predator, and predator’s numbers are limited by prey availability. By presenting itself as an additional 

food resource, the second prey species allows the abundance of the predator to increase and, as a result reduces 

the density of the target species. If more than one prey species is present, and both utilities those enemy-free 

resources, the species can limit each other’s numbers. 

An apparent mutualism between prey species that share a common predator can arise if predator 

populations are limited by factors other than prey availability, Abrams [3]. In this case, the presence of a prey 

species satisfies the predator, thus allowing a relief of predator pressure on the target species; that is, the species 

indirectly benefits the target species. Co-operation or symbiosis infection occurs when two species help each 

other in some ways. Week-strong interaction occurs when one species is simply better suited to survive than 

other. Competition between species may be indirect, in which the competitors use a resource but do not confront 

each other over it, in direct competition, the two species may fight over a resource. Sometimes competition may 
be mediated by a third organism, such as predator or parasite. The Difference in size between a predator and its 

prey has an effect on the development of specialized structures of the predator for subduing the prey. For the 

most part, predator feed in species smaller than themselves; consider herbivorous to be predators of plants, just 

as carnivores are predators of animals. 

 

II. Literature Survey 
The Lotka-Volterra predator-prey and competition model was initially proposed by Alfred .J. Lotka in 

the theory autocatalytic chemical reaction in 1910. This was effectively the logistic equation, Berryman (1992), 

which was originally derived by Pierre Francis Verhulst. The Lotka-Volterra model and Holling’s extension 
have been used to model the moose and wolf population Jost[4]. 

Given two species of animals, interdependence might arise because one species (the prey) serves as 

food source for the other species (the predator). Models of this type are thus called predator prey models. Let P 
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denote the size of the prey population and Q donate the size of the predator population. The growth rate of prey 

populations is determined by the equation: 

                    Q
Q

P

dt

dP
 








 1  ……………………….…….. (1)   

where α, β and Q are parameters, Barntt [5]. In the absence of predators (when Q=0) the growth of the prey 

population thus follows the logistic model where Q is called carrying capacity of the environment. The growth 

rate of the predator is determined by the equation. 

                    PQ
dt

dQ
 .   ….……………………….  .. (2) 

where γ, δ are parameters. In the absence of prey (when P = 0) the predator population would shrink at rate γ. 

However, the predator growth rate rises as the prey population becomes larger. The two equations (1) and (2) 

can be described as: 

                  PhQ
K

P

dt

dP

















  1 .      …………….………….. (3)   

  

                  QhP
dt

dQ
  .…………………….………….. (4) 

where h is the period of the interaction, this version of the predator prey model provides a useful starting point, 

provides the needed basic insight that more predators are bad for prey, while more prey are good for predators. 

In the Lotka-Volterra model, the prey population faces a capacity constraint giving by parameter K, if there is no 

capacity constraint so that k is infinite the two equation system is giving below. 
In the development of this model, a number of assumption, were made by Lotka-Volterra. These include: 

 If there are no predators, the prey population will grow at the rate proportional to the population of the 

prey species. 

 If there are no prey, the species decline at the rate proportional to the population if the predator. 

The presence of both predators and prey is beneficial to growth of predators’ species and is harmful to 

growth of prey species. More especially the predator species increases and the prey species decreases at rate 

proportional to the product of the two populations.  

During the process, the environment does not change in favor of one species and the genetic adaptation 

is sufficiently slow. As differential equations are used, the solution is deterministic and continues. This in turn, 

implies that the generations of both the predators and prey are continually over lapping Cook [6]. This 

assumption gives the system of non-linear first order ordinary differential equations. 

  Qp
dt

dp
    . . . . . . . . . . . . . . . . . . . . . . (5)   

            pQ
dt

dQ
  . . . . . . . . . . . . . . . . . . .  . . . (6) 

Where: 

P = prey population 

Q = predator population  

α = the growth rate of prey 

γ = death rate of predator 
  δ = growth rate of predator 

 

Equation (5) can be express as:  

      Qp
dt

dp
    …………………………………….. (7)     

This means the change in prey’s numbers is given by its own growth minus the rate at which it is 

preyed upon. Equation (6) can also be express as: 

PQQ
dt

dQ
   ………………………………….. (8) 

The equation expresses the change in the predator population as the death rate of predator plus growth 
rate of the predator. 

The above equations (7) and (8) can be solved numerically and the orbits can be defined as follows: 
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   …………………………………… (9)           

Equation (9) is a separable first order differential equation and may be written as:   

      
dt

dP

P

P

dt

dQ

Q

Q
..

