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Abstract: A study on atomic separation axioms on atomic measure space (R", 1, 2, u,) has been introduced in
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I. Introduction

It is observed that, the topological structure on (R", 1) generates an algebraic structure o-
algebra X, that transforms the topological space [3],[6] into a measurable space (R",7t,X)[2],[4]. By
admitting a suitable measure function p, the measurable space is designated as a measure space (R", 1, Z,
p). As a particular case, by introducing an atomic measure W, [5], a measure space is re-designated as
atomic measure space (R", 1, %, 1, ). In this paper S. C. P. Halakatti has introduced a study on extended
version of separation axioms of a topological space (R", 1) onto an atomic measure space (R",1,Z%, p, ) and
re-defined them as atomic separation axioms on (R", 7, %, p, ). The significance of such extension of
separation axioms on (R", 7, X, p, ) is that these topological properties are not only invariant under
homeomorphism but they are invariant under measure invariant transformation. This has an important
implication in the study of measure manifold [1], the concept has been first introduced by S. C. P.
Halakatti. The study of atomic separation axioms on the measure manifold has its applications in the field
of cosmology, where the universe could be modeled as atomic measure manifold. The atomic separation
axioms explicitly explain the expansion of the universe as the intrinsic property of atomic measure
manifold. Our next work will deal with some inherent properties of atomic measure manifold.

II.  Some Preliminaries
2.1 Definition: Topological Space
A set R" with a collection T of subset of R" is said to be a topology on R" if the following axioms are satisfied:
i) R, et

i) Arbitrary union of members of T is again a member of T
ie,V{Gy:A€A} Etwehave Uy, Gy ET
iii) Intersection of finitely many members of T is again a member of T

ie,V {G:i=1,2,...n}e Twe have NL; G; E T
The ordered pair (R, T) is called a topological space.

2.2 Definition: o — algebra
A o — algebra on a topological space ( R", T) is a collection X of subsets of R"

such that
i) R, peX
i) IfA€EXthen A€ X

iii) If A; € Z for i € N then
U A EZ NI A EX
The triplet (R", T, X) is called a measure space.

2.3 Definition: Gg - set
A subset A € R" is called a G5 — set if it is the countable intersection of open sets
ie, A= {NiZ; A A €T}
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2.4 Definition: F; — set
A subset E € R" is called a F; — set provided it is the countable union of closed set
ie, E={ UL E:E €t}

2.5 Definition: Borel o — algebra
The Borel ¢ — algebra B(R™) on (R", t) is the smallest o — algebra generated by the open sets
belonging to T such that
B(R") = X(t(R"))
A set that belongs to the o — algebra is called Borel set.

Remark:
Every Gg — set is a Borel open set, since (R", 1, X) is measurable space the complement of Gg — set is
F, — set, every F; —set is a Borel closed set.

2.6 Definition: Measurable Function
Let (R" ,1q, Z;) and (R™, 15, X,) be measurable spaces. A function T: R® — R™ is said to be
measurable function if the inverse image of every measurable set is measurable
ie, T"YA)E (R",14,%)
for every measurable subset A € (R™, T,, Z,).

Now let us introduce the concept of measure on measurable space (R”, T, ). A measure is a countably
additive, non-negative extended real-valued function on a o —algebra of (R", 1, ).

2.7 Definition: Measure Space (R", T, X, p)
A measure | on a measurable space (R", 1, X) is a function

X — [0, o]
such that
a) we@)=0
b) If { A€ X for i € N} is a countable disjoint collection of sets in Z, then
HUZ AD) =22 m(A) ... (Countable additivity).

Therefore the space (R", 1, X, 1) is called a measure space.

2.8 Definition: Restriction of Measure

If (R, 1, £, p) is a measure space and E € R" is a measurable subset, then the measure subspace
(E, Typr Z/g) u/E) is defined by restricting p to E:

L, = {ANE: A€ X}, 1, (ANE) = u(ANE)

2.9 Definition: Sets of Measure Zero
A set of measure zero or a null set is a measurable set N such that p(N) = 0.
A property which holds for all x € R™ \ N where N is a set of measure zero is said to hold almost
everywhere (or | - a.e).
In general, a subset of a measure zero need not be measurable but if it is, it must have measure zero.

2.10 Definition: Complete Measure Space
A measure space (R", 1, X, p) is complete if every subset of a set N of measure zero is measurable. i.e.,
A € N: u(N) =0, then A is measurable and pu(A) = 0.

2.11 Definition: Measure Preserving Transformation/Invariant Measure

Let (R", T4, 24, K1) and (R™,1,, Z,, 1y) be measure spaces and T: (R",tq, 24, 1) — (R™,1,, X5, 1y) be
a measurable transformation. The transformation T is said to be measure preserving if for all A € Z, we have
that

(T (A) = 1y(A)

Note:
1) In this paper the smallest open sets G§and closed sets Fg are Borel sets belonging to the c-algebra
> and the Borel open sets are denoted by the letters A, B and Borel closed sets by E, F.
2) Now onwards we denote [ for general measure space (R", 7, X, p) and Ha for Atomic measure space
(R", 1, %, py). Now we shall introduce the concept of atomic measure on measure space (R",t, %, gy).
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2.12 Definition: Atom
Given a measurable space (R", 1, X) and a measure Ha on that space, a set A in X is called an atom
if Ma (A) > 0 and for any measurable subset B of A has either Ha (B) = 0 or Ha (B) = Ha (A).

