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Abstrct: In this paper, the authors investigate the summation-complete relation to certain type of generalized
higher order o — difference equation to find the value of m(a)— series to circular functions in the field of

finite difference methods. We provide an example to illustrate the m(cx) — series to circular functions.
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I. Introduction
In 1984, Jerzy Popenda [1] introduced a particular type of difference operator A, defined on u(k) as

Au(k)=u(k+1)—ou(k) . In 1989 Miller and Rose [6] introduced the discrete analogue of the
Riemann-Liouville fractional derivative and proved some properties of the fractional difference operator. The

general fractional h-difference Riemann-Liouville operator and its inverse A,” f(f) were mentioned in [2, 7].

As application of A_hv , by taking v = m (positive integer) and /4 = ¢, the sum of m™ partial sums on n”
powers of arithmetic, arithmetic-geometric progressions and products of n consecutive terms of arithmetic

progression have been derived using A,"u(k) [3].
In 2011, M.Maria Susai Manuel, et.al, [4] have extended the definition of A, to A, which is
definedas A, u(k)=u(k+/)—cu(k), for the real valued function u(k), ¢ €(0,0) is fixed. In [5], the

authors have used the generalized « -difference equation;
vik+0)—av(k)=u(k), k €[0,0), ¢ €(0,0) (1)

and obtained a summation solution of the above equation in the form

%

14
v(k)=Ya" " utk—rt), j=k- [%]ﬁ. ©)
r=1

There are two types of solutions for the equation (1): one is summation another one is closed form
solution. If we are able to find a closed form solution of equation (1), which is coinciding with the summation
solution of that equation, then we can obtain formula for finding the values of several finite series. In this paper,

we extend the theory of generalized m™ order difference equation developed in [8] to generalized m™ order
« -difference equation.

In [9], the authors have defined the m —series of u(k). Here we define corressponding m(c)—
series as and obtain several results on m() — series

For meN(1), the m(ar)—series of u(k) with respectto ¢ is defined as below:

ko
1(a0) — series st (k) = u(k — 0) + cu(k —20)++--+a lu(k—[%]fj,

k

D) —series iy, (k) =ty (k= 0)+ it g (k= 20) +--+ a[”]lula([)(k _ [%]z)

and in general m(a)— series:
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k
[-1-1 k
Uaoy (k)= U 1)a(r) (k=0)+ QU (1o (1) (k=20)++a' u(ml)a(f)(k - [ZMJ

We find that the m1(cr) — series of u(k) is the summation solution of the m” order & —difference equation
AL (k) =u(k), k €[0,0),£>0.  (3)

where A7 u(k)=A,, (Argzi)u(k)) . Hence in this paper, we obtain m(cr)— series to Sin pk and

cos gk by equating summation and closed form solution of equation (3).

II.  Preliminaries
Before stating and proving our results, we present some notations, basic definitions and preliminary

k
results which will be useful for further subsequent discussions. Let ¢ >0 be fixed, k €[0,0), j =k — [z]ﬁ

k k
where [z] denotes the integer part of Z Throughout this paper, ¢ #0 and 1, m is positive integer,

u(k) defined on [0,00) and u(k)=0 , ke(—0,0) . Consider the power set notations;
L ,=1{12,....m-1}, OL,,) = {4} , where ¢ is empty set, 1(L, ,) =
{{1}7{2}’{3}75{7%_1}} > 2(Lm—l) = {{1,2},{1,3},,{1,7’)’1—1} > {2,3},"',{2,]’}1—1},
s {m—=2,m—1}} . In general, #(L, ;) = set of all subsets of size ¢ from the set L , ,

m—1 m=1
t(L, )={{1,2,---sm—=1}}, (L, )= LJt(mel) , power set of L, Zf(l‘) =0 for m<1, and
P

t=0

ﬁf(i)zl for t<1.

