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Abstract: The analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular
duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized
Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by
applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized
Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here.

Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical
illustrations.
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I. Introduction

The study of non-Newtonian fluid plays an important role in technological applications compared with
Newtonian fluids because of their behavior. Several models have been proposed and examined to explain this
non- linear behavior. One of the most popular subclasses of differential type fluids is the Oldryod- B fluid.

It has been found that the viscoelastic generalized Oldroyd- B fluid can be used to approximate the
response of many dilute polymeric liquids successfully, and this approach has been widely applied to flow
problems with small relaxation and retardation times, with classical Newtonian and Maxwell fluid being
included as special cases [6].

In recent years, the study of non-Newtonian fluid flow has increased dramatically, and many of the
researchers involved in obtaining exact solutions of the approach through the introduction of fractional calculus
in various rheological problems [2,3,6,7,11].

Among these, Khan et al. [7] constructed the exact solutions for the accelerated flows of generalized
Oldroyd- B fluid using the fractional calculus approach established constitutive relationship of a viscoelastic
fluid model. Zheng et al. [6] deals with the 3D flow of a generalized Oldroyd- B fluid due to a constant pressure
gradient between two side walls perpendicular to a plane. Hyder et al. [11] discussed the exact solutions for a
viscoelastic fluid with generalized Oldroyd- B fluid.

In addition, some problems concerning unsteady flows through an oscillating rectangular duct have
already been investigated. Johri, A. K. and Singh, M.[1] deals with an oscillating flow of a viscous liquid in a
porous rectangular duct. Nazar, M. et al. [8] presented an analysis for the unsteady flow of incompressible
Maxwell fluid in an oscillating rectangular cross section. Sultan, Q. et al. [10] discussed the analytic solution for
the unsteady magnetohydrodynamic (MHD) flow of Oldroyd- B fluid in long porous rectangular cross- section.
Nazar, M. et al. [9] determined the velocity filed and the shear stresses corresponding to the unsteady flow of
generalized Maxwell fluid on oscillating rectangular duct. Nadeem et al. [12] discussed the Rayleigh Stokes
problem for rectangular pipe in Maxwell and second grade fluids.

The purpose of this work is to present analytic solutions for generalized Oldroyd- B fluid on oscillating
rectangular duct by means of double finite Fourier sine and discrete Laplace transforms for fractional calculus
approach. Finally, the influences of the various parameters on the motion of generalized Oldroyd- B fluid are
underlined by graphical illustrations.

II.  Governing Equations
The constitutive equations for an incompressible fractional Oldroyd- B fluid given by

T=—pl+S,  (1+A“D{)S=u(1+4’D))A (1)
where T denoted the cauchy stress, —pl is the indeterminate spherical stress, Sis the extra stress
tensor, A=L+L" is the first Rivlin- Ericksen tensor with the velocity gradient where L=gradV , u is the
dynamic viscosity of the fluid, 4, and 4, (<A,) are the relaxation and retardation times, respectively, & and S

the fractional calculus parameters such that 0<a < <1 and ]5f the upper convected fractional derivative
define by
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D*S=DS+(V.V)S—LS—SL' )
D’A=D’A+(VV)A—LA—-AL' (3)

in which D” and D/ are the fractional differentiation operators of order o and £ based on the Caputo’s
definition, defined as

wrn_ 1t @
D f(t) = e ! T dr 4)

here I'(.) denotes the Gamma function and

If a = =1 the ordinary Oldroyd- B model will be obtained.

Consider an incompressible generalized Oldroyd- B fluid at rest of rectangular cross- section whose sides are at
x=0,x=d,y=0and y=~h. Attime t=0" the duct begin to oscillate along z- axis.

