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Abstract: The success rate of any firm in the industry depends greatly on its sales output. This is achievable 

only when certain strategies are employed to overcome competition pressures from allied firms. We utilize the 

tools of Markov decision process in designing our model that improves on the quality of advertisement, research 

and manpower development to yield an optimal choice leading to profit maximization and cost effectiveness. 

Finally, we solve our model equations by the  value iteration method  
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I. Introduction 

Manufacturers are confronted with many pressures during the process of production. Amongst such are 

the problems of competition from allied firms, product imitation by fake manufacturers, copyright abuses, 
outsourcing as well as inventory problems. These problems have led to a loss of goodwill and even a total 

collapse of many firms over the years. In a bid to addressing these problems, many scholars have explore 

various techniques with much results but the numerous problems cannot be treated completely in a single article, 

hence our work intends to address the problems associated with competition pressures confronting 

manufacturers as they sell  products. 

 

II. Some Definitions 
This section consists of definitions and theorems that relate to Markov decisions processes and 

optimality in decision making. 

 

2.1Markov Chain: 

According to (Howard, R.A. 1960) Markov chain is a discrete time process governed by a discrete state 

space, E (observed at discrete time points) and transition matrix P, for which the Markov property holds i.e. 

1 0 0 1 1 1( | , ,........ ) ( | )ij i t i tP P X j X i X i X i P X j X       
   (1.0)

 

If the transition probabilities do not depend on t, the Markov chain is said to be stationary.A Markov 

decision process (MDP) is an extension of a Markov chain, where the Markov chain can be steered by actions 
and with which optimal actions can be determined. 

For a Markov chain, the conditional distribution of any future state Xn+1 given the past states 

0 1 1, ,.........., nX X X   and present state nX , is independent of the past states and depends only on the present 

state. The value 
ijP  represents the probability that the process will, when in state i , next make a transition into 

state j . Since probabilities are nonnegative and since the process must make a transition into some state, we 

have that  

 
0

0, , 0; 1, 0,1,....ij ij

j

P i j P i




         (2.0) 

Let P denote the matrix of the transition probabilities ijP , so that 
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2.2 Markov Processes: 

A stochastic process ( ; 0)nX X n    with values in a set E is said to be a discrete time Markov 

process if for every 0n   and every set values 0 ,..., nx x E , we have 

1 0 0 1 1 1( | , ,..., ) ( | )n n n n n nP X A X x X x X x P X A X x        ,    (3.0) 

Whenever, A is a subset of E such that 
1{ }nX A   is an event.  In this case, the functions defined by 

1( , ) ( | )n n nP x A P X A X x        (4.0) 

are called the one – step transition probabilities of X.  

Transition probabilities - the probability of moving from one state to another. one-step transition 

probabilities -The one-step transition probability is the probability that the process, when in state i at time n, 

will next made a transition to state j at time n + 1. We write 

 
, 1

1( | )n n

ij n np P X j X i

    

i) 
( , 1)0 1n n

ijp   Since the transition probabilities are (conditional) probabilities. 

ii) 
( , 1)

0 1n n

j ijp 

  Since the chain must transition somewhere and summing over all j is an application 

of the addition law for a set of disjoint and exhaustive events. 

 

III. Literature Review 
Markov chain, a well-known subject introduced by Markov in 1906, has been studied by a host of 

researchers for many years (Chung, 1960; Doob, 1953; Feller, 1971; Kushner & Yin, 1997). Markovian 

formulations (see Chiang, 1980; Taylor & Karlin, 1998; Yang, Yin, & Zhang, 2002; Yang, & Yin,2001; Yin & 
Zhang, 1997, 1998; Yin, & Zhang,1995) are useful in solving a number of real-world problems under 

uncertainties such as determining the inventory levels for retailers, maintenance scheduling for manufacturers, 

and scheduling and planning in production management.  

Markov chain approach has been applied in the design, optimization, and control of queuing systems, 

manufacturing processes, reliability studies and communication networks, where the underlying system is 

formulated as stochastic control problem driven by Markovian noise. 

In the area of integrated procurement-production systems, Golhar and Sarker (1992), Jamal and Sarker (1993), 

and Sarker and Parija (1994) implemented various solution methodologies for the integrated model and 

determined an optimal or near-optimal ordering policy for procurement of raw materials and the manufacturing 

batch size to minimize the total cost while considering equal shipments of the finished products, at fixed 

intervals, to the buyers.  

