On Jordan Generalized Higher Reverse Derivations on Γ-rings

Salah Mehdi Salih and Marwa Riyadh Salih

Al-Mustansirya University College of Education Department of Mathematics

Abstract: In this paper, we study the concepts of generalized higher reverse derivation and Jordan generalized higher reverse derivation and Jordan generalized triple higher reverse derivation on Γ -ring M. The aim of this paper is prove that every Jordan generalized higher reverse derivation of Γ -ring M is generalized higher reverse derivation of M.

Mathematics Subject Classification: 16U80, 16W25

Key word: Γ-ring, prime Γ-ring, semiprime Γ-ring, derivation, higher derivation, generalized higher derivation of Γ -ring, reverse derivation of R

T. Introduction

The concepts of a Γ -ring was first introduced by Nobusause[9] in 1964 this Γ -ring is generalized by W.E.Barnesin [2] a broad sense that served now a day to call a Γ -ring.

Let M and Γ be two additive abelian groups. Suppose that there is a mapping from $M \times \Gamma \times M \rightarrow M$ (the image of(a, α ,b) being denoted by a α b, a,b \in M and $\alpha \in \Gamma$) satisfying for all a,b,c \in M and α , $\beta \in \Gamma$

i) $(a + b) \alpha c = a\alpha c + b\alpha c$

 $a(\alpha + \beta) c = a\alpha c + a\beta c$

 $a\alpha(b+c) = a\alpha b + a\alpha c$

ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$

Then M is called a Γ -ring.[2]

Throughout this paper M denotes a Γ -ring with center Z(M) [1] , recall that a - Γ -ring M is called prime if $a\Gamma M\Gamma b=(0)$ implies a=0 or b=0[8], and it is called semiprime if $a\Gamma M\Gamma a=(0)$ implies a=0[6], a prim Γ -ring is obviously semiprime and a Γ -ring M is called 2-torision free if 2a=0 implies a=0 for every a \in M [5], an additive mapping d from M into itself is called a derivations if $d(a\alpha b)=d(a)\alpha b+a\alpha d(b)$, for all $a,b\in M$, $\alpha\in\Gamma$ [7] and d is said to be Jordan derivation of a Γ -ring M if $d(a\alpha a) = d(a)\alpha a + a\alpha d(a)$, for all $a \in M$, $\alpha \in \Gamma$ [7]. A mapping f from M into itself is called generalized derivation of M if there exists derivation d of M such that $f(a\alpha b) = f(a)\alpha b + a\alpha d(b)$, for all $a,b \in M$, $\alpha \in \Gamma[4]$. And f is said to be Jordan generalized derivation of Γ -ring M if there exists Jordan derivation of M such that $f(a\alpha a) = f(a)\alpha a + a\alpha d(a)$

for all $a \in M$ and $\alpha \in \Gamma$ [4].

Bresar and Vukman[3] have introduced the notion of a reverse derivation as an additive mapping d from a ring R into itself satisfying d(xy) = d(y)x + yd(x) for all $x,y \in R$.

M. Sammn[10] presented the study between the derivation and reverse derivation in semiprime ring R. Also it is shown that non-commutative prime rings don't admit a non-trivial skew commuting derivation. We defined in [11] the concepts of higher reverse derivation of Γ -ring M as follow:

Let $D=(d_i)_{i\in N}$ be additive mappings on a ring R then D is called higher reverse derivation of Γ -ring M if $d_n(x\alpha y) = \sum_{i,j=n} d_i(y)\alpha d_j(x)$

$$d_{n}(x\alpha y) = \sum_{i+j=n} d_{i}(y)\alpha d_{j}(x)$$

For all $x,y \in M$, $\alpha \in \Gamma$ and $n \in N$

and Jordan higher reverse derivation of Γ -ring M if

$$d_n(x\alpha x) = \sum_{i+j=n} d_i(x)\alpha d_j(x)$$

and Jordan triple higher reverse derivation of Γ -ring M if

$$d_n(x\alpha y\beta x) = d_n(x)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} d_i(x)\beta d_j(y)\alpha d_r(x)$$

For all $x,y \in M$, α , $\beta \in \Gamma$ and $n \in N$

also we proved that every Jordan higher reverse derivation of a Γ-ring M is higher reverse derivation of M [11], the main object of this paper is present the concepts of generalized higher reverse derivation, Jordan

generalized higher reverse derivation of Γ -ring M and we prove that every Jordan generalized higher reverse derivation of Γ -ring M is generalized higher reverse derivation of M.