2.13 Definition: Atomic Measure Space (R", T, X, Ha)

Let (R", 7, %, Ha ) be a measure space. A measure Hais called atomic if every set A € X such
that Ha (A) > 0 contains an atom i.e. for any measurable subset B of A has either K, (B) =0 or Ha(B)
= Ha(A). The measure space (R", T, Z, Ha ) with atomic measure Wy is called an atomic measure space.

In [1] S. C. P. Halakatti has introduced the concepts of measurable chart, measure chart,
measurable atlas, measure atlas, measurable and measure manifolds.

2.14 Definition: Chart
For every V € (R", T, Z) there exists a homeomorphism ¢ and @ "and defined @: @ (V) = (R", 1, %)
such that (¢! (V)=U)=V C (R",1, %), then the pair (U, @ ) is called the chart.

2.15 Definition: Measurable chart

Let (U, tyu, Ziu) € (M, 14, %)) be a non-empty measurable subspace of (M, 1, %)
if there existsamap @ : (U, t1,u, Ziv) — @(U, t1,u, Ziv) E (R, 1,2)

satisfying following conditions:

(1) ¢ is homeomorphism

(11) @ is measurable if for every measurable subset V € (R", 1, Z),

¢t (V)eM,1,,3) is also measurable.

Then the structure (U, ti,u, Z1v), @) is called a measurable chart.

2.16 Definition: Measurable Atlas
By an R"™ measurable atlas of class C* on M we mean a countable collection (A, Ti/a, Zyya) of n-

dimensional measurable charts ((Uy,t1/Up,Z1/Uy, ), @,) for alln €N on (M, 14, ) subject to the following
conditions:
(ay) Un=1 ((Unptl/Unizl/Un ), 9n) =M
i.e., the countable union of the measurable charts in (A, T1/4, 1/a) cover (M, 1, %))
(ay) for any pair of measurable charts ((Uy, 1 /Uy, Z4 /U, ), @) and
((Um,71/Um, Z1/Un), @) in (A, 71/, Zy/a ) the transition maps @, © @m " and @y, 0 ¢, ™" are
(1) differentiable maps of class C* (k= 1) i.e.,

¢, 0 (Pm_1: (Pm(Un nU,) - (Pn(Un NnUy) S (R",1,%)

¢,° (Pn_1: (Pn(Un n Uy) - (Pm(Un NnUy) S (R",1,%)

are differential maps of class ct (k= 1)

2) Measurable i.e., these two transition maps @, © @, " and ¢, ©®, " are measurable functions if,
(a) For any measurable subset K€ ¢_ (U, N Uy),

(9,00, _1)_1 (K) € ¢_ (U, N Uy,) is also measurable.
(b) for any measurable subset S <€ ¢ (U, N Uy),

(G (Pn_l)_l (S) € ¢,(Uy N Uy) is also measurable.

2.17 Definition: Measure chart
A measurable chart (U, t1,u, Ziu ), ®) equipped with a measure p,/U is called a measure chart,
denoted by ((U, T1/u, Ziu, Ky ), @) satisfying following conditions:

(1) ¢ is homeomorphism

(i1) @ is measurable if for every measurable subset V € (R, 1, ),
o ! (V) e(M, 11, X)) is also measurable.

(111) ¢ is measure preserving map.

Then the structure (U, t1/u, Ziu, Ky ), @) is called a measure chart.
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2.18 Definition: Measure Atlas
Byan R" measure atlas of class C* on M we mean a countable collection (A, Ti/a, Z1/A, 11,4 ) ofn-

dimensional measure charts (U, Tyu,,21/u, pl/Un), ¢,) for all neN on (M, 1y, Z;, p,) satisfying the
following conditions:
(a1) Ur=1 ((Un, T 0, Z1 0,0 Hayu, s @n) =M
i.e., the countable union of the measure charts in (A, T/, Z1/A, n1,,) cover (M, 1, %, 1))
(az) for any pair of measure charts ((Uy, 74y, 21y, M1y, ) @n) and
(U, Tapu, 210, Maju, b @m) in (A, Tia, ZyA, pl,,), the transition maps @y © ®m ' and @ 0 @n ! are
(D) differentiable maps of class C* (k= 1) i.e,,

¢, o (pm_l: (pm(Un n Um) = (pn(Un N Um) c (Rn,T, 2, IJ)

Py © (pn_l: (pn(Un n Um) = (pm(Un N Um) c (Rn,T, 2, I.l)

are differential maps of class C* (k= 1)
(2) Measurable i.c., these two transition maps @, © ®m ' and @m © ®n~ " are measurable functions if,
(c) For any measurable subset K S @, (U, N Uy),

(Pno@n H1 (K) € ¢, (U, N Uy) is also measurable.
(d) for any measurable subset S € @n (U, N Uy),

(@m © @ )71(S) € @, (U, N Uy,) is also measurable.
(as) for any two measure atlases (Aq,T1/a,,21/a,, Hi/a,) @0d (Ag,Ty/a,, Z1/a,, H1/a,) We say that a mapping,
T: A, = A, is measurable if T~!(E) is measurable for every measurable chart
E = ((U, tiu, Ziu, Wiy, @) € (Az,T1/a, Z1/a,0 Ha/a, )> and the mapping is measure preserving if
Wi/a, (T7HE)) = py,a, (E), where Aj~ Ay and py/n, =/,
Then we call T a transformation.
(a;) If a measurable transformation T: A = A preserves a measure [, then we say that p,is T-invariant (or
invariant under T). If T is invariant and if both T and T~ are measurable and measure preserving then we call T
an invertible measure preserving transformation.

