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Abstract: In this paper, we will study the chaotic behaviour of the family of quadratic mappings 

 fc (x) = x2 – x + c through its dynamics. In first few sections, we will take a review of some basic definitions and 

examples including a dynamical system, orbit, fixed and periodic, etc. Later, we will prove some results that 

analyse the nature and the stability of the fixed and periodic points of a dynamical system. Using these results, 

we will study the dynamics of the family of mappings fc (x) = x2  – x + c for various values of the real constant c. 
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I. Introduction 
Many authors including [1], [2], [3], [4], [5], [6] have defined the notion of a dynamical system, 

however, we give a formal definition of a dynamical system in general. 

A dynamical system is a function f: Rn → Rn, where the set Rn is called as the set of states or the state 

space. Given a state vector x ∈ Rn, the function f describes the rule by means of which the state vector x changes 

with time. Different types of dynamical systems with a variety of examples are explained by [2] and [3]. In this 

paper, we will consider only one dimensional discrete dynamical system  fc (x) = x2  – x + c. 

 We begin with some formal definitions: 

 

1.1 Iteration of a function 

Let f : S →S, S ⊆ R,  be a given dynamical system. Iteration means the repetition of a particular process 

again and again. Iteration of a function, which is also called as composition of functions, is simply finding value 

of the same function over and over where the first output is used as the next input value. For example, let  f(x) = 

2x2 + 1. The first iteration of f at x is supposed to be f(x) itself. The second iterate of f at x is  (fof) (x)= f(f(x)). 

This second iterate is denoted by f 2. 

Thus, we have, f 2(x) = f(f(x)) = f(2x2 + 1) = 2(2x2 + 1)2 + 1 = 8x4 + 8x2 + 3. 

The third iteration of f at x is f 3(x) = f(f (x2)) = 2(8x4 + 8x2 + 3)2 +1. 

In general, the kth iterate of f at x is f  k(x) = f(f k-1(x)). 

 

1.2 Orbit and seed 

Let f : S →S, S ⊆ R,  be a given dynamical system. Given an initial point x0 ∈ S, the orbit of x0  under f  
is the sequence of iterates x0, x1 = f(x0), x2 = f 2(x0), x3 = f 3(x0), ..., xn = f n(x0). In this case, the initial point x0 is 

called as the seed of the orbit.  

For example, let f(x) =  𝑥 and x0 = 2.Then x1 = f(x0) =  2 ≈ 1.4242, x2 = f(x1) =  1.4242 ≈ 1.1892,  

x3 = f(x2) =  1.1892 ≈ 1.0905, x4 = f(x3) =  1.0905 ≈ 1.0442,... 
Thus, the orbit of 2 is {2, 1.4242, 1.1892, 1.0905,...} 

Similarly, the orbit of 3 is {3, 1.7320, 1.3160, 1.1472,...}, the orbit of 0.7 is {0.7, 0.8366, 0.9146, 

0.9563,... }.We observe that all these orbits are getting closer to 1. 

 

1.2 Fixed points and periodic points  
A point x is said to be a fixed point of a function f if f(x) = x. It is clear that if x is a fixed point of f, then 

f n (x) = x for all n ∈ Z+. Also, in this case the orbit of x is the constant sequence {x, x, x, ...}. 

 A point x0 is said to be a periodic point with period n if f n (x0) = x0 for some n ∈ Z+. It is clear that if x0 
is periodic with period n, then it is periodic with period 2n, 3n, 4n,...The smallest n, in this case, is called as the 

prime period of the orbit. Thus x0 is a periodic point with period n of f  if it is a fixed point of f n.   

From the definition of the fixed point, it is clear that we can find the fixed points of a function f(x) by 

solving for x the equation f(x) = x. For example, the fixed points of f(x) = x2 – 5x +5 are given by x2 – 6x +5 = 0, 

which gives x = 1 and x = 5. Geometrically, one can obtain the fixed points of f(x) by plotting the graphs of  

y = f(x) and y = x on the same axes and finding their points of intersection, which are the fixed points of f(x). 
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1.3 Graphical analysis of orbits (The orbit diagram) 
The trend of an orbit can be studied by graphical analysis. An orbit diagram is a representation of an 

orbit in a plane which is useful for a one dimensional dynamical system. To draw an orbit diagram, we follow 

the following steps: 

Step 1: Plot the given function f(x) and the line y = x in the plane. 