II. Generalized Higher Reverse Derivation of Γ -Rings

In this section we introduce and study of concepts of generalized higher reverse derivation, Jordan generalized higher reverse derivation and Jordan generalized triple higher reverse derivation of Γ -ring.

Definition2.1:

Let M be a Γ -ring and $F = (fi)_{i \in N}$ be a family of additive mappings of M such that $f_0 = id_M$ then F is called **generalized higher reverse derivation of M** if there exists a higher reverse derivation $D = (di)_{i \in N}$ of M such that for all $n \in N$ we have :

$$f_n(x\alpha y) = \sum_{i+i=n} f_i(y)\alpha d_i(x) \dots (i)$$

F is called a Jordan generalized higher reverse derivation of M if there exists a Jordan higher reverse derivation $D = (di)_{i \in N}$ of M such that for all $n \in N$ we have :

$$f_n(x\alpha x) = \sum_{i+i=n} f_i(x)\alpha d_j(x) \dots (ii)$$

For every $x,y \in M$ and $\alpha \in \Gamma$

F is said to be a Jordan generalized triple higher reverse derivation of M if there exists Jordan triple higher reverse derivation $D = (di)_{i \in N}$ of M for all $n \in N$ we have:

$$f_n(x\alpha y\beta x) = f_n(x)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x) \dots (iii)$$

For every $x,y \in M$ and $\alpha,\beta \in \Gamma$

Example2.2:

Let $F = (f_i)_{i \in N}$ be a generalized higher reverse derivation on a ring R then there exists a higher reverse derivation $d = (f_i)_{i \in N}$ of R such that

$$f_n(xy) = \sum_{i+i=n} f_i(y)d_j(x)$$

We take $M=M_{1X2}(R)$ and $\Gamma {=}\, \{{n \choose 0} {:}\ n\in Z\}$, then $\ M$ is $\Gamma {-} ring$.

We define $D = (Di)_{i \in N}$ be a family of additive mappings of M such that D_n (a b) = $(d_n(a) d_n(b))$ then D is higher reverse derivation of M.

Let $F = (f_i)_{i \in \mathbb{N}}$ be a family of additive mappings of M defined by $F_n(a \ b) = (f_n(a) \ f_n(b))$

Then F is a generalized higher reverse derivation of M.

It is clear that every generalized higher reverse derivation of a Γ -ring M is Jordan generalized Higher reverse derivation of M, But the converse is not true in general.

<u>Lemma</u> 2.3

Let M be a Γ -ring and let $F = (f_i)_{i \in N}$ be a Jordan generalized higher reverse derivation of M then for all $x,y,z \in M$, $\alpha,\beta \in \Gamma$ and $n \in N$, the following statements hold :

i)
$$f_n(x\alpha y + y\alpha x) = \sum_{i+j=n}^{i< n} f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y)$$

In particular if $y \in Z(M)$

ii)
$$f_n(x\alpha y\beta x + x\beta y\alpha x) = f_n(x)\beta x\alpha y + \sum_{i+j+r=}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x) + f_n(x)\alpha x\beta y$$

$$+\sum_{i+j+r=n}^{i+n}f_i(x)\alpha d_j(y)\beta d_r(x)$$

iii)
$$f_n(x\alpha y\alpha x) = f_n(x)\alpha x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x)\alpha d_j(y)\alpha d_r(x)$$

$$iv) \ f_n(x\alpha y\alpha z + z\alpha y\alpha x) = \ f_n(z)\alpha x\alpha y + \sum_{\substack{i+i+r=n\\j+i+r=n}}^{i< n} f_i(z)\alpha d_j(y)\alpha d_r(x) + f_n(x)\alpha z\alpha y + \sum_{\substack{i+i+r=n\\j+i+r=n}}^{i< n} f_i(x)\alpha d_j(y)\alpha d_r(z)$$

v)
$$f_n(x\alpha y\beta z) = f_n(z)\beta x\alpha y + \sum_{i+i+r=n}^{i$$

$$vi) \ f_n(x\alpha y\beta z + z\alpha y\beta x) = f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(z)\beta d_j(y)\alpha d_r(x) + \ f_n(x)\beta z\alpha y \ + \sum_{i+j+r=n}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(z)$$