Golhar and Sarker (1992) developed the solution methodology for this model using a one-directional 
search procedure to obtain an optimal or near optimal solution iteratively. However, their procedure finds the 

break points (shipment points) only when the production rate is equal to the demand rate of finished goods 

inventory, and this is not the case for all the time. Later, their procedure was improved by Jamal and Sarker 

(1993) in order to get the break points at each iteration when the production rate is also greater than the demand 

rate of finished goods inventory.  

Furthermore, integrated inventory models implemented by Lu (1995), Goyal (1995), Hill (1997), Hill 

(1999) and Goyal and Nebebe (2000) cover integrated vendor buyer systems without taking the raw material 

procurement into consideration. 

Lu (1995) developed an optimal policy for a single-vendor single-buyer problem in which the delivery 

quantity to the buyer is identical at each replenishment. Then Goyal (1995) and Hill (1997) removed the 

restriction of identical shipments and allows delivering all available vendor inventories to the buyer. Their 
models showed that „deliver what is produced‟ is better than „identical delivery quantity‟.  

However, Viswanathan (1998) discussed that none of the strategies explained by Lu (1995), Goyal 

(1995) and Hill (1997) obtains the best results for all possible problem parameters. Hill (1999) and Goyal and 

Nebebe (2000) kept working on IVB systems to obtain a better optimal solution while considering alternative 

policies. 

More recently, Lee (1995) proposed an integrated inventory model for a single-manufacturer single-

buyer supply chain problem by combining IVB (Integrated Vendor Buyer) and IPP (Integrated Procurement 

Production) systems together. Therefore, the joint economic lot sizes of manufacturer‟s raw material ordering, 

manufacturing batch, and buyer‟s ordering are generated by the developed model. 

 

 



An Optimal Policy for a Manufacturer’s Sales Problem Using Markov Decision Model 

www.iosrjournals.org                                                    27 | Page 

IV. Mathematical Methodologies 
4.1 Model Equations And Theorems 

4.1.1 Theorem  (Chapman-Kolmogorov Equations): 
 Assume that X is a time-homogeneous discrete time Markov chain (DTMC)  

with n-step transition probabilities
( )n

ijp . Then, for any non-negative integer 

r < n, the identities 

 

  
( )( ) ( )rn n r

ij ik kj

k E

p p p 



        (5.0) 

 

hold for all ,i j E . 

Proof: 

 By using first law of total probability and then the Markov property, we have 
( )

0{ | }n

ij np p X j X i  
 

0( , | )n r

k E

p X j X k X i


     

 

0 0( , | ). ( | )n r r

k E

p X j X k X i p X k X i


       

 

  0( , ). ( | )n r r

k E

p X j X k p X k X i


      

 

  
( ) ( )r n r

ik kj

k E

p p 




       (6.0)

 

 

4.1.2 Definition ( Optimality Equations) 

Given a finite-horizon Markov decision problem with decision epochs {1,..., }T N  , defined on the 

optimal value functions 
* :t tu H R such that 

   
* ( ) sup ( ),t t t t

HR

u h u h






     (7.0) 

    

Where ( )t tu h
 is the expected total reward earned by using policy    from time t to N and the 

supremum is taken over all history-dependent randomized policies. The optimality equation is: 

 

  1( ) sup ( , ) ( | , ) ( , , )
st

t t t t t t t t
a A j s

u h r s a p j s a u h a j
 

 
  

 
    (8.0) 

 

for 1,..., 1t N   and 1 1,( , )t t t th h a s   along with the boundary condition 

 

   ( ) ( )N N N Nu h r s        (9.0) 

for 1 1( , , )N N N Nh h a s  . The supremum in equation (8.0) is taken over the set of all possible actions that are 

available when the system is in state ts  and this can be replaced by a maximum when all of the action sets are 

finite.  

 

4..1.3 Development of Value Iteration Method  

Let nX  denote the state of the process at time n and na the action chosen at time n, then the above is 

equivalent to stating that: 
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1 0 0 1 1( | , , , ,........ , ) ( )n n n ijP X j X a X a X i a a P a           (10) 

We consider an aperiodic irreducible Markov chain with m states 

 (m< ∞) and the transition probability matrix  P with every transition, i to j associate a reward 
ijR  if we let 

( )n

iV  be the expected total earnings (reward) in the next n transitions, given that the system is in state i at 

present.  