Step 2: If x0 is the seed whose orbit is to be obtained, draw a vertical line y = x0 and find the point  

            (x0 , f(x0)). This point is simply (x0 , x1), where f(x0 ) = x1. 

Step 3: Draw a horizontal line from (x0, x1) to the line y = x and obtain the point (x1, x1). 

Step 4: Return to the Step 2 with x1 as the new seed. 

 Thus the orbit of x0 looks like a staircase pattern. For example, consider f(x) = x2.  

For x0 = 1.1, the orbit diagram is as shown in Figure 1. 

          

Figure 1 showing the orbit diagram of f(x) = x2 at x0 = 1.1 

 
 

1.4 Attracting and repelling fixed points 

Let p be a fixed point of a dynamical system f : S →S, S ⊆ R.  

(1) We say that p is an attracting fixed point or a sink of f if there is some neighbourhood of p  such that all 

points in this neighbourhood are attracted towards p. In other words, p is a sink if there exists an epsilon 

neighbourhood 𝑁ϵ 𝑝 = {𝑥 ∈ 𝑆:  𝑥 − 𝑝 < ϵ} such that limn→∞ 𝑓n   𝑥 = 𝑝 for all x ∈ 𝑁ϵ(𝑝).  

(2) We say that p is a repelling fixed point or a source of f if there is some neighbourhood 𝑁ϵ(𝑝) of p such that 

each x in  𝑁ϵ(𝑝) except for p maps outside of 𝑁ϵ(𝑝). In other words, p is a source if there exists an epsilon 

neighbourhood such that  𝑓n 𝑥 − 𝑝 > ϵ for infinitely many values of positive integers n. 
Consider the function f(x) =  x2 – ½. Let us find the fixed points of f and their nature. Solving f(x) = x, we get 

two fixed points r1 = 
1

2
 (1 +  3) ≈ 1.366025403784439 and r2 = 

1

2
  1 −  3 ≈ −0.366025403784439.  

 Now we verify the nature of the fixed point r1 = 
1

2
  1 +  3 . Taking an initial value x0 = 1.36 and 

finding the first 20 iterating the function f, we obtain the orbit of x0 as follows: 

  x0 = 1.360000000000000E + 000, 

  x1 = 1.349600000000000E + 000, 

  x2 = 1.321420160000001E + 000, 

  x3 = 1.246151239254428E + 000, 

  x4 = 1.052892911095348E + 000, 
  x5 = 6.085834822348364E – 001, 

  x6 = – 1.296261451509206E – 001, 

  x7 = – 4.831970624933125E – 001, 

  x8 = – 2.665205987978339E – 001, 

  x9 = – 4.289667704164440E – 001, 

  x10 = – 3.159875098784858E – 001 

  x11 = – 4.001518936007939E – 001, 

  x12 = – 3.398784620476990E – 001, 

  x13 = – 3.844826310360908E – 001, 

  x14 = – 3.521731064315652E – 001, 

  x15 = – 3.759741031063414E – 001,      
  x16 = – 3.586434737933821E – 001, 

  x17 = – 3.713748587054156E – 001, 

  x18 = – 3.620807143215326E – 001, 

  x19 = – 3.688975563164088E – 001, 

  x20 = – 3.639145929437820E – 001.

Note that x0 = 1.360000000000000E + 000 means the number x0 = 1.360000000000000 × 10+ 000 and similarly 

x6 = – 1.296261451509206E – 001 means x6 = – 1.296261451509206 × 10– 001. 

Continuing this way, the last five iterates among the first 120 iterates of the function f at  
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x0 = 1.36 are as follows: 

  x115 = – 3.660254037844390E – 001, 

  x116 = – 3.660254037844384E – 001, 
  x117 = – 3.660254037844388E – 001, 

  x118 = – 3.660254037844385E – 001, 

  x119 = – 3.660254037844388E – 001, 

  x120 = – 3.660254037844386E – 001. 

We note that the orbit is moving towards the fixed point r2. 