The velocity field is

V=V(x,y,t)=w(x,y,)k ®)
and the shear stress as the form

S =S(x, y,t) (6)

where w is the velocity and k is the unit vector in the z- direction .Substituting equations (5) and (6) into (1)
and taking account of the initial condition

S(x,»,00=0 , w(x,y,00=0 @)
we obtain
(1+47D8) 7, =u(1+A7 D)3 w(x, v, 1)
(147 D) 7, =u(1+ 2 D)0, w(x, y.1) ®
(I+4°D{)o=24"| 7, a_W+ & o
Ox oy
where S =7,,S ,=17,,S,=0,8_ =5 =S =0andS_ =S, ,S =S, . Then the equation of motion

yields the following scalar equation:
dw 0Or, 0r, Ooc
p—=—+——"4+—
dt ox 0oy oz
where p is the constant density of the fluid. Eliminating 7, , 7, and o between Eqgs. in (8) and (9), we obtain

€)

the following fractional differential equation

(1+/11"Df‘)% = v(1+4/D” )B%” + ‘2;2”} (10)
where v=% is the kinematic viscosity.

We considefrj the following initial and boundary conditions

W(x,y,O)=W=O (11a)
w0, y,1) =w(d, y,t) = wm(x,0,t) = w(x, h,t) = U cos(ax) (11b)
or

www#W:O (12a)
w0, y,1) =w(d, y,t) = w(x,0,t) = w(x, h,t) = U sin(@r) (12b)

We denote by u(x, y,t) the solution of problem (10), (11a),(11b) and by v(x, y,¢) the solution of problem (10),
(12a),(12b) and define the complex velocity field

F(x,y,t) =u(x, y,t) +iv(x, y,t)

which is the solution of the following problem:

e GF(x,y,t): g 62F(x,y,t) 62F(x,y,t)
(1+4 D‘)—at v(1+A/ Dt){ P + ayz } 13)
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F(x,,0) = OF(x,,0) _ 0 (14)
ot
FQ,y,t)=F(d,y,t)=F(x,0,t) = F(x,h,t) = Ue™ (15)

III.  Calculation of Velocity Field

Consider an incompressible generalized Oldroyd- B fluid at rest of rectangular cross- section whose
sides are at x=0,x=d,y=0and y=h. At time t=0" the duct begins to oscillate along z- axis. The
fractional differential Eq. (13) with the initial and boundary conditions (14) and (15) will be solved by means of
the double finite Fourier sine and discrete Laplace transforms.
Multiplying both sides of Eq. (13) by sin(e,x) and sin(f,y), integrating with respect to x and y over
[0,d]x[0, k] and using Eq. (15), we find that

F 2 2

(1200 LDy 12700 + ), 0 = v+ 2D 1= T1= 1 ]2 L v 1)

mm nr . L
where o, = - B, = & and the double finite Fourier sine transforms

dh
F,, () = [ [F(x,y,0sin(a,x)sin(B,y)dxdy  m,n=1,23,-- (17)
00
With the initial condition
oF,, (0
E, =0, Tm@_o 123, (18)

Referring to Eq. (16), the corresponding fractional partial differential equation that described such flow takes the
form

(200 Lm0 @2 4 )0+ 2/D0)E, (1) =

* (19)
m n ai+ﬂrr2 iot - non— .

1= ][1=¢D) JW[Ue + 2 UG@)" " E,, (o) |

ml~n

= +m)!z!
where Eg’ﬁ(z):z - ( - miz
= iT(aj+am+p)

By applying the discrete Laplace transform of Eq.(19) with the initial conditions (18), we get
2 2 B N\ JSn
= m 2 o+ B 1A+ A (o) s7 " 1
B ) =vU[1- oy J[1- oy ]| Lot fe \LEAGOS ) o
amﬂn §—wi S+ N +V(1+ﬂrs )(am+13n)
_a, U, (A5 +1) (1+ wi ]+ (o) s™ -1)va,, 4, UM's"
s—oi " (s+ A T wva,, VAP A YU s (s—@i)(s+A%s“ " +vA, +vilsP A )

7 ‘mn

(20)

is the generalized Mittag- Leffler function [4] and #, is integer no.