 



                     

 

                
dt

dP
P

Pdt

dQ

Q




















 





….………………….. (10) 

Integrating equation (10) yields  

      CPInPQInQ   ….…………………….. (11) 

From equation (11), we have that  

                 
PQ CPQ   

 

                  C
QP

PQF
QP




























 

      , β, ϒ, δ > 0 

This gives the  PQF  = C described in fig. (2-1)    

 

 
Fig. 1: Decision Quadrant 

 

The lines through (γ/β, γ/δ) parallel to the axes of co-ordinates divides the first quadrant into four parts 
i, ii, iii and iv using equation (5) and (6), we found the following behaviors 

In i  
dt

dP
   <0,  

dt

dQ
 > 0 

In  ii  
dt

dP
  < 0,  

dt

dQ
   < 0 

In  iii  
dt

dP
  > 0,         

dt

dQ
   < 0  

In  iv  
dt

dP
  > 0,  

dt

dQ
 > 0    
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III. Method 
Model Assumption: 

In an actual environment, there are a number of different predator-prey relationships that could single 

prey species this scenario is examined, and the predator-prey interaction dynamics model can be expressed as; 

dt

dX
= gXZbXYaX 

        .     
  .    .    .    .    .    .    .    .    .    .    .    .   .   . (3.1)                                                                          

cXYdY
dt

dY
                   .      .    .       .      .        .         .          .      .  .    (3.2) 

eXZfZ
dt

dZ
              .       .    .         .      .     .      .      .       .     .     .    (3.3) 

 

 Dynamics of the Model  

  In the model system, the predators thrive when there is plentiful prey but ultimately, outstrip their food 

supply and decline. If the predator population is low, then the prey population will increase again.  

 

 Population Equilibrium 

 Population equilibrium occurs in the model when neither of the population levels is changing.  When  

.0,0,0 
dt

dZ

dt

dY

dt

dX
 

From equation (3.1) we have: 

                                                  

 

g

bYa
Z

bYagZ

gZbYa

X

gZbYaX

gXZbXYaX
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0

0
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0

 

 Also                                                            

b

gZa
Y
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



 

From equation (3.2) we have, 

                                                    

 

c

d
X

cXd

Y

cXdY









0

0

0
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Also, from equation (3.3) we have, 

 

 

e

f
X

eXfZ

eXfZ







0,0

0

 

There are three equilibriums 

                                            






 







 
0,,,0,,0,0,0

B

gZa

e

f
and

g

bYa

e

d
  

The equilibrium point   






 
0,,

g

gZa

e

f
exist if f > ed, the predator prey model in this case, we conclude that 

Z predator dies out i.e. fails to persist and X(t) and Y(t) are periodic. The equilibrium point   






 

g

bYa

c

d
,0,

exist if f < ed, the predator prey model in this case, we conclude that Y predator   fails to persist and X (t) and 

Z(t) are periodic.  

 

Stability of the fixed point  

The stability of the fixed point at the origin can be determined by using linearization.   

 
The   Jacobean of the two predator prey model is:  

 

































feXeZ

dcXcY

gXbXgZbYa

ZYXJ

0

0
,,

 

 

At   the equilibrium point   (0, 0 , 0) the Jacobean matrix becomes, 

  




















f

d

a

J

00

00

00

0,0,0   

The characteristic equation is 

                                             

   













fda

fda

fdya

,,

0,0,0

0

 

In the model a, d and f are always > 0 and as such the sign of the eigen-values will always differ. Hence the 

fixed point at the origin is unstable since one of the eigen-values is positive and the other negative. If it were 

stable, the dynamics of  the system might lead towards the extinction of the species. 

 

At the equilibrium point 






 

g

bYa

c

d
,0,  the Jacobean matrix is 
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The characteristic equation is: 

             
     0  jikbY

 

 
kbY
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Where 

                    f
c

d
ekand

g

bYa
ej

c

d
gi 
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 
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

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
 ,,  

Since the eigen-values have different signs the equilibrium point is unstable. 

At the equilibrium point 






 
0,,

b
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e

f
the Jacobean matrix is: 
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 Since the eigen-values have different roots, the point is unstable.                               

The characteristics equation now becomes:  

                                                  0  wjigZ  

  One of the eigenvalues is gZ  

 The other two eigen-values   are given by the roots of the following quadratic equation 

  02  ijwi   

 

Definition of parameters and variables for the model equation II 

21,   Are biotic potentials  

21,kk   Carrying capacities of the two prey species 

12     Effect species 2 has on the population of species 1 

21
  

Effect species 1 has on the population of species 2  

2313,   Predator coefficients  

3231,    Growth rate of predators 
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33    Death rate of the predator 

E   Harvesting effect 

q 1 ,q 2    Catch ability coefficient of X 1   and X 2  respectively. 