Similarly, taking an initial value x0 = 1.37, we obtain the orbit of x0 as follows: 

  x0  = 1.370000000000000E + 000, 

  x1  = 1.376900000000000E + 000, 

  x2  = 1.395853610000001E + 000, 

  x3  = 1.448407300550034E + 000, 

  x4  = 1.597883708286637E + 000, 
  x5  = 2.053232345207855E + 000, 

  x6  = 3.715763063407749E + 000, 

  x7  = 1.330689514338534E + 001, 

  x8  = 1.765734583570524E + 002, 

  x9  = 3.117768619616970E + 004, 

  x10 = 9.720481160468307E + 008 

  x11 = 9.448775399101928E + 017, 

  x12 = 8.927935654267380E + 035, 

  x13 = 7.970803504673871E + 071, 

  x14 = 6.353370851012126E + 143, 

  x15 = 4.036532117049055E + 287, 
  x16  = Infinity, 

  x17  = Infinity, 

  x18  = Infinity, 

  x19  = Infinity, 

  x20  = Infinity. 

Thus, for ϵ = 0.007, we observe that f n (x0) ∉ 𝑁ϵ(𝑝)  for infinitely many n. Hence r1 is a repelling 

fixed point of f. The graph of the function f(x) =  x2 – ½ is as shown in Figure 2. The behaviour of the orbits near 

r1 can be observed from the orbit diagram as shown in the Figure 2(a). 

 

Figure 2 showing the graph of the function f(x) =  x2 – ½ 

 
Figure 2(a) 

 
      

Note that the orbit of x0 = 1.36 is converging towards the fixed point r2 (lower left corner) and the orbit 

of x0 = 1.37 is tending towards the infinity (upper right corner), which confirms that r1 is a repelling fixed point.  
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Figure 2
Graph of f(x) = x2-1/2
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Consider now the second fixed point r2 = 
1

2
  1 −  3 . Taking an initial value x0 = – 0.37 and iterating 

the function f, we obtain the orbit of x0 as follows: 
   x0  =  – 3.700000000000000E – 001, 

  x1  =  – 3.631000000000000E – 001, 

  x2  =  – 3.681583900000000E – 001, 

  x3  =  – 3.644593998726079E – 001, 

  x4  =  – 3.671693458444985E – 001, 

  x5  =  – 3.651866714721230E – 001, 

  x6  =  – 3.666386949791117E – 001, 

  x7  =  – 3.655760673440139E – 001, 

  x8  =  – 3.663541389852850E – 001, 

  x9  =  – 3.657846448483505E – 001, 

  x10  =  – 3.662015935931660E – 001, 
  x11  =  – 3.658963928498257E – 001, 

  x12  =  – 3.661198296994860E – 001, 

  x13  =  – 3.659562703008193E – 001, 

  x14  =  – 3.660760082275136E – 001, 

  x15  =  – 3.659883562002094E – 001. 

Continuing in this way, the higher iterates of f are as follows: 

  x90  =  – 3.660254037844412E – 001, 

  x91  =  – 3.660254037844368E – 001, 

  x92  =  – 3.660254037844401E – 001, 

  x93  =  – 3.660254037844376E – 001, 

  x94  =  – 3.660254037844394E – 001, 

  x95  =  – 3.660254037844382E – 001, 
  x96  =  – 3.660254037844390E – 001, 

  x97  =  – 3.660254037844384E – 001, 

  x98  =  – 3.660254037844388E – 001, 

  x99  =  – 3.660254037844385E – 001, 

  x100  = – 3.660254037844388E – 001. 

We observe that the orbit of x0 = – 0.37 is converging towards the fixed point r2. 

Similarly, taking an initial value x0 = – 0.35 and iterating the function f, we obtain the orbit of x0 as follows: 

    x0  =  – 3.500000000000000E – 001, 

   x1  =  – 3.775000000000000E – 001, 

   x2  =  – 3.574937500000000E – 001, 

   x3  =  – 3.721982187109375E – 001, 
   x4  =  – 3.614684859884052E – 001, 

   x5  =  – 3.693405336372502E – 001, 

   x6  =  – 3.635875702125513E – 001, 

   x7  =  – 3.678040787869331E – 001, 

   x8  =  – 3.647201596276955E – 001, 

   x9  =  – 3.669792051611484E – 001, 

   x10  =  – 3.653262629792918E – 001, 

   x11  =  – 3.665367215775853E – 001, 

   x12  =  – 3.656508317351557E – 001, 

   x13  =  – 3.662994692513889E – 001, 

   x14  =  – 3.658246988261507E – 001, 
   x15  =  – 3.661722897287561E – 001. 

