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I. Introduction 
Modern Optimal Control Theory began in 1953 when Bushaw in a Ph.D. Thesis at Princeton, gave a 

mathematical solution to a simple optimal control problem. Hermes and Lasalle [1] showed that Bushaw 

considered the general second-order linear differential equation with constant coefficients 

 𝑥1 + 2𝑏0𝑥1 + 𝑐0𝑥1 = 𝑢(𝑡)       (1) 

which is equivalent to 

 𝑥 = 𝐴𝑥 + 𝐵𝑢        (2) 
where 

 𝐴 =  
0 1

−𝑐0 −2𝑏0
 , 𝐵 =  0

1
       (3) 

and  𝑢 ≤ 1. The problem is to determine a control 𝑢∗ with  𝑢∗ ≤ 1 in such a way that the solution 

𝑥 𝑡; 𝑢∗  of (1) reaches the origin in 𝐸2, 2-dimensional Euclidean space, in minimum time 𝑡 ≥ 0. Such a control 
will be termed , 

Lasalle [2] considered a more general situation (2) in which A is an nxn matrix, B an nxm matrix and u 

an m-vector which is constrained to lie in a unit cube 𝐶𝑚  in 𝐸𝑚  where 𝐸𝑚  is the m-dimensional Euclidean 

space. Here 𝐶𝑚 =  𝑢 ∈ 𝐸𝑚 :  𝑢𝑗  ≤ 1, 𝑗 = 1, ⋯ , 𝑚 . The admissible controls are those whose components 

𝑢𝑗 , 𝑗 = 1, ⋯ , 𝑚 are measurable on finite intervals with −1 ≤ 𝑢𝑗  𝑡 ≤ 1, 𝑡 ≥ 0. 

In tackling the time optimal control problem (2) Lasalle showed that if the system (2)  has a solution 

which can be driven to zero with an admissible control in finite time (i.e. if the system (2) is null controllable) 

then optimal controls exist for (2) and can sharply be determined and described. The problem of null 

controllability was therefore of fundamental importance. Lasalle’s solution was one of the earlier triumphs of 
Optimal Control Theory. He proved that if the free system 

 𝑥 = 𝐴𝑥         (4) 

Is stable (i.e. all the eigenvalues of A have non positive real part) and if the system (2) is proper i.e. 

Rank [B,⋯ , 𝐴𝑛−1𝐵] = n       (5) 

 

then the system (2) is null controllable. If we apply this theory to Bushaw’s problem we note that since 

 𝑏0 > 0, 𝑐0 > 0        (6) 

we have 

 𝑥1 + 2𝑏0𝑥1 + 𝑐0𝑥1 = 0       (7) 

is stable. Furthermore we have 
 rank [B, AB] = 2        (8) 

where 

 𝐵 =  
0
1
 and 𝐴 = [

0 1
−𝑐0 2𝑏0

]      (9) 

we have therefore that (2) is null controllable, optimal controls exist for (2) and can fully be described. 

Lasalle’s problem of null controllability has since been extended to nonlinear ordinary differential systems 

 𝑥  𝑡 = 𝑓 𝑡, 𝑥 𝑡 , 𝑢 𝑡  .       (10) 

Lee and Markus [3] studied the nonlinear autonomous control problems 

 𝑥 = 𝑓 𝑥, 𝑢  in 𝐶1in 𝐸𝑛+𝑚        (11) 

with u admissible. They demonstrated that if 

 𝑓 0,0 = 0        (12) 

 rank [𝐵, 𝐴𝐵, ⋯ , 𝐴𝑛−1𝐵] = 𝑛      (13) 
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where 

 𝐴 =
𝑑𝑓

𝑑𝑥
 0,0  and 𝐵 =

𝑑𝑓

𝑑𝑢
 0,0       (14) 

then there is an open region about the origin for which (11) is null controllable. By applying some 

asymptotic criterion they deduced global null controllability of the system (11). They applied the theory 
developed to the system 

 𝑥 + 𝑓 𝑥, 𝑥  𝑥 + 𝑔 𝑥 = 𝑢       (15) 

or the phase plane system 

 𝑥 = 𝑦         (16) 

 𝑦 = −𝑔 𝑥 − 𝑓 𝑥, 𝑦 𝑦 + 𝑢.      (17) 

The problem is the regulation of the nonlinear oscillator (15). They showed that if, 

 𝑓(𝑥, 𝑦) > 0        (18) 

 𝑥𝑔 𝑥 > 0 for 𝑥 ≠ 0       (19) 
and 

 lim 𝑥 →∞ 𝐺 𝑥 = ∞        (20) 

 