Proof:

i)Replace (x + y) for x and y in definition 2.1 (i) we get:

$$\begin{split} f_n\big((x+y)\alpha(x+y)\big) &= \sum_{i+j=n} f_i(x+y)\alpha d_j(x+y) \\ &= \sum_{i+j=n} f_i(x)\alpha d_j(x) + f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y) + f_i(y)\alpha d_j(y) & \dots (1) \end{split}$$

On the other hand:

$$\begin{split} f_n\big((x+y)\alpha(x+y)\big) &= \ f_n(x\,\alpha\,x + x\alpha\,y + y\alpha\,x + y\alpha\,y) \\ &= & f_n(x\alpha\,x + y\alpha\,y) + \ f_n(x\alpha\,y + y\alpha\,x) \\ &= \sum_{i \neq i = n} f_i(x)\alpha d_j(x) + \ f_i(y)\alpha\,d_j(y) \ + \ f_n(x\alpha\,y + y\alpha\,x) \\ &\qquad \dots (2) \end{split}$$

Compare (1) and (2) we get:

$$f_n(x\alpha y + y\alpha x) = \sum_{i+i=n} f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y)$$

ii) Replacing $x\beta y + y\beta x$ for y in 2.3 (i) we get:

$$f_n(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x)$$

=
$$f_n(x\alpha(x\beta y) + x\alpha(y\beta x) + (x\beta y)\alpha x + (y\beta x)\alpha x)$$

$$= f_n((x\alpha x)\beta y + (x\alpha y)\beta x + (x\beta y)\alpha x + (y\beta x)\alpha x$$

$$= \sum_{i+i=n} f_i(y)\beta d_j(x\alpha x) + f_i(x)\beta d_j(x\alpha y) + f_i(x)\alpha d_i(x\beta y) + f_i(x)\alpha d_j(y\beta x)$$

$$= \sum_{i+j+r=n} f_i(y)\beta d_j(x)\alpha d_r(x) + f_i(x)\beta d_j(y)\alpha f_i(x) + f_i(x)\alpha d_j(y)\beta d_r(x)$$

$$=f_n(y)\beta x\alpha x+\sum_{i+i+r-n}^{i< n}f_i(y)\beta d_j(x)\alpha d_r(x)+f_n(x)\beta x\alpha y+\sum_{i+i+r-n}^{i< n}f_i(x)\beta d_j(y)\alpha d_r(x)$$

$$+ f_n(x) \alpha \ x \beta \ y + \textstyle \sum_{i+j+r=n}^{i < n} f_i(x) \alpha \ d_j(y) \beta \ d_r(x) + \ f_n(x) \alpha \ y \beta \ x + \textstyle \sum_{i+j+r=n}^{i < n} f_i(x) \alpha d_j(x) \beta d_r(y) ...(1)$$

On the other hand:

$$f_n(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x) = f_n(x\alpha x\beta y + x\alpha y\beta x + x\beta y\alpha x + y\beta x\alpha x)$$

$$\begin{split} &= f_n(y)\beta \ x\alpha \ x \ + \sum_{i+j+r=n}^{i < n} f_i(y)\beta d_j(x)\alpha d_r(x) \ + f_n(x)\alpha \ y\beta \ x + \sum_{i+j+r=n}^{i < n} f_i(x)\alpha d_j(x)\beta d_r(y) \\ &+ f_n(x\alpha \ y\beta \ x + x\beta \ y\alpha \ x) \end{split} \qquad ...(2)$$

Compare (1) and (2) we get the require result.

iii) Replacing α for β in 2.3 (ii) we have:

$$\begin{split} &f_n(x\alpha \ y\alpha \ x + x\alpha \ y\alpha \ x) = 2(f_n(x\alpha \ y\alpha x)) \\ &= 2(f_n(x)\alpha \ x\alpha \ y + \sum_{i+i+r=n}^{i< n} f_i(x)\alpha d_i(y)\alpha d_r(x)) \end{split}$$