In this way the higher iterates of f are as follows: 

   x90  =  – 3.660254037844285E – 001, 

   x91  =  – 3.660254037844461E – 001, 

   x92  =  – 3.660254037844332E – 001, 

   x93  =  – 3.660254037844427E – 001, 

   x94  =  – 3.660254037844357E – 001, 

   x95  =  – 3.660254037844408E – 001, 

   x96  =  – 3.660254037844370E – 001, 

   x97  =  – 3.660254037844398E – 001, 

   x98  =  – 3.660254037844378E – 001, 

   x99  =  – 3.660254037844393E – 001,   
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   x100  =  – 3.660254037844382E – 001. 

We observe that both the orbits are converging to r2. The fixed point r2 is an attracting fixed point.  

II. Stability Theorems 
In this section, we prove some theorems that analyse the stability of fixed points and periodic points. 

For these theorems, we need to recall some fundamental theorems from calculus. 

 

2.1 Mean Value Theorem 
Let f be a real valued function continuous on a closed interval [a, b] and differentiable on the open 

interval (a, b). Then there exists a number c between a and b such that  
𝑓 𝑏 −𝑓(𝑎)

𝑏−𝑎
= 𝑓′ (𝑐).  

(Refer [1], [2]) 

 

2.2 Intermediate Value Theorem  
Let F : [a, b] →R be a function continuous on the closed interval [a, b]. If F(a) ≠ F(b), then F assumes 

every value between F(a) and F(b) at least once over the interval [a, b]. (Refer [2]) 

In other  words, if r is a number between F(a) and F(b), then there exists at least one c between a and b 

such that F(c) = r.  (Refer [2]) 

Using the Intermediate Value theorem, the following theorem can be easily proved. 

 

2.3 Fixed point theorem 
 Suppose that F : [a, b] →[a, b] is continuous. Then F has at least one fixed point over the interval  

[a, b]. (Refer [2])   

 

2.4 Hyperbolic periodic points 

 A periodic point p of a mapping f with prime period n is said to be hyperbolic  

if |(f n)′ (𝑝) | ≠ 1. (Refer [2]) 

For example, consider f(x) = x2 – x. This mapping has x = 2 as a hyperbolic fixed point whereas x = 0 is a non-

hyperbolic fixed point.  

 

2.5 Theorem 

Let f : [a, b] →R be a differentiable function, where 𝑓 ′ be continuous and p be a hyperbolic fixed point 

of f. If  𝑓′   𝑝  < 1, then p  is an attracting fixed point of f. 

Proof : As  𝑓′(𝑝) < 1, we can find an 𝛼 with  𝑓′ (𝑝) < 𝛼 < 1. Since f is differentiable on [a, b] and p ∈ [a, b], 

an epsilon neighbourhood Nϵ p  can be obtained such that 
 𝑓 𝑥 − 𝑓(𝑝) 

|𝑥−𝑝|
<    for all x ∈ 𝑁ϵ 𝑝 . Thus we have 

 𝑓 𝑥 − 𝑓 𝑝  <   |𝑥 − 𝑝|. But as p is a fixed point,  𝑓 𝑥 −  𝑝 <   |𝑥 − 𝑝|. This inequality implies that f(x) 

is closer to p than x is by at least a factor 𝛼 < 1. Hence, if x ∈ 𝑁ϵ 𝑝 , then f(x) ∈ 𝑁ϵ 𝑝 .  
By applying f again, we have |𝑓2 𝑥 − 𝑓2(𝑝)| <   𝑓 𝑥 − 𝑓 𝑝  <   2  |𝑥 − 𝑝|. 
Hence by mathematical induction,  

 𝑓n 𝑝 − 𝑝 <   n   𝑥 − 𝑝 . 
As n → ∞,   

n 
→ 0. Hence f 

n
(x) → p, which proves the result.                                                   ⊡ 

  Similar to the theorem 2.5, we have the following: 

2.6 Theorem 

Let f : [a, b]→R be a differentiable function, where 𝑓′ be continuous and p be a hyperbolic fixed point 

of f. If  𝑓′ 𝑝  > 1, then p  is a repelling fixed point of f. 

 

2.7 Neutral fixed point 

 A fixed point p of a differentiable function f is said to be a neutral fixed point if    𝑓′  𝑝  = 1. 
 Using theorems 2.5 and 2.6, we can decide the nature of a hyperbolic fixed point, but in case of a 

neutral fixed point, one needs further information to be processed. 

 

2.8 Attracting and Repelling periodic point 

Let p be a periodic point of period n of a function f. Then p is said to be an attracting periodic point or a 

repelling periodic point according as it is an attracting or a repelling fixed point of the nth  iterate  f n . 