 𝐺 𝑥 =  𝑔 𝑠 𝑑𝑠,
𝑥

0
       (21) 

the linear approximation to the nonlinear control process at the origin is 

 𝑋 =  
0 1

𝑑𝑔

𝑑𝑥
 0 −𝑓 0,0  𝑋 +  0

1
 𝑢      (22) 

where 

 𝑋 =  
𝑥
𝑦          (23) 

satisfies the controllability condition; thus, the nonlinear oscillator is controllable to the origin from 

each initial state in finite time by a controller u(t) satisfying any previously assigned bound  𝑢 𝑡  < ∈. 
 The extension of the results of [3] to the nonlinear system (10) was attained in Chukwu [4]. Chukwu 

considered (10) where 𝑓: 𝑅 × 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛  is such that f (t, x, u) and 
𝜕𝑓

𝜕𝑥
  are continuous in (t, x, u), 𝑢 ∈ Ω, Ω 

the set of all bounded measurable controls with values in Ω ∈ 𝑅𝑚 , m-dimensional real space. He showed that if 

for some admissible control 𝑢∗ 𝑡 ∈ Ω, 
(i) 𝜆𝑘 𝑥, 𝑢∗, 𝑡 , 𝑘 = 1, 2, ⋯ , 𝑛 of the matrix 

 
1

2
 𝐴𝐽 + 𝐽𝑇𝐴       (24) 

(J is the Jacobian matrix of 
𝜕𝑓

𝜕𝑥
 and 𝐽𝑇its transpose) satisfy 

 𝜆𝑘 ≤ −𝛿 < 0, 𝑘 = 1, 2, ⋯ , 𝑛    (25) 

For all (x, t) ∈ 𝑅𝑛+1 , where 𝛿 is a constant; 

 

(ii)   𝑓 𝜏, 0, 𝑢∗  → 0 as 𝑡 → ∞
𝑡+𝑟

𝑡
     (26) 

 

then the system (10) is asymptotically stable about the origin; and for each 𝑥0 ∈ 𝑅𝑛  the solution x(t) of (10) with 

u(t) = 𝑢∗ 𝑡 and 𝑥 𝑡0 = 𝑥0 tends to 𝑥1 = 0 as 𝑡 → ∞. If in addition to the above the linearized system: 

 𝑥  𝑡 = 𝐿 𝑡 𝑥 𝑡 + 𝑞 𝑡 , 𝑞 𝑡 ∈ 𝑄 𝑡 ⊆ 𝑅𝑛      (27) 

where 𝐿 𝑡 = 𝑓𝑥 𝑡, 0, 0  is an n x n matrix which is continuous in t, 𝑄 𝑡 = 𝑘 ∧  𝑡  , where 𝑘 ∧  is 

the unbounded closed convex cone of ∧ with ∧ = 𝑓 𝑡, 0, Ω ; is such that 0 ∈  Ω, 𝑓 𝑡, 0, 0 = 0 and the system 

(27) is proper; i.e. the origin is an interior point of the reachable set 𝑅 𝑡, 𝑡0 , which is defined to be: 

 𝑅 𝑡, 𝑡0 =    𝑋−1 𝑠, 𝑡0 𝑞 𝑠 𝑑𝑠: 𝑞 𝑠 ∈ 𝑄 𝑠 , 𝑞 summable
𝑡

𝑡0
    (28) 

where𝑋 𝑡, 𝑡0 is the transition matrix of (27), then (10) is globally finite time null controllable, i.e. (10) 

is globally asymptotically stable and can be controlled to the origin with the control 𝑢∗ 𝑡  in finite time from 

any initial position.   

While linear approximation technique was used in [3] and [4] to determine the controllability of (10), 

we examine a different technique, perturbation method, used by Dauer [5] in determining the controllability of 

(10) with control, u(t), unrestrained. Dauer considered the system: 

 𝑥  𝑡 = 𝐴 𝑡 𝑥 + 𝐵 𝑡 𝑢 + 𝑓 𝑡, 𝑥, 𝑢      (29) 

where the continuous function f satisfies the condition: 

 lim  𝑥,𝑢  →∞

 𝑓 𝑡,𝑥,𝑢  

  𝑥,𝑢  
= 0       (30) 

uniformly for 𝑡 ∈  𝑡1𝑡𝑜  ≡ 𝐼. He showed that if the system: 

 𝑥  𝑡 = 𝐴 𝑡 𝑥 + 𝐵 𝑡 𝑢       (31) 
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 𝑥(𝑡0) = 𝑥0        (32) 

is completely controllable then the system (29) is completely controllable. Complete controllability of 

the system (31) implies the ability to steer any point of 𝐸𝑛  to another point of 𝐸𝑛  using unrestrained controls. 