Since M is 2- torsion free then we get:

$$f_n(x\alpha y\alpha x) = f_n(x)\alpha x\alpha y + \sum_{i+i+r=n}^{i< n} f_i(x)\alpha d_j(y)\alpha d_r(x)$$

iv) Replacing x+z for x in 2.3 (iii) we have:

$$\begin{split} f_n\big((x+y)\alpha y\alpha(x+y)\big) &= \ f_n(x+z)\alpha(x+z)\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x+z)\alpha d_j(y)\alpha d_r(x+z) \\ &= \ f_n(x)\alpha x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x)\alpha d_j(y)\alpha d_r(x) \\ &+ f_n(z)\alpha x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(z)\alpha d_j(y)\alpha d_r(x) \\ &+ f_n(x)\alpha z\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x)\alpha d_j(y)\alpha d_r(z) \\ &+ f_n(z)\alpha z\alpha y + \sum_{i+j+r=n}^{i< n} f_i(z)\alpha d_j(y)\alpha d_r(z) & ...(1) \end{split}$$

On the other hand:

$$\begin{split} &f_n(\;(x+y)\alpha\;y\alpha\;(x+z)\;) = f_n(x\alpha y\alpha x + x\alpha y\alpha z + z\alpha y\alpha x + z\alpha y\alpha z\;)\\ &=\;f_n(x)\alpha\;xy\alpha + \sum_{\substack{i+j+r=n\\i< n}}^{i< n} f_i(x)\alpha d_j(y)\alpha d_r(x)\\ &+f_n(z)\alpha z\alpha y + \sum_{\substack{i+j+r=n\\i+j+r=n}}^{i< n} f_i(z)\alpha d_j(y)\alpha d_r(z) +\;f_n(x\alpha y\alpha z + z\alpha y\alpha x) &\ldots(2) \end{split}$$

Compare (1) and (2) we get the require result.

(v) Replace (x + z) for x in definition 2.1(iii) we have:

$$\begin{split} f_n(\,(x+z)\alpha y\beta(x+z) &= \,f_n(x+z)\beta(x+z)\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x+z)\beta d_j(y)\alpha d_r(x+z) \\ &= \,f_n(x)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x) + \,f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(z)\beta d_j(y)\alpha d_r(x) \\ &+ \,f_n(z)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} f_i(z)\beta d_j(y)\alpha d_r(x) + \,f_n(z)\beta z\alpha y \sum_{i+j+r=n}^{i< n} f_i(z)\beta d_j(y)\alpha d_r(z) \dots (1) \end{split}$$

On the other hand:

$$\begin{split} &f_n(\ (x+z)\alpha\ y\ \beta(x+z)\) = f_n(x\alpha y\beta x + x\alpha y\beta z + z\alpha y\beta x + z\alpha y\beta z) \\ &= f_n(x\alpha y\beta x + z\alpha y\beta x + z\alpha y\beta z\) + \ f_n(x\alpha y\beta z) \\ &= \ f_n(x)\beta x\alpha y + \sum_{\substack{i+j+r=n\\i< n}}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x) \\ &+ f_n(x)\beta z\alpha y + \sum_{\substack{i+j+r=n\\i< n}}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(z) + \ f_n(z)\beta z\alpha y + \sum_{\substack{i+j+r=n\\i+j+r=n}}^{i< n} f_i(z)\beta d_j(y)\alpha d_r(z) \\ &+ f_n(x\alpha y\beta z) \\ &\dots (2) \end{split}$$

Compare (1) and (2) we get:

$$f_{n}(x\alpha y\beta z) = f_{n}(z)\beta x\alpha y + \sum_{i+j+r=n}^{i< n} f_{i}(z)\beta d_{j}(y)\alpha d_{r}(x)$$

vi)Replace (x + z) for x in definition 2.1(iii) we have:

$$\begin{split} f_n\big((x+z)\alpha\,y\,\beta(x+z)\big) &= \,\,f_n(x+z)\beta(x+z)\alpha\,y + \sum_{i+j+r=n}^{i< n} f_i(x+z)\beta d_j(y)\alpha d_r(x+z) \\ &= \,\big(f_n(x)+f_n(z)\big)\beta(x+z)\alpha y + \sum_{i+j+r=n}^{i< n} \big(f_i(x)+\,f_i(z)\big)\beta d_j(y)\alpha\,(\,d_r(x)+\,d_r(z)\,) \\ &= f_n(x)\beta x\alpha y + \,\,f_n(z)\beta x\alpha y + \,\,f_n(x)\beta z\alpha y + \,\,f_n(z)\beta z\alpha y \\ &\quad + \sum_{i+j+r=n}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x) + \,\,f_i(z)\beta d_j(y)\alpha d_r(x) + f_i(x)\beta d_j(y)\alpha d_r(z) \\ &\quad + f_i(z)\beta d_j(y)\alpha d_r(z) \ldots \ldots (1) \end{split}$$