The following theorem gives a formula to find the derivative of the n th  iterate f n . 

By the repeated application of the Chain Rule, this theorem can be easily proved. 

 

2.9 Theorem 

 Suppose (x0 , x1 , x2 , ..., xn-1) is a cycle of period n for a given function F.  

Then  𝐹n ′ 𝑥0 = 𝐹 ′ 𝑥0 . 𝐹 ′ 𝑥1 . 𝐹 ′ 𝑥2 …𝐹 ′ 𝑥n−1 .   (Refer [2])   
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For example, let f(x) = −x3. The function f has a periodic point of period 1 at x = 0 (i.e. a fixed point) 

which is an attracting periodic point since  𝑓′  0  = 0 < 1. There is a period-2 point at x = 1 whose periodic 

orbit is {1, −1}. The periodic 2-cycle {1, −1}is repelling since 

   𝑓2 ′ 1  =  𝑓′ 1 . 𝑓′  −1  = | − 3 1)2 . | − 3 −1 2| =  9 > 1.  
 From the theorems 2.5 and 2.6, we have the following corollary: 

 

2.10 Corollary 

Let f :[a, b] →R be a differentiable function, where 𝑓′ be continuous and p be a periodic point of f with 

period n. Then the periodic orbit of p is attracting or repelling according as   𝑓n ′ 𝑝  <  1 or   𝑓n ′ 𝑝  >  1. 

The theorems 2.5 and 2.6 do not provide any information in order to study the behaviour of a non-

hyperbolic periodic point. In such a situation, the higher ordered derivatives of the function at the periodic point 

can be effectively used. 
 Suppose p is an attracting periodic point for which the rate of convergence of an orbit of a seed near p 

is much slower than normally observed. In this case, we say that the point p is a weakly attracting periodic point. 

Similarly, if p is repelling with orbits of the seeds near p going away from p much slowly, then we say that p is 

weakly repelling. The following theorem gives a criterion for the study of the non-hyperbolic fixed points. 

 

2.11 Theorem 

 Let p be a neutral fixed point of a function f.  

(i) If 𝑓′′  𝑝 > 0, then p is weakly attracting from the left and weakly repelling from the right. 

(ii) If 𝑓′′  𝑝 < 0, then p is weakly repelling from the left and weakly attracting from the right. 

 Let p be a neutral fixed point of f with If 𝑓′′  𝑝 = 0. 

(iii) If  𝑓′′′  𝑝 > 0 then p is weakly repelling. 

(iv) If 𝑓′′′  𝑝 < 0, then p is weakly attracting.  (Refer [1],[2],[3]) 

 If this theorem again fails to give any information, then it can be extended to higher order derivatives. 

Moreover, with slight changes, the theorem can be applied for periodic points also. 

 

III. Dynamics of the Mapping fc (x) = x
2
 – x + c 

Now we have enough material for the study of the dynamics of the mapping  fc (x) = x2 – x + c. We will find the 
fixed points of fc (x) and then analyse their nature. 

 

3.1 Fixed points of fc (x) 
 As mentioned earlier, the fixed points of fc (x) can be obtained by solving for x the equation  

fc (x) = x. Thus solving x2 – x + c = x, we get the two roots  𝑟1 =  1 +  1 − 𝑐 and 𝑟2 =  1 −  1 − 𝑐. 

We will consider different cases arising from different values of c.   

Case 1. c > 1: It is clear that the two roots  𝑟1 =  1 +  1 − 𝑐 and 𝑟2 =  1 −  1 − 𝑐  are real if and only if c ≤ 1. 
For c > 1, the line y = x and the function fc (x) = x2 – x + c have no point in common. Hence for c > 1, there is no 

fixed point for fc (x) and all the orbits have a tendency to move towards infinity. For c = 1.5, the graph of  

fc (x) = x2 – x + c is as shown in the Figure 3(a). The figure shows the orbit of the initial point x0 = 1 that 

diverges to infinity. 

 

Figure 3(a) showing the orbit diagram at x0 = 1 
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Case 2. c = 1 : For c = 1, we have the two roots r1 = r2 = 1.Thus there is just one fixed point at x = 1. What is the 

nature of the fixed point at x = 1? As fc' (1) = 1, the point x = 1 is a neutral fixed point and the theorems 2.5 and 

2.6 proves to be inconclusive. However, we can use theorem 2.11. 
Since fc" (1)  = 2.(1) = 2 > 0, we conclude that x = 1 is weakly attracting from the left and weakly repelling from 

the right.  