A non-empty set M equipped with differentiable structure, topological structure and algebraic structure

o-algebra is called Measurable Manifold. A measure 1 defined on (M, 7y, ) and the quadruple (M, 1, X, Iy
) is called Measure Manifold.

III.  Introducing Atomic Separation Axioms On Atomic Measure Space

In this paper it is observed that the topological structure on R" carries topological properties in terms of
open /closed sets belonging to (R", T, ). On such topological space when an algebraic structure o — algebra X is
introduced, the topological space t transforms into a measurable space which admits a measure p.
We are here introducing an atomic measure @, on (R", 7, ¥). The significance of such introduction is that the
measure space (R", t, Z, uy) will be covered by atomic Borel sets that are countable. This has an
advantage in the present study in terms of extension of usual topological properties on (R", 1) into an
atomic measure space (R", 1, X, u,). These extended properties are redefined in terms of atomic
measure @, and it will be shown that some extended topological properties on (R, 1, X, n,) satisfy
measure invariant condition under measure transformation. The interesting feature of this research is
that the atomic measure space (R", 1, Z, ) carries two structure one is topological and another is o —
algebra on which atomic measure B, is well defined. In this paper it will be shown that the extended topological
properties on atomic measure space (R", T, X, 1) are not only invariant under homeomorphism but they
are invariant under measure transformation also. Keeping this approach in the mind S. C. P. Halakatti
has developed the following concepts and results for some future applications. This conceptual
framework will be used to built new structures on measure manifold, introduced by S. C. P. Halakatti
[1], on which geometrical properties can be studied.

In this section let us re- designate some of basic concepts of topological space such as open
sets, closed sets, Ty, T; and T, as atomic Borel open sets/closed sets and AT, AT, AT,, on atomic
measure space respectively.

3.1 Definition: Neighborhood in Measure Space (R", T, X, 1)

Given a measure space (R", 1, Z, p). Then for any point p€ (R",1,%, u) 3 q# p € (R", 1, %, ) such
that d(p, q) <§, i.e., {g €R": d(p,q) <8 } = Ni(p)satisfying p (Ns(p)) >O0.
Then Ng(p) is called a neighborhood of p in measure space (R", 1, Z, p).
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3.2 Definition: Atomic Borel Open Set
Let (R", 1, Z, n) be a measure space and A be a subset of (R", 1, %, W, ) , then A is called atomic Borel
open set if 3 Ng(p) for every p in (R", 1, Z, p,) such that p € N5(p)C A satisfying :
)u(A) > 0and
iihas either p (N5(p)) =0 or u (N5(p)) = u(A).
We designate the Atomic measure as 1,

3.3 Definition: Atomic Borel Closed Set
Let (R", 7, X, p) be a measure space. The subset F of (R", 1, %, 1) is called atomic Borel closed set in
(R™, 1, %, py) if 3 Ng(p) for every p in (R™, 1, 2, pp) such that
Ng(p) N F # @ satisfying :
u(F) > 0 and
ii)has either p (Ng(p)) = 0 or p (N5(p)) = u(F).
We designate the Atomic measure as .

Note:

1) In above definitions A is a subset of atomic measure space (R", 1, Z, |1,) we mean

A=(A,t/A,2/A, py,A) similarly B = (B,1/B, ¥/B, p,,B)

2)Now onwards, whenever we mention any open/closed subsets like C, D, E and F of atomic measure space (R”
,T, 2%, Upy), we mean C = (C,1/C, ¥/C, u,/C) and D = (D, ©/D, /D, p,/D) similarly E and F.

3.4 Definition: Atomic T, - Space / AT, - Space

An atomic measure space (R", 1, Z, W, ) is said to be an atomic T, — Space if for every p.,q € (R, 1, Z,
Ha) with g# p 3 atomic Borel open sets A , BE X such that p€A and q€ B and ANB = @ satisfying the atomic
measure conditions :
i) for p € A 3 Ce X, CcA and has either po(C)= 0 or py (C)= pu(A)
ii) for g € B 3 D€ X, DCB and has either p, (D)= 0 or py (D)= p,(B) and py (ANB) = p, (@) = 0.

3.5 Definition: Atomic T; - Space / AT; - Space

An atomic measure space (R", 1, %, p,) is said to be an atomic T;— Space if for every p, q € (R", 1,2,
na) with g# p 3 atomic Borel open sets A , B € X such that p € A and p € Band q€ B and ANB = @ satisfying
the atomic measure conditions :
i)forpeE A3 CEe X, Cc A and has either py (C)=0 or py (C)= pa(A)
ii) for € B3 D € X, D ¢ B and has either py (D)= 0 or py (D)= pa(B) and py(A N B) =p, (@) =0.

Note: We know that the measure of any singleton set is zero.

3.6 Definition: Atomic Hausdorff / Atomic T, - Space (AT, - Space)

An atomic measure space (R", 1, %, ) is said to be an atomic T, — Space if for every

p,q€ (R",1,X, py) with q# p 3 atomic Borel open sets A, BE X suchthatpe Aandp & B,qeBandq ¢ A
such that A N B = @ satisfying the atomic measure conditions :

i)forpeEAandp & B3I CeZ, Cc A and has either py (C)=0 or py (C)= pa(A)

il) foreBandq & A3 D €ZX, Dc B and has either pa(D)= 0 or py (D)= p,(B) and p,(ANB) = p, (@) =0.

