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Abstract: In this paper we use fractional differential operators D, and aD;l to derive a number of key

k,o,x
formulas of multivariable H-function. We use the generalized Leibnitz’s rule for fractional derivatives in order
to obtain one of the aforementioned formulas, which involve a product of two multivariable’s H-function. It is
further shown that ,each of these formulas yield interesting new formulas for certain multivariable hyper
geometric function such as generalized Lauricella function (Srivastava-Dauost)and Lauriella hyper geometric
function some of these application of the key formulas provide potentially useful generalization of known result
in the theory of fractional calculus.
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I. Introduction And Definitions
The fractional derivative of special function of one and more variables is important such as in the
evaluation of series,[10,15] the derivation of generating function [12,chap.5] and the solution of differential
equations [4,14;chap-3] motivated by these and many other avenues of applications, the fractional differential

operators D, and D! are much used in the theory of special function of one and more variables .

k,ou,x

We use the fractional derivative operator defined in the following manner [16]

n—1
D, . =]l k] IxH (L1
o =0 «f,u+rk—a+1

Where o#u+1 and a and k are not necessarily integers

We use the binomial expansion in the following manner

1 Y u
() e e
=0

the familiar differential operator aDj is defined by [5, p.49; 3; 9; 17, P-356]

s

(ax" +b)* =b"

1 X
=[G de , [Re(w)<0]
(DLfe) = | N

dm
dx"

D' f(x), [0< Re(x) <m]

(1.3)

Where m is a positive integer
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For ¢ =0 ,(1.3) Defines the classical Riemann-Liouville fractional derivative of order u (or-w) when o—o0
( 1.3) may be identified with the definition of the well known Weyl fraction derivative of order p (or-p)
[1,chap.13);3] the special case of fractional calculus operator _ D¥ when a=0 is written as ¥ thus we

have

yZ yZ
Dx o ODX .. (1.4)

In this paper we drive several fractional derivative formulas involving multivariable H-function which
as defined by srivastav and panda [8, p.271 (4.1) et. Seq.] and studied systematically by then [6,7,8 also 11] for
this multivariable H-function we adopt the contracted notations (due essentially to Srivastava and panda [13]
thus following the various conventions and notations explained fairly and fully in their earlier works [6,7,8 see
also 11,13]

_ 0,n:my ny,..m, n,
Hz oz, [=H | (15)

Z (6,8 () ,5}")1#1 o d ,5}’))1’%

Lg

Denote the H-function of r-variables z,, z, ,..., Z, here for convenience

1 r
(aj’aj , ag ) )1 Abbreviates the p- member array
‘ P

(al’all,...al(’)),... .,(ap,a[l,,...ag')) o ...(1.6)
While (CEI), y))l Abbreviates the array of p,  pairs of
P2
parameters
(aﬁ’) ,75’)), .............. ,(ag,’;_) ,7,(;)) ;s (i=1,...,7) W

and so on ,suppose , as usual that the parameters

0 j=lpi & =L p;

b, j=lenq; dV,j=l..q; Vie(i=l..r)

J ...(1.8)
Are complex number and the associated coefficients
a, j=l..,p; 7(’),~ , J=1...p;;
B i=L.q; 5(1-)]_, j=1..q;; Vie(l,..,r)
..(1.9)
Are positive real numbers such that
FORE SIFCIR SO BT
Ai:Z;aj —Z;ﬂj +leyj —Z}@ <0 o
J= J= J= J= AT
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and
5 )N pl) LN ) s O )
Q=-> a2 p8"+2r =2 r)+28"- > §">0; Vie[l...r] (111
Jj=n+1 Jj=1 J=l J=n;+1 J= J=my+
Where the integers n, p,q, M, ,n,p,,q,; are constrained by the inequalities 0<n<p, ¢g=20,

1<m <q, , 0<n <p, [i = l,...,r] and the equality (1.10) holds true for suitably restricted values

of the complex variables z,,.....,z,

Then it is known that the multiple Mellin-Barnes counter integral [11, p.251 (c.1)] representing the
multivariable H-function (1.5) converges absolutely under the condition (1.11) when

|arg(zi)|<%AQl. , Vie[l,...r] .. (1.12)
0(|z]|§1 oz | ), (max|z],...|z,| —>0)
H|z,..z,]|= . (1.13)
0(|zl|m oz, m) , (77 =0;min|z|,...,|z,| —)oo)
Where with i=1,...r
S =min{Re (d(’i)g(f))}, (j=L...m)
i) .. (1.14)
7, = max Re (C’j 1 ([)] , (] =1,..., ni)
V;

Provided that each of the inequalities (l . 10) (l A 1) and (l . 12) holds true.

Throughout the present paper .we assume that the convergence and existence condition corresponding
appropriately to the ones detained above are satisfied by each of the various H-function involved in our results
which are presented in the following sections

II. Main Result
In this section we shall prove our main formulas on fractional differential operator involving multivariable H-
function

1. Result

D} {x(x*+a) (b-x" |

Hlzx* (2 +a) (b-x*) .z, x" (¥ +a) (0-x2)" ]}

=a b

. {1m! p+ut+t2.g+n+2ip.q;i..ip

o % | a I él o On+rn+2m, »n;...m, n

BELY
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I - . S W B B S i Wi O S EN S LI - . ot 7T [0 AN A A
= R ) Ell Bl B S EEE L E i | 2R B | 1350 (R T W o I
Zx“at bt s=0.n-1 ’ ; 5
o 07—
zxTa-b L . L L
—ATLT] T 1-§ f'l:..f_ '\.A._'_E'.__F'l —_,:”’ ey =l -1 & | o | o |