This is equivalent to the positive definiteness of the Gramian matrix:  

 𝑊 =  𝑋−1 𝑠 𝐵 𝑠 𝐵∗ 𝑠 𝑋−1∗ 𝑠 𝑑𝑠
𝐼

     (33) 

where X(t) is the fundamental matrix solution of the uncontrolled system (31) and 𝐵∗(𝑠) denotes the transpose 
of B(s). Dauer [6] extended this result to controllability of the perturbed nonlinear system: 

 𝑥 = 𝑔 𝑡, 𝑥 + 𝐵 𝑡, 𝑥 𝑢 𝑡 + 𝑓 𝑡, 𝑥, 𝑢 ,     𝑥 𝑡0 = 𝑥0    (34) 

where g is twice differentiable in x and once in t, B is once continuously differentiable in x and bounded in  

𝐼 × 𝐸𝑛 ,  

 
𝜕𝑔

𝜕𝑥
 is bounded, and if f satisfies the conditions in (29), then (34) is completely controllable, if and only if: 

 𝑥 = 𝑔 𝑡, 𝑥 + 𝐵 𝑡, 𝑥 𝑢(𝑡)      (35) 

satisfies a strong controllability condition, i.e. if there exists a number 𝜆 > 0 such that for any pair of continuous 

functions x(t), u(t) and for all 𝑤 ∈ 𝐸𝑛  we have: 

 𝑤∗𝑠 𝑥, 𝑢 𝑤 ≥  𝜆 𝑤 2       (36) 
where: 

 𝑠 𝑥, 𝑢 =  𝜓 𝜏 𝜓∗𝑡1

𝑡0
 𝜏 𝑑𝜏      (37) 

 𝜓 𝑡 = 𝑧 𝑡1 , 𝑡, 𝑥 𝑡  𝐵(𝑡, 𝑥 𝑡 )      (38) 

and where the Jacobi matrix function: 

 𝑧 𝑡, 𝑠, 𝑥 =
𝜕𝑦 (𝑡,𝑠,𝑥)

𝜕𝑥
       (39) 

which is bounded on 𝐼 × 𝐼 × 𝐸𝑛  is the fundamental matrix solution of: 

 
𝜕𝑧

𝜕𝑡
=  

𝜕𝑔 (𝑡,𝑦 𝑡,𝑠,𝑥 )

𝜕𝑦 (𝑡,𝑠,𝑥)
 𝑧.       (40)  

z(t, t, x) is the identity matrix and 𝑦 𝑡, 𝑠, 𝑥0  is the unique solution of the nonlinear system: 

 𝑦  𝑡 = 𝑔(𝑡, 𝑦)        (41) 

 𝑦 𝑡0 = 𝑥0        (42) 

The symmetric and non-negative matrix s(x, u) has a bounded inverse, 

  𝑠−1 𝑥, 𝑢  ≤
1

𝜆
        (43) 

Independently of x and u. 
 

We note that the controllability of (35) with restrained controls demands, in addition to the restraints on 

g, local Lipchitz conditions on g, boundedness condition on B and f, stability results on (35). Similarly, the 

controllability of (29) with restrained controls requires the same bounds on B and f as in (34) together with the 

stability conditions on the free system: 

 𝑥 = 𝑔 𝑡, 𝑥 + 𝑓(𝑡, 𝑥, 0).       (44) 

The problem of constrained controllability thus reviewed entails the use of admissible controls which 

are constrained to lie in a unit cube. There is need to reformulate the controlled, unconstrained problem because 

in actual application there are hard limits on the structure which is needed to drive the system which is to be 

controlled. 
We can generalize further the constrained controllability theory to accommodate additional uncertainty 

or disturbances. Into our new set we incorporate a restraining set Q within which the disturbance must lie. The 

results will then reduce to the earlier ones by simply taking the admissible parameter uncertainty Q to be the 

singleton zero. The linear systems considered are given by: 

 𝑥  𝑡 = 𝐴 𝑡 𝑥 𝑡 − 𝑝 𝑡 + 𝑞(𝑡)      (45) 

where for example  –p(t)=B(t)u(t) and q(t) ∈ 𝑄. The system (45) can be considered as a pursuit game where p is 

the pursuer strategy and q the quarry strategy. 

Isaacs [6] studied the pursuit game of two players moving on a straight line, the pursuer having a bound 

on his acceleration, the quarry a bound on his speed. The game ends when the pursuer attains a previously given 

distance from the quarry. The equations of motion are: 

 𝑥 = 𝑢, 𝑦 = 𝑣        (46) 

X(t)two player system: 

 𝑥1 = 𝑥2 ,     𝑥2 = 𝑢,   𝑥3 = 𝑣       (47) 

and in the matrix form: 

 𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐶𝑣       (48) 

where: 
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 𝐴 =  
0 1 0
0 0 0
0 0 0

 ,    𝐵 =  
0
1
0
 ,   𝐶 =  

0
0
1
      (49) 

and: 

 𝑥 =  

𝑥1

𝑥2

𝑥3

         (50) 

or if we define p and q as in (45) we have 

 𝑥 = 𝐴𝑥 − 𝑝 + 𝑞.        (51) 

The termination condition  𝑥 − 𝑦 < 𝜀 translates to: 

  

𝑥1

𝑥2

𝑥3

 ∈ [−𝜀, 𝜀].        (52) 

The game is to drive the system to a target in 𝐸𝑛  using controls p(t) against all actions of the disturbance q(t). 