Definition 2.1 /10] Let u(k), k €[0.0) be a real valued function and ¢ € (0,0) be fixed. Then the
generalized o difference operator on u(k) is defined as:
A, pull) =u(k+0)—ou(k). 4)

Lemma 2.2 [10] The inverse of the generalized o — difference operator denoted by A;l“) is defined as
follows. If A, (k) = u(k), then

k

[-]
Az(f)”(k) =v(k)—a 'v(j) )

is solution of equation (3) when m=1.

Lemma 2.3 Let p be any real number such that p { is not integer multiple of 2 7 . Then, when m =1, equation
(3) has solutions

Ai(/) sin pk = smp(k—ﬁ)—asmzpk i ©
' 1-2acos pl+a /
and
k—0)— k
Ajj(mcospkzcosp( )—acosp +c; ()

1-2ccos pl+a’

Proof. Replacing u(k) by sin pk and cos pk in (4), we find that
A, sin pk =sin pk(cos pl —a)+cos pksin p? (8)
and

A, cos pk = cos pk(cos pl —a)—sin pksin pl.  (9)

www.iosrjournals.org 35| Page



m(ax) — Series To Circular Functions Using Power Set Notation

Now, multiplying (8) by (cos p/—«), (9) by sin p¢ and then subtracting the second resultant from the first
one, we find that

A, ni(cos pl —a)sin pk —sin plcos pk} = (1-2a cos pl + a”)sin pk. (10)
Now, (6) follows from (6) and dividing (10) by (1—2a cos pl+a’).
Similarly multiplying (8) by sin p/, (9) by (cos p/ —a) and then adding them, we find that
A, »isin pksin pl —(cos pl — ) cos pk} = (1—2acos pl+ a’)cos pk (11)
Now (7) follows from Definition (2.2) and dividing (11) by (1—2a cos pl+a’).

Lemma 2.4 [f pl and ql are not multiple of 271, then
m" o sin p(k —(m—1)¢)

AWI >
! (1-2acos pl+a”)"

a(t) sin pk = Z(_l)t
=0

+c,,  (12)

m () — —
A\, cos gk = Z(—l)t Mot 298 gk = (m t)f) +c, (13)
prs ! (1-2acosgl+a”)"

are closed form solutions of equation (3) when u(k)=sin pk, cos gk respectively .

Proof. When m =1, (12) and (13) are obtained from (6) and (7). By induction on # , m > 2, we assume that,

l)() sin p(k—(m—1-1¢)0)
A" Vsin pk = 1 (m= o +c.. (14
() P z( ) (1-2cacos pl+a*) "D (4

From (6), we have
Al(msmp(k (m—1—1)0) = smp(k—(m—t)ﬁ)—asmp(kz—(m—l—t)ﬁ). (15)
(1-2acos pl+a”)

o m=D =D _m® N : :
Since + = , (12) follows by taking Aa( r » applying (15) and equating
(r=1)! r! r! '
coefficients of sin p(k—(m—t){) for t =0,1,---,m
Similar argument and (7) gives the proof of (13).

Lemma 2.5 /9] Let n€ N(1), k €[0,0) and p,q are constants. Then

n-1 -1
LN ()
e 1Z( N ”—sm p(n—2r)k ifnisodd
in’ pk = - " 16
sin” p 1 72 e g H(J (16)
o Z‘,(—l)2 ——cos p(n—2r)k+——— ifniseven.
" 7! Z(n)'
5 )

and
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n—1

"
e Z—cos q(n—2r)k ifnisodd

COSn qk = n-2

1 Z2:},l(r) (ZJ {17

= ——cosq(n—2r)k+ o ifniseven.
2" = o[,
2

Remark 2.6 Now consider the following Summation Notation

(i) If n, and n, are odd positive integer. Then we denote

rllln1 1n2—l
GV : fr” 2’2)
1
Z n1+n2—1 ZZ( 1)
(n1 ,nz) n =0 r2

(ii) If n, is odd and 7, is even positive integer. Then we denote
n— -1 "1 1n2—2

( 1) 2 . (Vl (Vz)
Z n1+ﬂz*1 ZZ( 1)1 1 2_

(nl,nz] n =0 r2

(iii) If n, is even and n, is odd positive integer. Then we denote

nl ”1 2n2—1
[V rnl” 2’2)
1
Z nl+n271 ZZ( 1)
[n],nz) n Or2

(iv) If n, and n, both are even positive integer. Then we denote
nony- 2ny-2

(’1) ("2)