On the other hand:

$$\begin{split} &f_n(\;(x+z)\alpha\;y\;\beta(x+z)) = f_n(\;x\alpha y\beta x + x\alpha y\beta z + z\alpha y\beta x + z\alpha y\beta z\;)\\ &=\;f_n(x\alpha y\beta x + z\alpha y\beta z\;) + \;f_n(x\alpha y\beta z + z\alpha y\beta x\;)\\ &=\;f_n(x)\beta x\alpha y + \sum_{\substack{i+j+r=n\\i< n}}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x)\\ &+\;f_n(z)\beta z\alpha y + \sum_{\substack{i+j+r=n\\i+j+r=n}}^{i< n} f_i(z)\beta d_j(y)\alpha\; d_r(z) + f_n(x\alpha y\beta z + z\alpha y\beta x\;)\;...\;...\;(2)\\ &\text{Compare}\;(1)\;\text{and}\;(2)\;\text{we get the require result} \end{split}$$

Definition 2.4:

Let $F = (f_i)_{i \in \mathbb{N}}$ be a Jordan generalized higher reverse derivation of a Γ -ring M, then for all $x, y \in M$ and $\alpha \in \Gamma$ we define:

$$\delta_{n}(x,y)_{\alpha} = f_{n}(x\alpha y) - \sum_{i+i=n} f_{i}(y)\alpha d_{j}(x)$$

In the following lemma introduce some properties of $\delta_n(x, y)_{\alpha}$

Lemma 2.5

If $F = (f_i)_{i \in N}$ is a Jordan generalized higher reverse derivation of Γ -ring M then for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$ and

i.
$$\delta_n(x,y)_\alpha = -\delta_n(y,x)_\alpha$$

ii.
$$\delta_n(x+y,z)_\alpha = \delta_n(x,z)_\alpha + \delta_n(y,z)_\alpha$$

$$\begin{array}{ll} i. & \delta_n(x,y)_\alpha \,=\, -\delta_n(y,x)_\alpha \\ ii. & \delta_n(\,x+y,z)_\alpha \,=\, \delta_n(x,z)_\alpha \,+\, \delta_n(y,z)_\alpha \\ iii. & \delta_n(x,y+z)_\alpha \,=\, \delta_n(x,y)_\alpha \,+\, \delta_n(x,z)_\alpha \\ iv. & \delta_n(x,y)_{\alpha+\beta} \,=\, \delta_n(x,y)_\alpha \,+\, \delta_n(x,y)_\beta \end{array}$$

iv.
$$\delta_n(x,y)_{\alpha+\beta} = \delta_n(x,y)_{\alpha} + \delta_n(x,y)_{\beta}$$

Proof:

i. by lemma 2.3 (i) and since f_n is additive mapping of M we get:

$$f_n(x\alpha y + y\alpha x) = \sum_{i+i=n} f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y)$$

$$f_n(x\alpha y) + f_n(y\alpha x) = \sum_{i+i=n} f_i(y)\alpha d_j(x) + \sum_{i+i=n} f_i(x)\alpha d_j(y)$$

$$f_n(x\alpha y) - \sum_{i+i=n} f_i(y)\alpha d_j(x) = -f_n(y\alpha x) + \sum_{i+i=n} f_i(x)\alpha d_j(y)$$

$$f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) = \, -(f_n(y\alpha x) - \sum_{i+j=n} f_i(x)\alpha d_j(y)\,)$$

$$\delta_{\rm n}({\rm x},{\rm y})_{\alpha} = -\delta_{\rm n}({\rm y},{\rm x})_{\alpha}$$

$$\delta_{n}(x+y,z)_{\alpha} = f_{n}((x+y)\alpha z) - \sum_{i+j=n} f_{i}(z)\alpha d_{j}(x+y)$$

$$= f_n(x\alpha z + y\alpha z) - (\sum_{i \perp i = n} f_i(z)\alpha d_j(x) + f_i(z)\alpha d_j(y))$$

$$= f_n(x\alpha z) - \sum_{i+j=n} f_i(z)\alpha d_j(x) + f_n(y\alpha z) - \sum_{i+j=n} f_i(z)\alpha d_j(y)$$

$$=\delta_n(x,z)_{\alpha} + \delta_n(y,z)_{\alpha}$$
 .iii.