 Hajek [7] considered the linear differential game: 

 𝑥  𝑡 = 𝐴 𝑡 𝑥 𝑡 − 𝑝 𝑡 + 𝑞(𝑡)      (53) 

 𝑥 𝑡 ∈ 𝐶 𝑡 , 𝑝 𝑡 ∈ 𝑃 𝑡 , 𝑞(𝑡) ∈ 𝑄(𝑡)     (54) 

 𝑥 𝑒𝑛𝑑 = 0        (55) 

where𝑡 → 𝐴 𝑡 is locally 𝐿1 , 𝑡 → 𝑄(𝑡) is continuous and non-decreasing with 0 ∈ 𝑄(𝑡), and P(t) closed for all 

𝑡 ≥ 0. He demonstrated that the game (54) is equivalent to the associated control system: 

 𝑥  𝑡 = 𝐴 𝑡 𝑥 𝑡 − 𝑢(𝑡)       (56) 

 𝑥 𝑡 ∈ 𝐶 𝑡 ,   𝑢(𝑡) ∈ 𝑈(𝑡)      (57) 

 𝑥 𝑒𝑛𝑑 = 0        (58) 

where A, C are as in (54) and the real state space 𝑅𝑛 , 𝑛 ≥ 0, and the control constraint set is: 

 𝑈 𝑡 = 𝑃(𝑡)
∗
−

𝑄(𝑡)       (59) 
∗
−

denotes the Pontriagin difference, 𝑥 ∈ 𝑉
∗
−

𝑊 if and only if 𝑥 + 𝑊 ⊆ 𝑉. By taking A and Q constant he 

extended this result to capture in target set T: 

 𝑇 =  𝑥: 𝑀𝑥 = 0         (60) 

M is a real mxn matrix. 

Chukwu [8] considered the game (54) and extended Hajek’s result to no-constant system matrix, 

𝑡 → 𝐴 𝑡 , locally 𝐿1 , 𝑡 → 𝑄 𝑡 , 𝑡 → 𝑃 𝑡 , 𝑡 → 𝐺(𝑡)are non-empty set valued functions. He showed that the 
system steers into the target, G(t), against all actions of the disturbance provided the associated control system  

The topics studied here are the non-linear differential equation analogues of these fundamental results 

of Hajek [7] and Chukwu [8], the first and second reciprocity theorems in [7] and G-controllability in [8]. The 

thrust of our result is that the non-linear pursuit problem (nonlinear control systems under square integrable but 

unpredictable perturbations) is reduced to one in control theory. 

 

II. Notations And Definitions 
Let 𝐸𝑛  be the n-dimensional Euclidean space. For 

𝑡0 , 𝑡1 ∈ 𝐸 with 𝑡1 ≥ 𝑡0 ,   let the symbol 𝐿2( 𝑡0 , 𝑡1 , 𝐸𝑛 ) denote the space of square integrable functions from 
 𝑡0 , 𝑡1 into 𝐸𝑛 .  We examine the nonlinear differential system: 

 𝑥  𝑡 = 𝑓 𝑡, 𝑥 , 𝑥 𝑡0 = 𝑥0  ∈  𝐸𝑛 , 𝑡0 ∈ 𝐸  (∙ =
𝑑

𝑑𝑡
)    (61) 

and the game described by: 

 𝑦  𝑡 = 𝑓 𝑡, 𝑦 − 𝑝 𝑡 + 𝑞 𝑡 , 𝑦 𝑡0 = 𝑥0     (62) 

where𝑝 ∈ 𝐿2  𝑡0 , 𝑡1 , 𝑃 , 𝑃 ⊆ 𝐸𝑛 , 𝑞 ∈ 𝐿2  𝑡0 , 𝑡1 , 𝑄 , 𝑄 ⊆ 𝐸𝑛  and where 𝑓: 𝐸 × 𝐸𝑛 × 𝐸𝑛 → 𝐸𝑛  is continuous. 