Case 3. 0 < c < 1 : As c becomes just less than 1, we get two fixed points  𝑟1 =  1 +  1 − 𝑐 and  

𝑟2 =  1 −  1 − 𝑐 . In this case, the line y = x intersects the graph of the function fc (x) in to two distinct points. 

For c < 1, as 𝑓𝑐
′ 𝑟1 = 2 1 +  1 − 𝑐  –  1 = 1 + 2 1 − 𝑐 > 1, by theorem 2.5, the point r1 happens to be a 

repelling fixed point. Also, 𝑓𝑐
′ 𝑟2 = 2 1 −  1 − 𝑐  –  1 = 1 − 2 1 − 𝑐 < 1. Hence r2 is an attracting fixed 

point. However, in order to determine the set of values of c for which r2 is attracting, we have to do a little more 
calculations.                

Note that   𝑓𝑐
′ 𝑟2  < 1 ⟺ −1 <  1 − 2 1 − 𝑐 < 1 

                                       ⟺ 0 < 𝑐 < 1.  

Therefore, the fixed point r2 = 1 −  1 − 𝑐  is an attracting fixed point for 0 < c < 1. 

 

3.2 The occurrence of Saddle-Node Bifurcation 
We observe that for c = 1, there is just one fixed point at x = 1. When c decreases from 1 to a little 

smaller value, we get two fixed points 𝑟1 =  1 +  1 − 𝑐 and  𝑟2 =  1 −  1 − 𝑐.       

As the value of the parameter c passed through 1, the number of the fixed points has changed from 1 to 2. This 

change in the number and the nature of the fixed points is called as the bifurcation. The particular behaviour of 

the family fc (x) = x2 – x + c as c passes through 1 is known as Saddle-Node Bifurcation or a Tangent 

Bifurcation. (Refer  [2], [3]) 

Case 4.  c = 0 : When c takes the value 0, the two fixed points are r1 = 2 and r2 = 0. What is the behaviour of the 

orbits near these fixed points? Since  𝑓𝑐
′  2  =  5,  r1 is a repelling fixed point.  

Also, as  𝑓𝑐
′ 0  = 0,  r2 is a neutral fixed point. But as  𝑓𝑐

′′  0  = 2 > 0, r2 is weakly attracting from the left 

and weakly repelling from the right. 

Case 5.  –
𝟏

𝟐
< 𝑐 < 0: When c falls down through 0,  1 − 𝑐 > 1 so that  𝑓𝑐

′ 𝑟2  > 1. Hence r2  is a repelling 

fixed point. But for c < 0, r1 is also repelling. This indicates that there must be some period 2-cycle between 

these two fixed points.( Refer [2]) To find the periodic points of period 2 of fc (x), we have to find the fixed 

points of the mapping fc 
2(x). Solving fc 

2(x) = x, we get a fourth degree equation 

 𝑥4 − 2𝑥3 + 2𝑐𝑥2 − 2𝑐𝑥 + 𝑐2 = 0 . Solving this equation, along with the fixed points r1 and r2
 of fc (x), we get 

two periodic points 𝑞1 =  −𝑐  and 𝑞2 = − −𝑐. These periodic points are real if and only if c ≤ 0. It can be 

easily verified that the points 𝑞1 =  −𝑐  and 𝑞2 = − −𝑐 are periodic with period 2.Thus we have a period  
2-cycle {q1, q2}. Let us find the stability of this 2-cycle. The 2-cycle is hyperbolic if and only if  

  𝑓𝑐
′  2 𝑞1  ≠ 1. Hence   𝑓𝑐

′ 2 𝑞1  = 1 ⟺ −
1

2
< 𝑐 < 0. Thus the periodic 2-cycle is attracting if −

1

2
< 𝑐 < 0. 

Case 6.  𝑐 <–
1

2
∶ As c assumes a value less that –1/2, there is period 2-cycle, but loses its stability and an 

attracting period 4-cycle appears. In this manner, we come across a period doubling bifurcation . For further 

information, see [1], [2], [3]. 