PN

[n] ’"2] n =0 r2 2

(v) we take P= p(n,—2r)+q(n, —2r2) and P= p(n,

varying with respectto n,, n,, 1;, ¥,, p and ¢

—2r)—q(n, —2r,) and hence P and P are

Corollary 2.7 (i) If n, and n, are odd positive integers, then

sin" pkcos gk = Y. (sin Pk +sinPk).  (18)

(”] ,1’12)

(ii) If m, is an odd positive integer and 7, is an even positive integer, then

"2
7) J—
3 . .= n,> . [P+P
sin™ pk cos™ gk = Z (sin Pk +sin Pk) + ——sin ke (19
(] (ﬁ)g 2
2
(iii) If », is an even positive integer and 7, is an odd positive integer, then
5,C (%) P }_)
, — n —
sin™ pk cos™ gk = Z (cos Pk + cos Pk)+——cos > ki (20
n
(nl’"2] (71)'

2

(iv) If n; and n, are even positive integers, then
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s.c ) D
o ; R~ — n, P-P
sin™ pk cos™ gk = Z (cos Pk +cos Pk)+ cos( ]k
Ly ] (ﬂ)' 2
2
w2 (paP)
+ p cos 5 k+5——————. #3))
(E)! (- )'( 2)!

III.  Main Result
In this section we equate the summation and closed form solutions of equation (3) and obtain formula for
m( o) — series to circular functions.

Theorem 3.1 /11] (m(a)— series formula) If closed form solution A;:M)u(k) of equation (3) exits, for
t=12,---,m, then

k
ar-neh (5 -n-1) '
————a""u(k—rl)=F, julk)-a g Fou((m=1)(+ j), (22)
= (m—=1)!
’—k—‘ (m—m,)
_pm 'S ey
where F, u(k)=AJ,uk)+> > (1) ~———a

=1, jer(L,, }) (m—m )'

(m;=m; 1)
[(m_l)fﬂ—l l mel )u;l
/ ~(m;-1)
[04 .

/
(m, —m,_,)!

A (1)L + ])H

(23)

We give the following Theorem which will be used to obtain 72( ) — series to circular function.

Theorem 3.2 Let k €[(,0) and j= k—[%]f. Then

k
D 51-m-1)

N ) yrm _ 0 — _ 0 _ .
~ (m-1)! a (k=rl) =, utk)-a Fu((m=1)(+ ), (24)

k (m—m,)
[[ ]j [ ]*(m*l)
where F,, ,u(k)= Aa(i)ko+z z (=1

t= l m et(Lm 1) (m m )'
o (o —1yt+ j)OH / a[#]f(mf ). (25)
a(l) i=2 (mi - mi—l)!

Proof. The proof follows by taking (k) =k° in Theorem 3.1.

(m —m;_ )
(m =Dt j i 0]
t Z - —(ml.—l)
a

Remark 3.3 Here after we denote T1(t) = H !
i=2 (mi - mi_l)!

www.iosrjournals.org 38| Page



m(ax) — Series To Circular Functions Using Power Set Notation

— | P+P| |P-P
and P¢, P/, |: ; }f, |: > :|€ are not integer multiple of 277 .

Theorem 3.4 If n, and n, are odd positive integers, then m(ct) — series to sin™ p(k)cos "2 q(k) is given

by
k
[7] (r_l)(mfl) o )
Wa sin"t p(k —rl)cos" q(k —rl) = F,, ,u(k)
K -m-1)
—a! F,u((m=1){+ j), (26)

5,C (’”3) . _ _
where Fm(a)u(k)_ Z {Z( 1)r3 rg[ sin P(k—(m—r)?) N

2\m
() | 7520 r! (1-2acos Pl+a”)

sin P(k—(m—7,)0) ]+mzl S iy Z( e m ]<r4> i

2\m
(1-2acos Pl+a”) =, Jer (L, ) 740

( sin P((r, ~1)l+j)  sinP((r,~1)(+j } (73 T
i ; i e —L— gL

(1-2acos Pl+a®)"  (1-2acos Pl +a?) (m—m,)!