$$\delta_n(x,y+z)_\alpha = \ f_n(x\alpha(y+z)) - \sum_{i+j=n} f_i(y+z)\alpha d_j(x)$$

$$= f_n(x\alpha y + x\alpha z) - \sum_{i+i=n} f_i(y)\alpha d_j(x) - f_i(z)\alpha d_j(x)$$

Since f_n is additive mapping of M then we have:

$$= f_n(x\alpha y) - \sum_{i+i=n} f_i(y)\alpha d_j(x) + f_n(x\alpha z) - \sum_{i+i=n} f_i(z)\alpha d_j(x)$$

$$= \delta_{n}(x,y)_{\alpha} + \delta_{n}(x,z)_{\alpha} .$$

iv.

$$\delta_{n}(x,y)_{\alpha+\beta} = f_{n}(x(\alpha+\beta)y) - \sum_{i+i=n} f_{i}(y)(\alpha+\beta)d_{j}(x)$$

$$= \ f_n(x\alpha y + x\beta y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) - f_i(y)\beta d_j(x)$$

Since f_n is additive mapping

$$\begin{split} &= f_n(x\alpha y) - \sum_{i+j=n} f_i(y)\alpha d_j(x) + f_n(x\beta y) - \sum_{i+j=n} f_i(y)\beta d_j(x) \\ &= \delta_n(x,y)_\alpha + \delta_n(x,y)_\beta \ . \end{split}$$

Remark 2.6:

Note that $F = (f_i)_{i \in N}$ is generalized higher reverse derivation of a Γ -ring M if and only if $\delta_n(x,y)_\alpha = 0$ for all $x,y \in M$, $\alpha \in \Gamma$ and $n \in N$.

III. The Main Results

In this section we present the main results of this paper.

Theorem 3.1:

Let $F=(f_i)_{i\in N}$ be a Jordan generalized higher reverse derivation of M then $\delta_n(x,y)_\alpha=0$ for all $x,y\in M$, $\alpha\in \Gamma$ and $n\in N$.

Proof:

By lemma 2.3 (i) we get:

$$f_n(x\alpha y + y\alpha x) = \sum_{i+i=n} f_i(y)\alpha d_j(x) + f_i(x)\alpha d_j(y) \dots \dots (1)$$

On the other hand:

Since f_n is additive mapping of the Γ -ring M we have:

$$f_n(x\alpha y + y\alpha x) = f_n(x\alpha y) + f_n(y\alpha x)$$

$$= \ f_n(x\alpha y) + \sum_{i+j=n} f_i(x)\alpha d_j(y) \ldots \ldots (2)$$

Compare (1) and (2) we get:

$$f_n(x\alpha y) = \sum_{i+j=n} f_i(y)\alpha d_j(x)$$

$$f_n(x\alpha y) - \sum_{i \neq i = n} f_i(y) \alpha d_j(x) = 0$$

By definition 2.5 we get:

$$\delta_{\rm n}(x,y)_{\alpha} = 0$$

Corollary 3.2:

Every Jordan generalized higher reverse derivation of Γ -ring M is generalized higher reverse derivation of M .

Proof:

By theorem 3.1 we get $\delta_n(x,y)_{\alpha} = 0$ and by Remark 2.6 we get the require result .

Proposition 3.3

Every Jordan generalized higher reverse derivation of a 2-torision free Γ -ring M such that $x\alpha y\beta z = x\beta y\alpha z$ and $y \in Z(M)$ is Jordan generalized triple higher reverse derivation of M.

Proof:

Let $F = (f_i)_{i \in N}$ be a Jordan generalized higher reverse derivation of M

Replace y by $(x\beta y + y\beta x)$ in lemma 2.3 (i) we get

$$\begin{split} &f_n(\ x\alpha(x\beta y+y\beta x)+(x\beta y+y\beta x)\alpha\ x)=f_n((x\alpha(x\beta y)+x\alpha(y\beta x)+(x\beta y\alpha)x+(y\beta x)\alpha x)\\ &=f_n((x\alpha x)\beta y+(x\alpha y)\beta x+(x\beta y)\alpha x+(y\beta x)\alpha x\) \end{split}$$

$$= \sum_{i+i=n} f_i(y)\beta d_j(x\alpha x) + f_i(x)\beta d_j(x\alpha y) + f_i(x)\alpha d_j(x\beta y) + f_i(x)\alpha d_j(y\beta x)$$