Note: We know that the measure of any singleton set is zero.

Example:

1)Let X ={a, b, c, d}

™(X) = {X, 0,{a,b},{c,d} } be a topology on X.

T(X) = {@, X, {c,d}, {a,b}} be complement of .

Let a, ¢ € X then 3 open sets A = {a, b} and B= {c, d} € T such thata€ A,c € Band AN B=0.
=(X, 1) is a Hausdorff space.

Now consider the Sigma algebra generated by open sets.

LX) ={X, 0,{a,b},{c,d}}

Consider a, c € X with a# ¢ 3 atomic Borel open sets A = {a,b} and B = {c,d} such thata € A and c € B
satisfying the atomic measure conditions:

I)forae A3 C={a, b} €X, C c A and has either

D (©)=0
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=1ie., ta({a,b})=0
but it is not true
OR
i) A (C)= pa(A)
Le., pa({a, b}) =pa({a, b})
which is obvious
Therefore I is true.
1) forc e B3I D= {c,d} € X, D c B and has either
) ua(D)=0
=1i.e., ta({c,d})=0
but it is not true
OR
i) pa (D)= pa(B)
Le., pa({c, d}) =pa({c, d})
which is obvious
Therefore I is also true.
Also py(A N B)=p,({a, b} N {c,d}) =p (@) =0.
=(X, 1, X, Wy) is atomic Hausdorff space.

Example:

2) Let us consider a counter example where atomic Hausdorff property is not valid.

Let X ={a, b, c}

(X)={X, 0, {a, b},{c} }be a topology on X.

T (X) = {0, X, {c}, {a, b}} be complement of .

Consider a, ¢ € X then 3 open sets A = {a, b} and B= {c} € tsuchthata€ A,c€ Band ANB=0.

=(X, 7) is a Hausdorff space.

Now 2(X) = {X, 0, {a, b},{c}}

Consider a, c € X with a# ¢ A atomic Borel open sets A = {a,b} and B = {c} such thata € A and ¢ € B and
ua(ANB) = 0.

Because p,(B) must be greater than zero for B to be an atom but here B = {c} and we know that
measure of singleton set is zero i.e., Py (B) = pa({c}) = 0. Therefore there does not exists atomic Borel open set
with p, (B) > 0.

Therefore (X, 1, X, 1, is not atomic Hausdorff space.

3.7 Definition Atomic Regular Space / AR- space

An atomic measure space (R", 1, Z, [1,) is said to be atomic regular, if given any point p and closed set
Fin (R", 1, X, uy) such that p € F, there exists atomic Borel open sets A and B € X such that p € A, F < B and
ANB = 0 satisfying the atomic measure conditions:
i)forpe A3 CEeZ, Cc A and has either py (C)=0 or py(C) = pa(A).
iiyfor FcB3IDeZX, FcBandD c B and has either py (D)= 0 or s (D) = ps(B) and py (ANB) = p, (@)= 0.

Example:
1) Let X={a, b, c, d, e}
(X)) = {X, 0, {a, b},{c, d},{e},{a, b, e},{c, d, e} } be a topology on X.
T(X)=1{@, X, {c, d, e}, {a, b, e},{a, b, c, d},{c, d},{a, b}} be complement of T.
Consider a point ‘a’ and a closed set F= {c, d, e} € X such thata € F = {c, d, e} then 3 open sets A = {a, b} and
B={c,d,e} and ANB=0.
=(X, 1) is aregular space.
Now consider the Sigma algebra generated by open sets.
IX)={X, 0, a, b},{c, d},{e},{a, b, e},{c, d, e}, {a, b, c,d}}
Let a point ‘a’ and a closed set F= {c, d, e} € X such that a& F = {c, d, e} then 3 atomic Borel open sets A =
{a, b} and B = {c, d, e} such that a € A, F c B and satisfying the atomic measure conditions:
Dfora€e A3 C={a, b} €X, C C A and has either
D ua(©)=0
=1ie., Uu({a,b})=0
but it is not true
OR
i) LA (C) = ua(A)
i.e., pa({a, b}) = ua({a, b})
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which is obvious
Therefore I is true.
M for FcB3aD={c,d, e} €X,FcDandD c B has either
1) pa(D)=0
=1ie., Ua({c,d, e})=0
but it is not true
OR
i) pa (D) = ua(B)
i'e'a uA({Co d9 e}) = IJ'A({C’ da e})
which is obvious
Therefore I is also true.
Also py(ANB)=p,({a, b} N {c,d, e})=pa(@)=0.
=(X, 1, %, ) is atomic regular space.

Example:

2) Let us consider a counter example where atomic regular property is not valid.

Let X=1{a,b,c,d, e}

X)={X,0, {a, b, ¢, d}, {b, c, d}, {e}, {b, ¢, d, e}} be a topology on X.

T(X)= {0, X, {e}, {a, e}, {a, b, c,d}, {a}} be complement of T.

Consider a point ‘e’ and a closed set F= {a, b, ¢, d} € X such that e € F = {a, b, ¢, d} then 3 open sets A = {e}
and B= {a, b, c,d} suchthate € A, FcBand A NB=0.

=(X, 7) is aregular space.

Consider £(X) = {X, 0, {e}, {a}, {a, e}, {b, c,d}, {a,b,c,d}, {b,c,d, e}}

Let a point ‘a’ and closed set F = {c, d, e} € X such thate¢ F = {a, b, c, d} A atomic Borel open sets A = {¢}
and B= {a, b, ¢, d} such that e € A and F € B and p,(ANB) = 0.