A simple relation can be given  

For 
  

1

n

i
n

V



as follows: 

  
 n

iV =  
 1

1

1,2,.........., ; 1,2,3,........
m

n

ij ij j

j

P R V i m n




   
                     (11) 

Let     

1

m

ij ij i

j

P R Q



              (12) 

Equation (11) 

can now be written as: 

  ( 1)

1

m
n n

i i ij j

j

V Q PV 



 
            (13)            

Setting n = 1, 2 

… we get 

(1) (0)

1

m

i i ij

j

V Q PV


 
       

 

 
(2) (0) (0)

1 1 1 1 1

m m m m m

i i ij j jk k i ij j ij jk k

j k j k j

V Q P Q P V Q P Q P P V
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 
      

 
   

   

 

 
(0) (2) (0)

1 1 1 1 1

m m m m m

i ij j ij jk k i ij j ik k

j k j j k

Q P Q P P V Q P Q P V
    

        
     (14)

 

Where 
( )n

ijP is the ( , )thi j  element of the matrix 
nP  

Let 
( )nV  = 

( )
11

( )
22

( )
33

( )

..

..

n

n

n

n
mm

QV

QV

QV
Q

QV

   
   
   
   

   
   
   
   

            (15)

 

Equation (13) can be put in matrix notation as 
( )nV  

2 (0)Q PQ P V         (16)   

    

Extending this to a  nth term, we have 
1

( ) 2 ( 1) (0) (0)

1

...... 1
n

n n n n

k

V Q PQ P Q P Q P V PK Q P V






 
         

 


  (17) 
 

4.1.4 Value Iteration ( algorithm) 

The value iteration algorithm is a method that can be used to find   optimal policies for discounted 

Markov decision processes. The algorithm consists of the following steps: 

 Set 0n   and choose an error tolerance 0   and an initial condition
0v V  

 For each 
s S

, compute 
1( )nV s

 ,where; 
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1 ( )( ) max ( , ( | , ) ( )
s

n n

a A
j s

V s r s a p j s a v j




 
  

 


 
 

  If   

1 (1 )

2

n nv v
 



 
  

, go to step 4. Otherwise increase 1nton  and return to 

step 2. 

  For each 
s S

,  choose 

( 1)( ) arg max ( , ( | , ) ( )
s

n

a A
j s

d s r s a p j s a v j  




 
  

 


 
And stop. 

In vector notation, this algorithm can be expressed as: 

    

    
1n nv Lv   

 

      1arg max n

d
d D

d rd P v  


     (18) 

4.3 Model Formulation 

We consider a manufacturer of a certain product who has found tough competition in business and 

would like to use analytical techniques in making decisions for advertising, investing in research and 

development of new products: using months as the time unit, the sales of product undergos state changes 

between rising (1), steady (2) and dropping (3) states based on the following transition probability and reward 

matrix.   

 P = 

11 12 1

1 2

.....

. . .

. . .

.....

m

m m mm

p p p

p p p

 
 
 
 
 
 

 

11 12 1

1 2

....

.. .. .....

....

m

m m mm

R R R

R

R R R

 
 


 
      (19)

  Let the position of the sales of the product be described by a random variable (X), suppose that the 

sales is considered for several months; (n), we obtain a stochastic process  ,...3,2,1, nX n  we assume that the 

position of the sales are: 

(1) Rising sales (state1) 

(2) Steady sales (state 2) 

(3) Drop in sales (state 3) 

 

We consider the states to be mutually exclusive and exhaustive. It is further assumed that the stochastic 

process , 1,2,3,.....nX n   is governed by a first order Markov chain mentioned in equation (1.0). The 

possible transitions between the states are presented in figure (1). 

From the transition diagram in figure 1 and equation (1.0) where m, n = 1, 2, 3. We obtain a transition matrix P. 

We assume that the matrix is P is aperiodic, irreducible stochastic matrix. 

When the sales of product is in state 1, let there be two alternatives open to the manufacturer: 

Alternative 1: continue without change 

Alternative 2: increase advertising 

Let the corresponding transition probabilities and rewards be given as: 
1 1 1

11 12 13P P P    
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1 1 1

11 12 13R R R    

And 
2 2 2

11 12 13P P P    

2 2 2

11 12 13R R R    respectively.  (20) 
When the sales of the product is in state 2, let the alternatives be as: 

Alternative 1: continue without change 

Alternative 2: invest in research.  
Suppose that the corresponding transition probability and rewards are given as:  

1 1 1

21 22 23P P P    

1 1 1

21 22 23R R R    

and 

 
2 2 2

21 22 23P P P    

 
2 2 2

21 22 23R R R    respectively.  (21)
 

When the sales of the product is in state 3, let the following alternatives be open to him. 