.. (2.0)
Provided (in addition to the appropriate convergence and existence condition) that

min{ul,uz,pl.’ai,é‘i}>0 (i:I,...,r);
e e[ ) <
Re(k)+zr:,0i6&i >-1

i=1

Where &, =(i =1,....,r)are given in (1.14)

b

max {

2. Result
- - TE
D Deixfy | x%=a) |B—x™) |y +c) |d—2™|
Hlz,x" y*|x7 wa] |b-—x7)| |17 +c] |d—17|
z x° _:If | x4 —ﬂ': |:fp'—."{-': : |J.-': _:: |ﬁi‘_:|--'. : - ]}
= a b c | a | 0 + H+5m, . Rn, m _H
iped ok geg ek e e : IV /e dd) o On+nsSimyn...m.n
el S - 4 L o L' " ad _ _
Bt {lm!rls! PR=3g -3 pg . P
z, Xyt g ) o
iz o Tl i, Ilond” B
— =l =iy A A == e al-a .3 - ey
o= . i
— A lmrle— STy i mmimge—a - . g 5 Erhi E
*, = 1 el = [ ] ]
(22

Provided (in addition to the appropriate convergence and existence conditions that
min(v,,0,,0;,0,,0,,8,h,8,)>0 (i=1,...r)
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max ,arg ,arg <r

b

v v, U3 Uy
arg(xé) arg(xé) (y%j (sz
Re(k)+ikl.§i > -1 Re(/i)+zr:/1i§. > -1
i=1 i=1
And where é:l,...fr are given in (1.14)

Proof of (2.1) :-
We first replace the multivariable H-function occurring on the LHS by its Mellin Barnes contour integrals

collected the powers of x, ()CU1 + a) and (b —x" ) and apply binomial expansion
X

e [ngf o3[

We then apply the fractional derivative operator in the following manner [2]

o T+ rk+1
D,:'M(x“)=H _LHATRTL ek .. (2.4)
” o | Tpu+rk—a+1 |

<1 ... (2.3)

Where « # p+1 and & and k are not necessarily integers and interpret the resulting Millen Barnes contour
integrals as a H-function of r-variables we shall arrive at(2.1)

Proof of (2.2):-
We first replace the multivariable H-function occurring on the LHS by its Mellin- Barnes integrals

Collected the powers of X, y, ()CU1 + a) , (b —x"” ), (yu3 + C) , (d -y ) and apply the binomial

e =¢5() )2}

We then apply the formula [7, p.67 eq.4.4.4]

X

4

<1

I'+4 _
D)= [Re(2)>-1]
and
n _ T Fﬂ+rk+1 +nk
Dra (xy)_g{l"u+rk—a+l}#

Where o # p1+1 and @ and k are not necessarily integers and interpret the resulting Mellin-Barnes contour
integrals as a H-function of r-variables we shall arrive at(2.2)

III. Applications
Each fractional derivative formula (2.1) and (2.2) has manifold generality. By specializing the various
parameters and variables involved , these formulas (and indeed their several variations obtained by letting any

desired number of the exponents: p,,..., 0,50, ,...,0,; 0, ,...,0,; hy ... b ; g ,..., 8 3 A ,..., A decrease

to zero in such a manner that both the sides of the resulting equation exit) can suitably be applied to derive the
corresponding results involving a wide variety of useful functions (or product of several such functions) which
are expressible in terms of the E,F,G and H-functions of one ,two and more variables. Say, if we putn =p=q=
0 ,the multivariable H-functions occurring on the LHS of (2.1) and (2.2) would immediately reduce to the
product r(or s) different Fox’s H- functions. Various special cases of Fox’s H-function can be seen in a
monograph of Mathai and Saxena [18, p.145-159].Thus it can also easily be derived fractional derivative
formulas involving any of these simpler special functions desired.
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(1) Replacing & by (—0) in(2.1)and (2.2) ; setting ;,0, >0 (i=1,....,7) in (2.1)and (2.2), in
addition to these we replace g by (—g) alsoset /4,2, —>0 (i=1,..,7) we get the following more

elegant formulas :

D, {x' (x“‘ + a)l (b —x" )_5 Hlzx",..,z x" 1}

) ! v, m
:aib—ﬁanki /11 :; (xé) (XA)

['m!

1,m=0
O,n+n:m n;..m.,n,

H . C C
p+nqg+n:ip.,q;..p,.q,

L (~t-kg—vy1-vym s py ., )g=0,n—1 ,(aj,a5.1>,ua‘<;>)l’p, ;(cg.n,ygn)l’p,l ;.“;(cg.r>,y§r>)l’plr
1
z.x" (at—kgvy-vym; ) S (g )
i g—U; U2m’p1""’p”)g=0,n—1 ,[b_],ﬁj By jl’q, : (dj .5} )l,q'l ,.,.,(d/,ﬁj )1,q'r |
.. (3.1)
D, D;’ {xty)“ (x“‘ + a)i (b —x” )_5 (y“3 +c)h (d -y )_g

s e ok g G5hgx%)lx%)my%ry%s
= b ctdEx #lm;o(lj(MJKI”j[sj( ( l!m(!rls! j( )

O,n +n+l:m,,n,.,m,_,n

p'+n+l, q' +n+ lzp'l,qvl,..., p',, q',
b |(—A=rvy—s0, A A ), (~t—kg —vl —vymik, Lk, )

g=0,n-1 ’

(-A+u—roy—sv, 4 .. 2).(a—t—kg—vl-vmK, .k, )

g=0,n-1"

.32
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