Because pa(A) must be greater than zero for A to be an atom but here A = {e} and we know that measure of
singleton set is zero i.e., Pa(A) = pa({e}) = 0. Therefore there does not exists atomic Borel open set
with py(A)>0.

Therefore (X, 1, X, 1, ) is not atomic regular space.

3.8 Definition: Atomic T3- Space / AT;- Space
An atomic measure space (R", 7, X,j1,) is said to be atomic Tz- Space if it is atomic regular and atomic
T; - Space.

3.9 Definition: Completely Atomic Regular Space / CAR — Space

An atomic measure space (R", 7, Z, 1) is said to be completely atomic regular space if for any point p
€ A c (R", 1, %, yp) and atomic Borel closed set F € B not containing p, there exists a continuous function
f:(R", 1, %, uy) — [0, 1] such that
HWpeAcCR,1,% ny) 3 CeX Cc A and has either py (C)=0 or py(C) = pu(A) then f(p)=0.
i)Vqe FcB3IDeZX FcBandD c B and has either p, (D)= 0 or py (D)= p, (B) then f(q)=1 .

3.10 Definition: Atomic Tychonoff Space / Atomic T;, 2 Space
An atomic measure space (R", 7, Z, p, ) is said to be atomic Tychonoff or Tj, ,, Space if it is completely
atomic regular and atomic T; - Space.

3.11 Definition: Atomic Normal Space / AN — Space

An atomic measure space (R", 1, Z, W) is said to be atomic normal space if for every two disjoint
closed sets E and F of R" there exists atomic Borel open sets A and B suchthat EC A, Fc BandAnB=0
satisfying the atomic measure conditions:
)for EC A3 CeZX EcCandCc A and has either py(C)=0 or p,(C) = pa(A)
iiYfor Fc B3I DeZX,FcDandD c B and has either gy (D)= 0 or py (D) = pa(B) and p, (ANB) = p, (@) = 0.

3.12 Definition: Atomic T,- Space / AT,- Space
An atomic measure space (R", 1, X, 11,) is said to be atomic T,- Space if it is atomic normal and atomic T;-
Space.
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3.13 Definition: Atomic Completely Normal Space / ACN - Space

An atomic measure space (R", 1, X, 1,) is said to be atomic completely normal space if for every two
mutually atomic separated sets E, F € (R", 1, Z, 1, ) there exists atomic Borel open sets A, B € £ such that E C
A, F c B and A N B = @ satisfying the atomic measure conditions:
i)for EC A3 CEeZX EcCandCc A and has either p,(C)=0 or py(C) = pa(A)
ii)for Fc B3I DeX, FcDand D c B and has either py (D)= 0 or uy (D) = p,(B) and py (ANB) = p, (@) =0.

3.14 Definition: Atomic Ts- Space / ATs- Space

An atomic measure space (R", 1, X, 11, is said to be atomic Ts- Space if it is atomic completely normal
and atomic T; - Space.

A measure space (R", 1, X, 1,) carries two mathematical structures, the topological structure induced
by open subsets of R" and o - algebraic structure induced by Borel sets generated by open subsets of (R”, 7).
We will show in this paper that these two structures enriches a measure space (R", 1, Z, p) in the
sense that the topological properties that are invariant under topological homeomorphism are also invariant
under measure invariant transformation, where the measure of Borel sets involved in generating o - algebraic
structure on (R", 1, ¥) are measurable and can be quantified. Such results have deeper implications in the study
of measure manifold introduced by S. C. P. Halakatti [1]. On the measure manifold (M, t, %, u) which is
modeled on (R", 7, %, ), if the topological properties like Ty, Ty, T,, Ts, T3, 20 T, and Ty are invariant under

topological homeomorphism then it can be shown that these properties are invariant under measure invariant
transformation. The measure manifold smoothly displays the interesting intrinsic property, i.e., on such
manifolds topologically invariant properties are also measure invariant. The measure manifold confirms the
measure invariance of topological properties.

In this paper we consider the Hausdorff property which is invariant under measure invariant
transformation on (R", 1, %, ). The measure invariance of regular, completely regular, normal and completely
normal will be considered and extended on measure manifolds in our future work. The following proposition
has an important implication in the study of measure manifolds.

Proposition 1. For every topological homeomorphism with reference to topological structure t;0n measure
space (R", 14,21, 1), 1.e., T: (R", 11,21, 1) — (R™, 13,25, y) there exists a measure invariant transformation
with reference to o — algebraic structure ¥; on a measure space (R", tq, %1, 1) .
Proof : Let (R", 14, Z;, 1) be a measure space such that 3 a homeomorphism
T: (R, 11,21, 1) — (R, 12, 25, 15)
with reference to topological structure T; on R".
i.e., Tisone—one, ontoand T, T~! are continuous.

A o — algebraic structure on (R",T;) transforms a topological space into a measure space
(R, Ty, Zq, 1q).
Now we will show that for every homeomorphism on (R", 14, Z;, 1) 3 measure invariant transformation

T:(R", 1,2, 1) = R, 15,25, 1)

is measurable and measure invariant.

Step-1:

Let us show that 3 amap T: (R”, 11,21, 1) — (R™, 12,25, 1p)

which is measurable and measure invariant.

Since T is homeomorphism

= T is continuous

= for everyopenset UE T, AT 1(U) € T4

since every open set U € T, generates a Borel set A € X, such that A is measurable in (R™, T3, Z,, I1,).
Therefore for every open set U € T, 3 a measurable set A € X, , and for every open set T~1(U) € 1,

generates a borel set T"}(A) € Z;.