Alternative 1: change 

Alternative 2: development of new product. 

 
1 1 1

31 32 33P P P    

 
1 1 1

31 32 33R R R    

and 

  
2 2 2

31 32 33P P P    

 

2 2 2

31 32 33R R R  

respectively.  (22) 
 

V. Application 
A manufacturer of certain a product has found tough competition in business and would like to use 

analytical techniques in making decisions for advertising, investing in research and development of new 

products. The product undergoes state changes between rising sales, steady sales and drop in sales based on the 

following transition matrices and corresponding reward matrices.  

Let the transition probabilities (
ijP ) and the corresponding reward (

ijR ) be given as follows: 

11 12 13

21 22 23

31 32 33

; , 1,2,3ij

P P P

P P P P P i j

P P P

 
 

   
 
     

    

 

and 

  

11 12 13

21 22 23

31 32 33

; , 1,2,3ij

R R R

R R R R R i j

R R R

 
 

   
 
    (23)   

 

 

Let D be the decision set and we have two alternative decisions available to the manufacturer. That is, 

Alternative 1; and Alternative 2; Thus in every state we have k = 1, 2 D. 
Suppose we have the following transition probabilities and the corresponding reward matrices. 

 

For k=1   
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1 1 1

11 12 13

1 1 1

21 22 23

1 1 1

31 32 33

0.6 0.2 0.2

0.1 0.6 0.3

0.3 0.5 0.2

p p p

P p p p

p p p

   
   

    
  
  

   (23) 

   

   

     
1 1 1

11 12 13

1 1 1

21 22 23

1 1 1

31 32 33

6 5 4

4 3 2

4 6 3

R R R

R R R R

R R R

   
   

     
     

   (24) 

 For k=2 

  

2 2 2

11 12 13

2 2 2

21 22 23

2 2 2

31 32 33

0.6 0.1 0.3

0.5 0.3 0.2

0.1 0.3 0.6

p p p

P p p p

p p p

   
   

    
  
  

  (25) 

 

  

2 2 2

11 12 13

2 2 2

21 22 23

2 2 2

31 32 33

6 3 2

2 10 5

7 8 1

R R R

R R R R

R R R

   
   

      
       

  (26) 

 

VI. Results 
We shall use these values in the equation below to determine the best policies for every n 

 

( ) ( 1)

1

max 1,2,....; 1,2,.....,
m

o n k k o n

i i ij j
k D

j

V Q P V n i m




 
    

 
 .    (27) 

we have 

The summary of the results is presented in Table 1. 

 

Table 1: The summary result of the optimal policies and rewards 
N ( )

1

nd  
( )

2

nd  
( )

3

nd  
( )

1

o nV  
( )

2

o nV  
( )

3

o nV  

1 

2 

3 

4 

5 

6 

1 

1 

1 

1 

1 

1 

1 

1 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

540 

872 

1,433.6 

2,488.96 

4,539.06 

8,572.57 

160 

274 

675.8 

1,655.38 

3,622.12 

7,563.93 

-120 

-8.2 

300.2 

1,128.22 

2,928.24 

6,686.67 

 

 6.1 Discussion Of Results 

The results indicate the best policies for each n.
( ) 1,2,3,4,5,6 1,2,3.n

id where n and i  Thus, 

we have obtained the best policies for the three states for six months. In addition to the best policies, the 

corresponding expected rewards are also provided.  

For the first month, 
(1) (1)

1 11 540od with V  means that the best policy for state 1 is for the 

manufacturer to continue without changing the method and the corresponding expected reward is five hundred 

and forty thousand naira and the same results follow for all the subsequent iterations 

 The results revealed that for the fourth, fifth and sixth month, the best policies for the states is 

alternative 1 while for the first state, Alternative 2 for the second state and Alternative 1 for the third state 

respectively. This is a convergence to stable policy that further iterations beyond is not necessary.  

 

VII. Conclusion 
From the results obtained, manufacturing industries should all take the advertisement very seriously 

and should always involve in research to improve the level of their production which will therefore increase the 

sales to maximize profits. 
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