 The period 4-cycle can be obtained by solving the equation 𝑓𝑐
4 𝑥 = 𝑥. The solution gives periodic 

points of period 1, periodic points of period 2 which are already known to be r1, r2, q1, q2 and the periodic points 

of period 4 say s1, s2, s3 and s4.The values of c for which the periodic 4-cycle is attracting is determined by the 

equation   𝑓𝑐
4 ′ 𝑠1  = 1. Call this value as c1. Thus the period 4-cycle is attracting if  𝑐1 < 𝑐 < −

1

2
. When c 

falls down c1, the period 4-cycle loses its stability and a periodic 8-cycle is born; again a period doubling 

bifurcation! For lower values of c again, this periodic 8-cycle gives birth to a period 16-cycle and so on. In this 

way, we witness a period doubling cascade! 

 
3.3 Bifurcation diagram (Refer [1], [2], [3], [4], [5]) 

This diagram exhibits the most famous transition to chaos through successive period-doubling 

bifurcations as the parameter c is varied. The bifurcation diagram of a one parameter family fµ(x) is a graph for 

which the horizontal axis represents the values of the parameter µ and the vertical axis represents the higher 

iterates of the variable x. For each value of the parameter µ, the diagram includes all points of the form 

(𝜇, 𝑓𝜇
𝑛 (𝑥)), for the values of n higher than 100.     

In case of the family fc (x) = x2 – x + c as all the interesting dynamics occur in the interval –2 ≤ c ≤ 1, 

we divide the parameter range [–2, 2] into a number of specified subdivisions. For each parameter value in this 

subdivision, the orbits are computed and plotted using the  initial condition x0 = 0 as shown in the Figure 3. 
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Figure 3 

 
 

 

One can observe the repeated period doublings in this diagram. The first period doubling is observed at 

c = 0 and then as c decreases through 0, we come across successive period doubling bifurcations.   

 

IV. Chaos 
The word 'chaos' or sometimes the word 'unpredictable' is used interchangeably in our daily life. 

Roughly, chaos means a kind of disorder or randomness. We often experience chaos in weather, rising particles 

of smoke or prices of shares in stock market. This kind of unpredictability can also be observed in some 

mathematical functions.      

Of many definitions of chaos given by different authors, we will consider the one given by Robert L. 

Devaney. [2] 

 

4.1 Definition 

A mapping  f : J→ J is said to be topologically transitive if for any pair of open sets U, V  J,  there 
exists k  > 0 such that f k(U) ∩ V ≠ φ. (See [2])   

A topologically transitive map has points that eventually move under iteration from one arbitrary small 

neighbourhood to any other. This definition implies that in case of a topologically transitive map, for every pair 

of points x and y and for each ϵ > 0, there exists an orbit that comes within an ϵ-neighbourhood of the two 

points. If a map has a dense orbit, then it is topologically transitive.  

 

4.2 Definition 

A mapping f : J→ J has sensitive dependence on initial conditions if there exists 𝛿 > 0 such that, for 

any neighbourhood N of x, there exists y ∈ N such that | f n (x) – f n (y) | > 𝛿. (Refer [2] )  
The definition says that f has sensitive dependence on initial conditions if arbitrarily close to any given 

point x in the domain of the function f, there is a point and an nth iterate that is farther from the nth iterate of x 

than a distance δ. Thus if a function f  possesses sensitive dependence on initial conditions, the higher iterates of 

an approximate value of x and the computer calculations may be misleading. 

As an example, the baker's function B given by 

 

                       𝐵 𝑥 =  
      2𝑥 for 0 ≤ 𝑥 ≤ 1/2

    2𝑥 − 1 for 1/2 < 𝑥 ≤ 1
      

possesses sensitive dependence on initial conditions since it can be proved that after 10 iterations, the iterates of 

1/3 and 0.333 are farther than 1/2 apart. 

  

4.3 Definition 

Let V be a set. A mapping F : V → V is said to be chaotic on V  if  

1. F has sensitive dependence on initial conditions. 

2. F is topologically transitive. 

3. periodic orbits are dense in V.   (See[2]) 
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 In [2], it has been proved that the quadratic map Fµ(x) = µx(1– x) is chaotic in Λ 

for 𝜇 > 2 +  5. Also, Fµ(x) is chaotic on the interval I = [0, 1] for µ = 4. 
 So far, we have analysed the dynamics of the mapping fc (x) = x2 – x + c for the values  

of c > –½. As the value of c falls through –½, the dynamics of fc (x) becomes more and more complex. The 

analysis of fc (x) done so far points towards the chaotic behaviour and this can be proved in the sense of the 

above definition of chaos.        
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