We shall assume as basic that the Frechet derivative 𝑓𝑥0 𝑡, 𝑥0 of 𝑓(𝑡, 𝑥0) exists and is continuous in  𝑡, 𝑥0 , 
also f (t, x) is Lipschitzian in each compact set of 𝐸 × 𝐸𝑛 .We call p and q pursuer and quarry controls 

respectively if they are square integrable functions and satisfy 𝑝 𝑡 ∈ 𝑃, 𝑞 𝑡 ∈ 𝑄 for all t∈[𝑡0 , 𝑡1]. 
 Lord and Mitchell [9] investigated the differential system: 

 𝑦  𝑡 = 𝑓 𝑡, 𝑦 + 𝐹 𝑡, 𝑦 ,   𝑦 𝑡0 = 𝑥0 ∈ 𝐸𝑛      (63) 

where𝑓, 𝐹: 𝐸+ × 𝐸𝑛 → 𝐸𝑛  are continuous in (t, y), 𝐸+ =  0,∞ . They demonstrated that if 𝑥(𝑡, 𝑡0 , 𝑥0) is a 

unique solution of (61) such that 
𝜕𝑥 (𝑡,𝑡0 ,𝑥0)

𝜕𝑥0  exists, is continuous and non-singular, then any solution 𝑦 𝑡, 𝑡0 , 𝑥0  

of (63) satisfies: 

 𝑦  𝑡 , 𝑡 0, 𝑥 0 = 𝑥  𝑡 , 𝑡 0, 𝑥 0 +   Φ 𝑡 , 𝑡 0,𝜙 𝑠   Φ−1 𝑠 , 𝑡 0,𝜙 𝑠   𝐹  𝑠 ,𝑦  𝑠   𝑑𝑠
𝑡

𝑡 0
 (64) 

where𝜙(𝑡 ) is determined by the relation: 

 𝜙  𝑡  =  Φ−1 𝑡 , 𝑡 0, 𝜙 𝑡   𝐹  𝑡 ,𝑥  𝑡 , 𝑡 0, 𝑥 0  ,     𝜙 𝑡 0 =  𝑥 0   (65) 
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where𝑥 (𝑡 , 𝑡 0, 𝑥 0) is the unique solution of (61). Furthermore, if  𝑓 𝑥 (𝑡 , 𝑥 ), the derivative of f(t,x) with 

respect to the solution 𝑥  𝑡 , 𝑡 0, 𝑥 0 of (61), exists and is continuous for (t, x) in 𝐸 + × 𝐸 𝑛  then the integral 

system (64) is equivalent to: 

 𝑦  𝑡 , 𝑡 0, 𝑥 0 = 𝑥  𝑡 , 𝑡 0, 𝑥 0 +   Φ 𝑡 , 𝑠 , 𝑦  𝑠   𝐹  𝑠 , 𝑦  𝑠   𝑑𝑠
𝑡

𝑡 0
   (66) 

where
𝜕𝑥 (𝑡 ,𝑡 0,𝑥0)

𝜕 𝑥 0 =  Φ 𝑡 , 𝑡 0, 𝑥 0  is the fundamental matrix solution of the variational equation: 

 𝑧  𝑡  =  𝑓 𝑥  𝑡 , 𝑥  𝑡 , 𝑡 0, 𝑥 0  𝑧 (𝑡 )      (67) 

 Φ 𝑡 0, 𝑡 0, 𝑥 0 = 𝐼  (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦  𝑚𝑎𝑡𝑟𝑖𝑥 )     (68) 

that is: 

 Φ 𝑡 , 𝑠 , 𝑦  𝑠   =  Φ 𝑡 , 𝑡 0, 𝜙 𝑠   Φ−1 𝑠 , 𝑡 0, 𝜙 𝑠   .    (69)  

 In view of the conditions imposed on f in (61) we shall make use of the form (66) whenever the need 

arises. 
 

Definition 2.1 

 There is complete capture everywhere at time 𝑡 1, for game (61) if for each 𝑥 0, 𝑦 1 ∈ 𝐸 𝑛  and for any 

quarry control 𝑞 ∈ 𝐿 2( 𝑡 0, 𝑡 1 , 𝑄) there exists pursuer strategy 

𝜎 : 𝑄 ×  𝑡 0, 𝑡 1 → 𝑃   which is 𝐿 2( 𝑡 0, 𝑡 1 ,𝑃 ) satisfying: 

i) 𝑝  𝑡  =  𝜎  𝑞  𝑡  , 𝑡  ∈ 𝑃  𝑡  ,   𝑞  𝑡  ∈ 𝑄(𝑡 ) 

ii) The pair of controls p, q so obtained are such that the solution of the game (61) satisfies: 

𝑦  𝑡 1, 𝑡 0, 𝑥 0, 𝑝 , 𝑞  =  𝑦 1and  𝑦  𝑡 0, 𝑡 0, 𝑥 0, 𝑝 , 𝑞  =  𝑥 0   (70) 

 