Thus for every measurable set A € X,3 a measurable set T"1(A) € Z;.

= The continuous map T has induced a measurable transformation

T:(RY 1,2, 1) — R, 12,25, 1)
Therefore T is measurable.

Step-11:

Also to show that T is measure invariant
Since T and T~! are continuous

= forevery UE 1,3 T }(U) €14
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= for every A € £, 3 T™1(A) € 2, and both A and T~1(A) are measurable such that p; (T™1(A) ) = p, (A).
= T is measure invariant.
Step-I1I:
Now we show that the map T~!: (R™,T,, %5, ;) — (R%, 14,2, 1) is also measurable and measure
invariant.
As shown in steps I and 11, in case of transformation T : (R", T4, 21, ;) — (R™, 15,25, W)
Similarly it can also be shown that 3 T~! which is measurable and measure invariant.
Since T™! is continuous
= for everyopenset Ve T, 3 (T"H) (V) €T,
Since every open set V € 14, generates a Borel set B € £; such that B is measurable in (R", t1, 24, 111) .
therefore for every open set V € T; 3 a measurable set B € ¥; and for every open set (T™1)71(V) € T,
generates a Borel set (T™1)"1(B) € Z,.
= T~ is measurable.
Step-1V:
Lastly, to show that T~! is measure invariant
Since for every V € t;3 (T~H)(V) € 1,.
= for every B € 2, 3 (T"1)7!(B) € %, and both B and (T~1)~!(B) are measurable such that p, ((T~1)~(B))=
y (B).
= T~ is measure invariant.
Therefore for every topological homeomorphism between topological spaces there exists a measure invariant
transformation on measure space (R",t,Z1,111) ®

Theorem 1. On a measure space (R",ty,2q, 1) if Hausdorff (T,) property is a topological invariant under
homeomorphism then it is invariant under measure transformation.
Proof : Let (R",t;) be a Hausdorff space such that there exists a homeomorphism T: (R", 14,24, ;) —
(R™,1,,%,, 1y) then (R™, 15, 2,, I1,) is also a Hausdorff space.
By proposition 1, for every topological homeomorphism between (R",t;,%;,1;) and (R™,1,,Z5,10,) 3 a
measure invariant transformations
T:(R", 1,2, 11) = R, 15,25, 1)

and T™1: (R™, T, 2, 1) — (R%, 14, 21, 1)
Such that T and T™! are measurable and measure invariant.
Let T: (R",ty,21, 1) — (R™, 13,25, 11y) be a homeomorphism.
Step-1:
Let us show that 3 a map T: (R", ty,2¢, 1) — (R™, T3, 25, 1) which preserves the Hausdorff property under
measure transformation. Since R™ is Hausdorff space with reference to topological structure t,, then for every
points p,q € (R™, t,,Z,5, 1) with p# q 3 open sets Uand V € 1, suchthatp e A,p& Band q€ B, q € A such
that ANB=0.
Since T is homeomorphism
= T is continuous
= for every points p, q € (R™, T,,Z,,11,) 3 T~ 1(p) and T~1(q) € (R", Ty, Z1, Iy).
Also R™ is Hausdorff space with reference to topological structure Ty, then for every points T~(p) and T~1(q) €
(R*, 1,2, 14) 3 open sets T~ 1(U) and T~Y(V) € 14, such that T~(p)e T~Y(U) , T (p) € T (V) and
T (q € T™XV), T (q) & T X(U) such that T-Y(U) n T-}V)=THUNV)=T1(@) =@. [ T is onto in
R™]
since for every points p, q € (R™, T,,Z,,1;) I open sets U and V € T, which generates corresponding Borel sets
A, B € X, such that A, B are measurable in (R™, T,, Z,, 1,).
Therefore for every U and V € 1,3 measurable sets A, B € ¥, suchthat pe A,p&€Bandq€ B, q ¢ A and
satisfy Ho(A N B) = py(@) = 0+ s (i)
Similarly, for every T™' ( U ) and T~!(V ) € T, generates a Borel sets T"'( A ), T"}(B ) € X, such that
T (p)eTIHA), T (p)gT 1 (B)andT'(q)ET(B), T '(q)& T '(A)and satisfy p,(T"1(A)
NTL(B) =y ( T(ANB)) =y (B) = 0vvevoe oo (ii)
= T is measurable.

Step-11:

Also to show that T preserves Hausdorff property under measure transformation.
Because T and T~! are continuous

= For every U, VE 1,AT }(U) , T"Y(V) € T4

= For every measurable sets A, B € £, 3 T~}(A), T~'(B) € X, such that
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iy (T 7 (A)= 2 (A) and py ((T71) 71 (B)= pa(B) =+ -+ (iii)

Therefore we conclude that Hausdorff property is preserved under the transformation T.
Step-I1I:

Consider the mapping

T~ (R™, 75,25, 1p) = (R, T3, 24, 1y)
From Step- I and II, similarly it follows that T~! is measurable and measure invariant.
= For every measurable subsets C, D€ X, withpe C,p&€Dandq€e D, q¢& C and
W€ ND)=p(@)=0---e-r (iv)
Also for every measurable subsets C, D € 2,3 (T"H)71C) , (T")"YD) € %, such that ((T") ' (p)e
(TH7O,ATH P & (T™H™(D) and (T™H™H (e (T™HTID), (T™H P& (T™)7(C) and
K ((TTH™H(C) N (TTHTHD)) = (@) = 0o ov o (v)
= T~ is measurable
Also for every measurable subsets C, D € 2,3 (T")"1(C) , (T")"}(D) € %, such that p, (T~ (C)) =
1 (C) and pp ((T7H) 7! (D)) = py(D) =+ - -+ (vi)
Therefore from equations (iv),(v) and (vi)
It is observed that Hausdorff property is preserved under the transformation T~!,
Hence Hausdorff property is invariant under measure transformations T and T~ m