Proof. The proofis obtained by replacing #(k) by sin™ pk cos"2 gk in Theorem 3.1 and applying equation
(18) on Lemma 2.3.

Remark 3.5 When n, =0 in (26) we will get A;"&) sin”t Pk and when n, =0 in (26) we will get
A_ang[) cos™ Pk .

The following example illustrates a 4-series to sin’ 6k cos’ 5k ,
Example 3.6 Consider the case m=4, p=6, ¢q=5, n,=3, n,=3, P=(6(3—-2r))+5(3-2r,)

and P= (6(3—21)—-5(3-2r,)) In this case,
= {1,235, 1(Ly) = {{1},{2},43}},2(Ly) = {{1.,2}, {23} {13}3,3(Ly) ={{1.2,3}} and (26)
becomes
) (r-1)*™" (%13
Z a- 1)' a"*sin®6(k —rl) cos®S(k —r) = Fyu(k)—a " F,,u(3l+j) @7

(’”3) :
, w[ sin P(k—(4—r)0)
n F o) = _1)3 o’ 3 +

3.3)[r=0 L

sin P(k—(4=1,)0) }fi S iy i( e m ]<,4> L

2\4
(1-2acos Pl +a”) = {m, 1L, ) =0

_ (4-m;)
sin P((r,~1)(+)) | sinP((r,~1)(+ )([ g]) e
(1-2acos Pl+a®)"  (1-2acos Pl +a*)" (4-m,)! .
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The five summation expression of (27) can be obtained by adding the sums corresponds to

NS
ZZ( 1y 19 o sinPG=(=r)0)  sinP(i-(1=r)0) ([g])”a[’;]-z
! (1-2acos Pl+a*) (1-2acosPl+a*) ) 3!

(3.3 =0 Ty

ke
ZZ( l)m ) .| P+ j)—(2—r4)€)+sin1_0((£+ N-@2=r)0) ([f])()a['ZH
! (1-2acos Pl +a’)’ (1-2acos Pl +a)’ o

(3.3, =0

k\a
ZZ( 1)’4 308 ar{sin P((2€+j)—(3—2r43£) . sin F((2£+j)_(2_:4¥)j ([z]y ) a[%H
(33,0 (1-2acos Pl+a”) (1-2acos Pl+a”) I

Corresponds to 2(L3)

ilz(_l)a 1) r4( sin P(j—(1—r,)0) N sin?’(j—(l—lq)@ J

a
53 7! (1-2acos Pl+a*)  (1-2acosPl+a”)
2-1)0+ k
[w](l) [(2*1)/+f]71 ([7])(2) [5],3
/ a ! 14 al
1! 2!
ZZ( 1y 2 2 [sinP(L+j=@2=r)0) sinP(U+j-Q2=r)0)
53 4! (1-2acos Pl+a*)  (1-2acos Pl+a’)’
3-1)l+j
ORI s, G
4 a a’
1! l!
ZZ( 1y ] 1% o SnPG=(=r)0)  sinP(—(1-r)0)
53 7! (1-2acos Pl+a*)  (1-2acosPl+a”)
3-1)l+j
[w]m (= ([ ])(l) *1s
14 a a’
2! l!
andto 3(L;)
ZZ( 1y ] 104 o SnPG=(=r)0)  sinP(i—(1-r)0)
53 7! (1-2acos Pl+a*)  (1-2acosPl+a”)
——1" evw 771 e [ k
/ (=250 / N )-3
1! “ 1! “ 1!