 There is capture in 0 at time 𝑡 1 for game (61) if the assumptions in the preceding definition are met 

with 𝑦 1 = 0. 
 Capture in G at time 𝑡 1 is defined as follows: for each 𝑥 0 ∈ 𝐸 𝑛 and any quarry control q, there exists a 

pursuer control 𝑝 ∈ 𝐿 2( 𝑡 0, 𝑡 1 , 𝑃 ) such that 𝑦 (𝑡 1, 𝑡 0, 𝑥 0, 𝑝 , 𝑞 ) ∈ 𝐺 ⊆ 𝐸 𝑛  and 𝑦  𝑡 0, 𝑡 0, 𝑥 0, 𝑝 , 𝑞  = 𝑥 0. 
 Associated with our gameis a nonlinear control system described by the equation: 

 𝑦  𝑡  = 𝑓  𝑡 ,𝑦  − 𝑢  𝑡  , 𝑢  𝑡  ∈ 𝑈, 𝑡 ≥ 𝑡 0.     (71) 

Here f is as in (61) but 𝑢 ∈ 𝐿 2( 𝑡 0, 𝑡 1 ,𝑈) where the control set is: 

 𝑈 = 𝑃
∗
−

𝑄 =  𝑦 ∈ 𝐸 𝑛 : 𝑦 + 𝑄 ⊆ 𝑃  (the Pontriagin difference of sets).  (72) 

 

Definition 2.2 

 The system (71) is controllable if for each 𝑦 1 ∈ 𝐸 𝑛  there exists time 𝑡 1 ≥ 𝑡 0 and control 𝑢 ∈
𝐿 2( 𝑡 0, 𝑡 1 , 𝑈) such that the solution 𝑦  𝑡 1, 𝑡 0, 𝑥 0, 𝑢  of (71) satisfies 𝑦  𝑡 1, 𝑡 0 , 𝑥 0, 𝑢  = 𝑦 1 and 

𝑦  𝑡 0, 𝑡 0, 𝑥 0, 𝑢  = 𝑥 0. 
 

 System (71) is null-controllable if the assumptions of the preceding definition are met with 𝑦 1 = 0. 
 

III. Main Results 

Let Φ(𝑡 , 𝑡 0, 𝑥 0) be the fundamental solution of the variational system: 

 𝑧  𝑡  = 𝑓 𝑥  𝑡 , 𝑥  𝑡 , 𝑡 0, 𝑥 0  𝑧 (𝑡 )      (73) 

with the standard assumptions of (61).  

 

Proposition 3.1 

 Assume 0 ∈ 𝑄(𝑡 ) and P (t) closed for all 𝑡 ≥ 𝑡 0. There is complete capture everywhere at time 𝑡 1for  

(61) if, and only if, the associated nonlinear control system: 

 𝑦  𝑡  = 𝑓  𝑡 ,𝑦  − 𝑢  𝑡  , 𝑦  𝑡 0 = 𝑥 0 ∈ 𝐸 𝑛      (74) 

 𝑢 (𝑡 ) ∈ 𝑈(𝑡 ) ≡ (𝑃 + ker Φ 𝑡 1, 𝑡 , 𝑦  𝑡   )
∗
−

𝑄      (75) 

Is controllable at time 𝑡 1. Furthermore, 𝜎  𝑞 , 𝑡  = 𝑢  𝑡  + 𝑞  modulo ker Φ 𝑡 1, 𝑡 , 𝑦  𝑡   , for all 𝑞 ∈ 𝑄, 𝑡 ∈
 𝑡 0, 𝑡 1 ,can be used to determine a suitable control strategy from an admissible control 𝑢 ∈ 𝐿 2( 𝑡 0, 𝑡 1 ,𝑈) 

for (74) and vice versa. 

 This is the nonlinear analogue to Hajek’s [7] first duality theorem. We shall omit the proof of 

Proposition 3.1since it is analogous to the more general situation in Proposition 3.2. 

 

Proposition 3.2 
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 For the game (61), target set 𝐺 ⊆ 𝐸 𝑛 , assume 0 ∈ 𝑄 and P closed. There is capture in G at time 𝑡 1for 
(61) if, and only if, the associated nonlinear control system: 

 𝑦  𝑡  = 𝑓  𝑡 ,𝑦  − 𝑢  𝑡  , 𝑢  𝑡  ∈ 𝑈, 𝑡 ≥ 𝑡 0     (76) 

 𝑦  𝑡 0 = 𝑥 0 ∈ 𝐸 𝑛         (77) 

 𝑢 (𝑡 ) ∈ 𝑈(𝑡 ) ≡ (𝑃 + ker 𝑀Φ 𝑡 1, 𝑡 , 𝑦  𝑡   )     (78) 

Is G-controllable at time 𝑡 1. Moreover, 𝜎  𝑞 , 𝑠  = 𝑢  𝑠  + 𝑞  modulo ker 𝑀Φ(𝑡 1, 𝑠 , 𝑦  𝑠  ) may be used to 

determine an appropriate control strategy from 𝑢 ∈ 𝐿 2( 𝑡 0, 𝑡 1 ,𝑈) in (76) and vice versa. 