Theorem 2. On a measure space (R", tq,2q, 1t;) if regularity is a topological invariant under homeomorphism
then it is invariant under measure transformation.
Proof: Let (R",t;) be a regular space such that 3 a homeomorphism T: (R",t{,%;, 1) — (R™,15,Z,, 1) with
reference to topological structure then (R™,t,) is also a regular space.
By proposition 1, For every topological homeomorphism between (R",t;,%;,1;) and (R™,1,,2,, 1) 3 a
measure invariant transformations
T: (Rn 11 521! I’ll) - (Rm T2 922' uZ)

and T~ (R™,15,%;, Hy) — (R™, 7,24, )
such that T and T™! are measurable and measure invariant.
Step- I:

Let us show that 3 a map T: (R",11,Z1, 11) — (R™,1,,2,, Uy) which preserves the regularity property
under measure transformation. Since R™ is a regular space with reference to topological structure t,, then for
every point ¢ € R™ and a closed set F in R™ not containing q 3 open sets U and V in T, such thatqe U, Fc V
andUNV=0
Since T is homeomorphism
= T is continuous
=for every point q and closed set F in R™ 3 T~1(q) and closed set T™'(F) in R". Also R" is regular space with
reference to topological structure T, then for every point T~1(q) and closed set T~!(F) in R 3 open sets T~(U)
and T7'(v) in t; such that T"'(q)€ T~}(U) and T~}(F)c T XV) and T"}(U) n TY(V) = T"}U n
V)=T~1(@)=0. [ because T is onto].

since for every point q and closed set F in R™ 3 open sets U, V € T, which generates corresponding
Borel sets A, B € X, such that A, B are measurable in (R™,1,,Z,, 1,).
Therefore for every U, V € 1,3 measurable sets A, B € £, such thatq € A, F € B and
Ho(ANB) = up(@) = 0+~ (i)
and every open sets T~1(U), T"}(V) € t; generates Borel sets T~1(A), T~(B) € X, such that T~!(q) €
T-L(A), T-X(F) € T~1(B) and py (T~'(A) N T~1(B)) = pty (B) = 0 -+ -~ (i)
= T is measurable.
Step II:
Also to show that T preserves the regularity property under measure transformation .
Because T and T~ are continuous
= Forevery U, VE 1,3 T"Y(U), T (V) E T4
= For every measurable sets A, B € X, 3 T"1(A), T~!(B) € Z;such that
by (T~ (A)= 12 ( A) and py (T (B))= g (B) -+ -+ (i)
Therefore we conclude that regularity is invariant under measure transformation T.
Step- I1I:
Now we show that T~! is also measurable and measure invariant.
T~ (R™,12,%;, 1p) — (R, 74,24, 1)
From step I and II similar observations can be seen in the transformation T~! i.e., T~! is measurable and
measure invariant.
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= for every measurable sets C,D € Z;withq€ C,F c Dand p;(C N D)= (@) =0----- (iv)

Also for every measurable sets C, D € 2,3 (T")"}C) , (T"H)"Y(D) €%, such that (T"})7(q) €
(T™H7HO), (TH7HE) < (T7H) (D) and p (T (C) N (T 7HD)) = pp(B) =0+ (v)

= T~! is measurable

Also, T~1 preserves the regularity property under measure transformation.

= for every measurable sets C, D € ;3 (T~1)7(C), (T"H)"Y(D) € %, such that p, (T~ (C)) = u;(C) and
Ko (T (D)) = py (D) =+ oo -+ (vi)

= The regularity property is preserved under measure transformation T~1.

Therefore from steps I, I and III it is confirmed that regularity is invariant under measure transformations T and
T 'm

Theorem 3. Atomic Hausdorff property is invariant under measure transformation.
Proof : Let (R™,1;, X, Wy, ) be atomic Hausdorff space.
By Theorem 1, If Hausdorff property is topological invariant under homeomorphism then it is invariant under
measure transformations.
T: (anTlv 219 ul) - (Rm9T29 229 HZ)
and T_l : (Rm T2, 229 HZ) - (RnaTla 219 ul)
Now let us show that 3 a mapping
Ti: Rty 21, 1a,) — R™,T, 2, 1)
and Tl_l : (Rm T2, 225 IJ'AZ) - (Rn 1, le uAl)

with atomic measures u,, and, py, on R" and R™ respectively which preserves the atomic Hausdorff property
under measure transformation.
Step-1:

First, let us show that 3 a mapping T;: (R",t, 24, pa,) — (R™, 75, I3, Wy, )Which preserves the atomic
Hausdorff property under measure transformation.
Since (R™,T;, Z;, Ha, ) is atomic Hausdorff space, for every point p, ¢ € R™ 3 atomic Borel open sets A,B € X,
suchthatp€ A,p € Bandq € B, q & A such that AN B=@ and satisfying the atomic measure conditions:
forpe A3 C€eX,, Cc Aand has either py, (C)=0 or py, (C)= iy, (A)
ii) for g € B 3 D€ £,, D B and has either p,,(D)=0 or pa, (D)= py,(B) and pp, (A N B) =y, (@) =0--- (i)
Again by using Theorem 1, we write for every atomic Borel open sets A, B € Z,3T{ 1(A), T{ }(B) € £, such
that T, 1(p) € T 1(A), T X(q) € Ty 1(B) and satisfying the atomic measure conditions:
i) for T/t (p)€ T{H(A) 3 Tt (C) €2y, i (C)c T (A) and has either pa (T7 (C)=0 or py, (Ti!
(C))=ma, (TT (A))
i) for T (@€ ' (B) 3 Tyt (D)€ %y, Tyt (D)< Tt (B) and has either py, (Tr! (D)=0 or iy, (Ti?
(D)= pa, (T (B)) and py (T (A) N'T (B)) = pa, () =0--+<(if)
= T, is measurable.
Step-11:
Also to show that T; preserves the atomic Hausdorff property under measure transformation.
since for every atomic Borel open sets A,B € X, 3 atomic Borel open sets Ty 1(A), T 1(B) € ; [since T, is
measurable]
such that s, (Ti™" (A))= i, (A) and iy, (Tr! (B))=py, (B) -+ +<(iii)
Therefore from (i), (ii) and (iii)
We confirm that atomic Hausdorff property is preserved under the transformation T;.
Step-I1I:
Consider the mapping Ty ! : (R™,1,, 25, Ha,) — (R%,T1, Z4, pa,)
By interchanging the roles of R® and R™ and corresponding measure spaces we conclude that 3a mapping T; !
which is measurable and measure invariant.
Therefore from Step-1, II and III, we come to the conclusion that atomic regularity is invariant under measure
invariant transformations T; and T m

Theorem 4. Atomic regularity is invariant under measure transformation.
Proof : Let (R™,1,, X5, [y, )be atomic regular space.
By Theorem 2, If regularity is a topological invariant under homeomorphism then it is invariant under measure
transformations.
T: (Rnarla z:17 “-1) - (Rm7T27 z:27 HZ)
and T_1 : (Rm T2, 227 “-2) - (Rn,TD 217 “'1)
Now let us show that 3 a mapping
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Tl: (Rn7T17 217 “Al) - (Rm9T29 229 IJ'AZ)

and Tl_1 : (Rm T2, 227 “Az) - (RnaTla 219 “Al)
with atomic measures p,, and , p,, on R" and R™ respectively which preserves the atomic regularity under
measure transformation.
Step-1:
First, let us show that 3 a mapping T;: (R",tq, Z1, pa,) — (R™,75, Z;, pa,)which preserves the atomic regularity
property under measure transformation.
Since (R™,T;,Z;, 1a,) is atomic regular space, for every point q € R™ and atomic Borel closed set F in R™ not
containing q 3 atomic Borel open sets A, B € £, such that € A, F € B and A n B =@. Satisfying the atomic
measure conditions:
i)ffor € A3 C€ Z,, Cc A and has either p,,(C)=0 or py, (C)= pa, (A)
ii) for F € B3 D € X,, D c B and has either p, (D)=0 or pu, (D)= pa,(B) and py, (A N B) = py, (@) =0-+----(i)
Again by using Theorem 2, we write for every atomic Borel open sets A, B € 2,3T1(A), T 1(B) € %, such
that T1(q) € TT1(A), TTH(F) < Ty Y(B) and satisfying the atomic measure conditions:
i) for 7t (@) € TrH(A) 3 T (C) €34, TI! (C)c Tt (A) and has either py, (T7! (C))=0 or py (Tt
(C)=ma, (T (A))
i) for 7' (F)c Ty B) A Ty (D)€ Xy, Ti! (D) Ti! (B) and has either py, (Tr* (D))=0 or py, (Tt
(D)= pa, (TT" (B)) and py (T (A) N'T (B)) = pa, () =0---+<(if)
= T, is measurable.
Step-I11:
Also to show that T; preserves the atomic regularity under measure transformation.
since for every atomic Borel open sets A, B € X, 3 atomic Borel open sets T; 1(A), T 1(B) € Z; [since T; is
measurable]
such that s, (Ti™! (A))= a,(A) and g, (Ti! (B))= pa, (B) -+ +<(iii)
Therefore from (i),(ii) and (iii)
We confirm that atomic regularity is preserved under the transformation T;.
Step-I11:
Consider the mapping Ty ! : (R™,1,, 25, Ha,) — (R, 1, g, Ha,)
By interchanging the roles of R and R™ and corresponding measure spaces we conclude that 3a mapping T;
which is measurable and measure invariant.
Therefore from Step-1, II and III we come to the conclusion that atomic regularity is invariant under measure
invariant transformations T; and T m

IV.  Conclusion

In our study, it is observed that the measure space carrying topological and o — algebraic structures,
inherits two invariants. The topological structures on (R", 7, ¥, p) that are invariant under homeomorphism are
also invariant under measure invariant transformation. This study enriches the analysis on (R", 7, Z, n) and such
measure space (R", 7, X, pu) becomes structurally potential enough to generate a measure manifold. The study
of atomic separation axioms on the measure manifold has its applications in the field of cosmology, where
the universe could be modeled as atomic measure manifold. The atomic separation axioms explicitly
explain the expansion ofthe universe as the intrinsic property of atomic measure manifold. The advantage of
introducing the concept of measure manifold is in the field of Engineering Science, Brain Science and Neural
Network.
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