$$=\sum_{i+i+r=n}f_i(y)\beta d_j(x)\alpha d_r(x)+\ f_i(x)\beta d_j(y)\alpha d_r(x)+\ f_i(x)\alpha d_j(y)\beta d_r(x)+f_i(x)\alpha d_j(x)\beta d_r(y)$$

$$= f_n(y)\beta x\alpha x + \sum_{i+j+r=n}^{i < n} f_i(y)\beta d_j(x)\alpha d_r(x) + f_n(x)\beta x\alpha y + \sum_{i=j+r=n}^{i < n} f_i(x)\beta d_j(y)\alpha d_r(x)$$

$$+f_n(x)\alpha x\beta y+\sum_{i+j+r=n}^{i< n}f_i(x)\alpha d_j(y)\beta d_r(x) \ + \ f_n(x)\alpha y\beta x+\sum_{i+j+r=n}^{i< n}f_i(x)\alpha d_j(x)\beta d_r(y) \dots \dots (1)$$

On the other hand:

$$f_n(x\alpha(x\beta y + y\beta x) + (x\beta y + y\beta x)\alpha x) = f_n(x\alpha x\beta y + x\alpha y\beta x + x\beta y\alpha x + y\beta x\alpha x)$$

$$= f_n(x\alpha x\beta y + y\beta x\alpha x) + f_n(x\alpha y\beta x + x\beta y\alpha x)$$

$$= f_n(y)\beta x\alpha x + \sum_{\substack{i+j+r=n\\i< n}}^{i< n} f_i(y)\beta d_j(x)\alpha d_r(x)$$

$$+ f_n(x)\alpha y\beta x + \sum_{\substack{i+j+r=n\\i+j+r=n}}^{i< n} f_i(x)\alpha d_j(x)\beta d_r(y) + f_n(x\alpha y\beta x + x\beta y\alpha x) \dots \dots (2)$$

Compare (1) and (2) and since $x\alpha y\beta z = x\beta y\alpha z$ we get

$$f_n(x\alpha y\beta x + x\alpha y\beta x) = 2(f_n(x\alpha y\beta x))$$

$$= 2 \left(f_n(x) \beta x \alpha y + \sum_{i+i+r=n}^{i < n} f_i(x) \beta d_j(y) \alpha d_r(x) \right)$$

Since M is a 2-torision free then we have:

$$f_n(x\alpha y\beta x) = f_n(x)\beta x\alpha y + \sum_{i+i+r=n}^{i< n} f_i(x)\beta d_j(y)\alpha d_r(x)$$

References

- M. Asci and S. ceran, "The commutativity in prime gamma rings with left derivation", International Mathematical, Vol. 2, No.3, [1]. pp. 103-108, 2007.
- W. E. Barnes "On The Γ -rings of Nobusawa", Pacific J. Math, Vol. 18, PP. 411-422, 1966. [2].
- [3].
- M. Bresar and J. Vukman, On Some additive mappings in rings with involution, Aequation Math., 38(1989), 178-185.
 Y. Ceven and M. A.Ozlurk" On Jordan Generalized Derivation in Gamma rings", Hacettepe, J. of Mathematics and Statistics, Vol.33 ,pp. 11-14 ,2004
- S. Chakraborty and A.c. Paul, "On Jordan K-derivation of 2-torision free Γ_N -ring" Punjab University J-of Math., Vol. 40, pp.97-[5].
- T. K. Dutta and S. K. Sadar, "Semmiprime Ideals and Irreducible Ideal Of Γ -semirings", Novi sad J. Math, Vol.30, No.1, pp.97-[6]. 108,2000.
- F.J. Jing, "On Derivation Of Γ-rings" Q U F U Shi Fan DaxueXuebeoZiranKexueBan, Vol.13, No.4, PP.159-161, 1987.
- S.Kyuno, "On Prime Gamma Rings", pacific J. of Math., Vol.75, pp.185-190, 1987 [8].
- N. Nobusawa, 1964, "On a generalization of the ring theory" Osaka J. Math. 1,81-89. [9].
- M. Samman and N. Alyamani, "Derivation and Reverse Derivation in Semiprime Rings", International Mathematical Forum, 2, [10]. No. 39, 1895-1902, 2007.
- S. M.Salih and M.R.Salih "On Jordan Generalized Higher Reverse Derivations in Γ -rings" to appear. [11].