 

Proof 

 Assume that there is a capture in G of the game (61) at time 𝑡 1, then for any 𝑞 ∈ 𝐿 2  𝑡 0, 𝑡 1 ,𝑄 , any 

𝑥 0 ∈ 𝐸 𝑛 ,some p, 𝑝  𝑡  = 𝜎 (𝑞  𝑡  , 𝑡 ) ∈ 𝐿 2( 𝑡 0, 𝑡 1 , 𝑃 ) the solution 𝑦  𝑡 1, 𝑡 0, 𝑥 0, 𝑝 , 𝑞  = 𝑦 (𝑡 1) satisfies: 

 𝑀𝑦  𝑡 1 = 𝑀(𝑥  𝑡 1 −  Φ 𝑡 1, 𝑠 , 𝑦  𝑠    𝜎  𝑞  𝑠  , 𝑠  − 𝑞  𝑠   𝑑𝑠 ) = 𝑀𝑏
𝑡 1

𝑡 0
  (79) 

For quarry control 0  (0 ∈ 𝑄) 

 𝑀(𝑥  𝑡 1 −  Φ 𝑡 1, 𝑠 , 𝑦  𝑠   𝑢  𝑠  𝑑𝑠  = 𝑀𝑏
𝑡 1

𝑡 0
     (80) 

where 𝑢  𝑠  = 𝜎 (0, 𝑠 ). By using piecewise constant quarry control q, q in [𝑡 0, 𝑡 ) and 0 in [𝑡 , 𝑡 1] and 

subtracting the result from (80) yields: 

 𝑀 Φ 𝑡 1, 𝑠 , 𝑦  𝑠    𝑢  𝑠  + 𝑞 − 𝜎  𝑞 , 𝑠   𝑑𝑠 = 0
𝑡 1

𝑡 0
    (81) 

for all 𝑡 ∈  𝑡 0, 𝑡 1 , and hence 𝑀Φ 𝑡 1, 𝑠 , 𝑦  𝑠    𝑢  𝑠  + 𝑞 − 𝜎  𝑞 , 𝑠   = 0 for almost all s from which we 

obtain: 

 𝑢  𝑠  ∈  𝑃 + ker 𝑀Φ 𝑡 1, 𝑠 , 𝑦  𝑠    
∗
−

𝑄   a.e.     (82) 

Hence 𝑢 ∈ 𝐿 2  𝑡 0 , 𝑡 1 , 𝑈  is an admissible control for (76), and (80) yields 𝑀𝑦  𝑡 1 = 𝑀𝑏 , proving that (76) 

is  

G-controllable at 𝑡 1. 
 Conversely, assume that (76) is G-controllable at time 𝑡 1 and let 𝑥 0 ∈ 𝐸 𝑛 , 𝑏 ∈ 𝐸 𝑛  be given. Let u be 

the appropriate control in 𝐿2 [𝑡0, 𝑡1 , 𝑈) such that 𝑦 𝑡0 = 𝑥0, 𝑀𝑦 𝑡1 = 𝑀𝑏, then: 

 𝑀𝑏 = 𝑀(𝑥 𝑡1 −  Φ 𝑡1, 𝑠, 𝑦 𝑠  𝑢 𝑠 𝑑𝑠)
𝑡1

𝑡0
     (83) 

where𝑢(𝑠) ∈ 𝑈(𝑠) yields: 

 𝑢 𝑠 + 𝑞 𝑠 ∈  𝑃 + ker MΦ(𝑡1, 𝑠, 𝑦 𝑠  .     (84) 

We now apply Filipov’s lemma (see form in Hajek [10]) to construct a pursuer control: there exist measurable 

mappings 𝜎: 𝑄 ×  𝑡0, 𝑡1 → 𝑃, 𝜈: 𝑄 ×  𝑡0, 𝑡1 → ker 𝑀Φ(𝑡1,∙, 𝑦 ∙ ) such that 𝑢 𝑠 + 𝑞 𝑠 = 𝜎 𝑞, 𝑠 + 𝜈 𝑞, 𝑠 . 
Because 𝜎 takes values in a closed set P, 𝜎 ∈ 𝐿2( 𝑡0, 𝑡1 , 𝑃). We now show that for any quarry control q, 𝜎 is 

indeed appropriate; for any 𝑞 ∈ 𝐿2( 𝑡0, 𝑡1 , 𝑄, 𝜎 − 𝑞 = 𝑢 − 𝜈, so that the solution at 𝑡1 of (61) with this pair of 𝜎 

and q with initial data 𝑥0 is: 

 𝑀𝑦 𝑡1 = 𝑀(𝑥 𝑡1 −  Φ 𝑡1, 𝑠, 𝑦 𝑠   𝜎 𝑞, 𝑠 − 𝑞 𝑠  𝑑𝑠)
𝑡1

𝑡0
   (85) 

 

Corollary 3.3 

 Under the assumptions of Proposition 3.2, there is capture in 0 at time 𝑡1 for game (61) if, and only if, 
the control system (76) is null-controllable. 