Theorem 3.7 If n, is an odd positive integer and N, is an even positive integer, then the m(cx)— series to

sin" p(k) cos"2 q(k) is given by

(m-1)
Z((m )1)| a'"sin" plk—rl)cos™ q(k —rl) = F, , u(k)
(5 1-(m-1y
—a'  F,u((m=-1)l+)), (28)
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where F(a)u(k) Z {Z( 1)r3 - r3( sin P(k —(m—ry)l) N

(]| 7520 (1-2acos Pl +a’)"

P+P

)k = (m—r)l)

— 2| sin(
sin P(k —(m—1,)0) ]+ n,

D 2N\m
(1-2acos Pl +a”) P) r+aty"

(122)! (1-2c cos(

m=1 (rg) . .
+Z Z ( 1) Z( 1)r4 ml' r4( SmP((I’4—1)£+_])

1 {m, (L, ) r,! (1-2acos Pl +a”)™

— "2 '
SinP((l”4—1)f+j J—'— n;Z) —l)f‘i']))
_ D 2\™ n P m

(1-2acosPl+a”) (?2)! (1—2acos(P+P)€+0!2) |

e
/ [ 1=(m=1)
H(t)—(m )] a

Proof. The proofis obtained by replacing #(k) by sin™ pk cos" gk in Theorem 3.1 and applying
equation (19) on Lemma 2.3.

Theorem 3.8 If n, is an even positive integer and N, is an odd positive integer, then the m(c)— series to

sin" p(k) cos" q(k) is given by

—1)b
S,

D) sin"t p(k —rl)cos" q(k —rl) = F,, ,u(k)

(51-om-1) )
—a- Fm(a)u((m - l)f + ]) (29)

s,C m (r3)
_ n M n( cos P(k—(m—r)l)
where £, u(k) = Z{Z(—IV - a{ s

(1) (1—2acosP€+a2)’”

3 =0

)(k (m 7))

_ "
cos P(k —(m—r,)f) +n1(2) cos("
(1-2acos Pl +a*)"

(%)! (l—2acos( )€+a )"

+Z > Z( D ml. ( S el

1, (L, ) 7! (1-2acos PL+a*)"
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)(("4 —Dl+))

_ n
cos P((r, ~1)0+ ) ]+£2) cos("
_Pw+a6”

(1-2a cos PU+ )™

(%)! (1-2a cos(

e
/ [ 1=(m=1)
H(t)—(m )] a

Proof. The proofis obtained by replacing #(k) by sin™ pk cos" gk in Theorem 3.1 and applying
equation (20) on Lemma 2.3.

Theorem 3.9 If n, and n, are even positive integer then the m()— series to sin™ p(k)cos" q(k) is

given by

[

G

(m—1)! sin" p(k—10)cos™ q(k—rl)=F (a)u(k)

(- m-1) )
-a’ Fou((m—=1)t+ ]) (30)

where F,, u(k)= Z {Z( 1)r3 - V3( cos P(k—(m—ry)0) N

oy 1| 7520 (1—2acosP£+a2)’”

)(k (m 1))

"
cosP(k (m—n)0) (2) COS(
(1- 2acosP£+a)

(30!(1—2aam( )€+a)

| cosE Dk~ (m-r)0) D
—m 0
! (1-2arcos( o raty ( ("2 ;)

el (r4) B .
$y (1){25(])q q( cos P((r, ~1)0 + j)

2\m
=1 {m, jer(L,, }) =0 7! (1-2acos Pl+a™)!

)((7’4 —Dl+))

_Pw+a6”

_ il
cos P((r, 1)+ j N nl( 2 COS(
(1-2acos PL+ )™

(%)! (1-2a cos(
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3| eos G-y |
4 12 2 = = B A (1) + )
| (1-2acosCH Dyrvaryn | 2y !
2-(—acos(T)+a) K5

D™ s
M) —— o'
(m—m,)!

Proof. The proof is obtained by replacing u(k) by sin™ pk cos"™ gk in Theorem 3.1, applying

equation (21) on Lemma 2.3 and using Theorem 3.2.
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