X 1    First prey population  

X 2    Second prey population 

X3  Predator population
 
 

                                                                                                                                                                                                                                                      

Assumption of the model equation II 

The ecological system is as follows. When two fish species compete with each other for the same 

resources, there is a predator (for example, a whale) feeding on both of them, both of the preys are subjected to 

continuous harvesting. Thus the interaction between the harvesting agency and the predator is through the third 

party, namely the prey to increase linearly with prey density.  The governing equations of the system can be 

written as: 

dt
dx1 = X 1313212

1

1
11 ___1 Exqxxx

k
x















   

22323121
2

2
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K
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X

dt
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











    

dt
dx =    331321313   xxx

 

 

Steady states 

The steady states of the system are P    32211,11 ,,0,0,00 XXP  

And P  ,3,1 ,0 XX  

Where           
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



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X          3X =

 
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1

1
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
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The equilibrium point P1   exist if   E<
2

2

q


 and 2P exist if E<
1

1

q


. 

The ratio  
q

  of the biotic potential to the catch ability productivity of the species. 

 

Local stability  

We examined the model equation for stability at the steady state  

 

Let,   
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




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






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Where   V11= 









 Eqxxx

k
131321212
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1
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2
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
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V22= 




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



 Eqxxx

k
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
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At the steady (0, 0, 0), we have, 
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The eigen-values of this matrix are 0, EqEq 2211 ,    
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The characteristic equation is:  
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One of the eigenvalues of the matrix V (0, 32 , XX )  is  
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The other two eigenvalues are given by the roots of the following quadratic equation 
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In equation (3.4) the roots =- 

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Therefore the roots are real and negative or complex conjugates having negative real parts. 

Hence it is unstable. 
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One of the eigen-values of the matrix is 

Eqxx 23231212    

The other two eigen-values are given by the roots of the quadratic equation 
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In equation (3.5) the sum of the roots = 

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Therefore the roots are real and negative. Thus the equilibrium point (X 31 ,0, X ) is not stable. 

 

IV. Conclusion 
A number of different situations may arise in a two predator and prey relationship, specifically two main 

conditions. Primarily, the three populations may be cyclical, as depicted in figure (2) below. We simulated the 

model equation (3.1), (3.2) and (3.3) using the following constants:  
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a=2, b=2, c=2, d=1, e=1, f= 21  g=1 

X (prey population) is red, Y (first predator population) is blue, Z (second predator population) is green. 

 
Fig. 2: Predator Population Chart 

 

Secondly, since both predators derive their sole nourishment from the same prey species, the most 

efficient predator will eventually dominate the relationship and grow at a vast rate, whereas, the other predator 

will dwindle in number. The efficient predator and prey relationship shows a continuously cyclical pattern as 

shown in fig 4.2 below. The graph clearly illustrates in that in each cycle the prey population is reduced to 

extremely low number, but yet recovers while the predator population remain sizeable at the lowest prey 

density.  

Constants a=2, b=1, c=1, d=1, e=1, f=0.5, g=1.  
X (prey population) is red, Y(first predator population) is blue and Z(second predator population) is green. 

 

 
Fig. 3. Predator Population II 

 

If the contact rate is reduced, then the prey population will increase and the predator population will 
reduce as shown in fig 4.3 below. 

Constants a=2, b=0.5, c=0.5, d=0.5, e=0.5, f=1, g=0.5 

X (prey population) is red, Y (first predator population) is blue and Z (second predator population) is green. 

 

 
Fig 4: Prey Population 

However, unlike the model where two predators hunted a single prey population, there is only a single 

situation that may arise regarding to one-to-two predation. As the single predator has two alternate food sources, 

the predator is able to hunt one of the prey populations to extinction with no consequential result. The predator 

population will then enter a continuous, cyclical population growth relationship with remaining prey as 

demonstrated in fig 4 below. 
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Let
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X1 (first prey population) is blue, X2 (second prey population) is red and X3(predator population) is green.

 

 

 
 

The stability of the steady state is of important since the eigen-valves have different roots, in general it 

is unstable. If it were stable, none zero population might be attracted towards the extinction of both species for 
many cases of initial levels. However as the fixed point at the origin is unstable, we find that the extinction of 

the species is difficult in all the models. This can only occur if the prey species are completely eradicated 

causing the predators to die of starvation. If the predators are completely eradicated the prey population grows 

without bound in these model. 

In actual environmental settings, there are vast amount of complex, intermingled relationships between 

predators and prey. There is rarely a simple one predator population that only predates on a single prey 

population. In this paper, we have attempted to model the population size of two prey species competitive 

system in the presence of the predator species. Also one prey species and two predator’s species. We have first 

studied the existence and stability of the possible steady states. In general there is no stable state. 
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