 

Proof 

 Take M = I (the identity matrix) and 𝑏 ∈ 𝐸𝑛  with 𝑏 ≡ 0.This completes the proof. 

 

Example 3.4 

 Consider the equation of the forced pendulum with motion constrained to the plane and mass m 

attached to the pivot by means of a rigid massless member: 

 𝐼𝜃 + 𝛼𝜃 + 𝑚𝑔𝑙 sin 𝜃 = 𝐻(𝑡)      (86) 

where𝐼 = 𝑚𝑙2and H(t) is the external controlling torque, 𝛼 ≥ 0 is the damping coefficient. A more general 
nonlinear version of (87) can be considered to be: 

 𝜃 + 𝑓 𝜃, 𝜃  𝜃 + 𝑔 𝜃 = 𝛽 𝑡 − 𝜌(𝑡)     (87) 

where𝛽(𝑡) is the external controlling torque and 𝜌(𝑡) is the regulating torque and where f and g satisfy the 

conditionsin (18) and (19). The termination condition is (𝜃 = 0 = 𝜃 ) subject to the constraints  𝛽(𝑡) ≤ 1, 
 𝜌(𝑡) ≤ 𝜌0and𝑡 ≥ 0.We express (87) with 𝑥 = 𝜃, 𝑥 = 𝑦 in the phase plane form to obtain: 

 𝑥 = 𝑦         (88) 

 𝑦 = −𝑓 𝑥, 𝑦 𝑦 − 𝑔 𝑥 +  𝛽 𝑡 −  𝜌(𝑡)     (89) 
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Or in the matrix form as: 

 𝑋 =   
𝑦

−𝑓 𝑥, 𝑦 𝑦 − 𝑔(𝑥) +   
0

1
 𝛽 𝑡 −  

0

1
 𝜌(𝑡)    (90) 

where𝑋 =  
𝑥
𝑦  and 

 𝐹 𝑥, 𝑦 =  
𝑦

−𝑓 𝑥, 𝑦 𝑦 − 𝑔(𝑥)       (91) 

We isolate the nonlinear part of (90) as: 

 𝑋 =  
𝑦

−𝑓 𝑥, 𝑦 𝑦 − 𝑔(𝑥)        (92) 

Let x be the unique solution of (92) then 

 𝐹𝑥 𝑥, 𝑦 =  
0 1

−𝑔  𝑥 − 𝑓𝑥 𝑥, 𝑦 𝑦 −𝑓 𝑥, 𝑦 − 𝑓𝑦 𝑥, 𝑦 𝑦
    (93) 

We solve the variational equation: 

 𝑧  𝑡 =  
0 1

−𝑔 𝑥 − 𝑓𝑥 𝑥, 𝑦 𝑦     −𝑓 𝑥, 𝑦 − 𝑓𝑦 𝑥, 𝑦 𝑦
 𝑧(𝑡)   (94) 

to obtain Φ(𝑡), the fundamental matrix solution of (94). We now apply Proposition 3.1 to the game to a problem 

in control. We assume  𝜌0 < 1; then there is a winning strategy 𝛽 = 𝜌 + 𝑢  where uis the control which steers to 

the origin within the control system: 

 𝑦 + 𝑓 𝑥, 𝑦 𝑦 + 𝑔 𝑥 = 𝑢       (95) 

The player constraint sets in 𝐸2 are: 

 𝑃 =   
0

𝛽
 :  𝛽 ≤ 1 ,   𝑄 =   

0

𝜌
 :  𝜌 ≤ 𝜌0      (96) 

So that since Φ(𝑡) is a fundamental matrix solution it is nonsingular and has zero kernel, we have: 

  𝑃 + ker Φ 𝑡  
∗
−

𝑄 = 𝑃
∗
−

𝑄 = 𝑈 =   0

𝑢
 :  𝑢 ≤ 1 − 𝜌0    (97) 

We see that the nonsingular game can be steered to the target if the conditions in (18) and (19) hold. 
 

IV. Conclusion 
We see that in establishing the nonlinear differential equation analogues of the first and second 

reciprocity theorems of Hajek and G-controllability result of Chukwu, we have demonstrated that the nonlinear 

pursuit 
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