—wi

1
wherea,, =

ml~n

[1 —(—1)’”}[1 —(—1)”} , A, =a+ 2 and F, (s) = I F, (t)e™"dt is the Laplace transform of
0

F ().

mn

Now, rewriting Eq. (19) in series form as

F;nn (S) = aan‘ - aan HWV‘ (S) (1 + “ . j +
S—wi1 S — il
~ o ) 1,j.q,p,b>0 k! V/Im" I+k=p (_a)i)j (ila )—l—k+b (ﬂrﬂ)Hl—q Sé‘
((ia))”' s —1) a, Uy (-D" Y ( H),
S ek (5T A7) (k=D DI =Yg~ )P -b)!
(21)
where
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k k!(,?,rﬁ )l gk preat +ﬂ{as7k7]+ﬂ]
H,(s)= ( j - .
z ;l!(k—l)! (Sa+ﬂ{“)k

and S=p-2—-k+pl—j—Pg+p+ab

Applying double inverse Fourier sine transform, we obtain

F(x,y,s) = — Z a,, sin(a, x)sin(S,y) _d_l}]t i [1 —ijm" (s)sin(ex,, x)sin(B,y)+

m,n=1

W & © ' 1,7.q,p.b=0 k! ﬂ, I+k— 17( 1)] (a)l)“"‘ (11 )—1 k+b(lﬂ)1+l q 0-n
1 z ang(_l)l\ ( )

yn sin(a,,x)sin(S,y) -
B R e (57 27 ) T k=D = )G- @) g - PP ).
1,j,q.p,b>0 Lk=p jaaN-loktb g f\ltl—q &
Z Z( % Z k!(v’l’”;?l Con () AT S e vsin4,y)
e it (s 427 T (k=D = DN =) g = p)(p=b)!
(23)
Using the formula [5]

dh Z a,, sin(a, x)sin(f,y) (24)

we obtain for F(x, y,s) the expression

F()C y’S)_—La)i_z_l—Z mn(1+
m,n=1

j H, (s)sin(e, x)sin(B,y)+

N
=

i . i(_l)k 1,j.q,p,b>0 k!(Vﬂmn )”k’p (_1)j(a)l-)j+n1 (ﬂqa)—l—mb(ﬂvrﬂ)l#qué—m
A R T (st 2 ) T k=D = DG - @) - P (p-b)!
® 1,j.q.p.b=0 L+k-p ~lokeb 3 Byltl=g (&

e Ky ) T Con’ G
SO e (s A7) (k=DI= DI~ )N - p)(p-b)!

QU
=

sin(a, x)sin(3, ) —

&|Q
,MS

sin(ex,, x)sin(S, )

m,n

(25)
or
F(x,y,s)= v ._16_U N ayy (l+ ) (s )Sln(aMx) sin(Syy) N
S—an m,n=1 ay, ﬂN

DL a0 T k0 )ﬁkk TN @i A TGS singay ) sin(By)
me R et ( ) k=D - DG - DNg-pp-b)! % By

WU S 3 R (v ) ) GG sinGa) sin(y)
m,n=1 k=0 I+ j+q+p+b=k (sa +,11’ ) (k—l)!(l—j)!(j—q)!(q —p)!(p—b)! Qe ﬁN

(26)

where M =2m—1, N=2n—1, a,, :@ and §, = (211;1)7[.

By applying the inverse Laplace transform to Eq. (26), using (22) and the formula [4]
i e (r+k)(Fer')
L—l kls /1t+y lEk (+ ¢ ) /1t+y—1 Z ( ) (27)
(s" fc) =S T(Ar+k+p)
we obtain for the complex velocity field F(x, y,t), the following expression:
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k

w 16U <& sin(a,, x) sin Iy SCOOPY s v

F(x,p,t) = Ue™ - Z (@, x) sin(Byy) Z[ ;wvj Z '( ) '[t k+(k=pl+1)- akﬁm( A7)
dh = ay By o\ A = (k=D

k k B
ak+(k-pl+a+1)-1 ok V}“MN /1 ) G ?) GHH (=Pl pk
+t Bl (A )]mzz[ % ] b I)J Ef (AT
Lig.eb>0 (11 l+k—p 1 j e j+m (g aN-1-k+b /1,5 1+l-q
4 gk Hk=plratl)- 1Ekk ﬂl+a+1( /11 )st}+16_U Z Z( ) Z ( MN) ( ) ( .l) (4" (A7)
mon=1 k=0 I+ j+q+ prb=k k=D =-D'G-Ng-p)(p-b)!

. . » » ia.pb> 1+k— N
sin(e,, x) sm(,BNy)[ ak+(a-s )1 pk - j"l_ata):| 16U Z Z( l)" I/rib 0 (V/IMN) P(_wz)f
aM ﬂN e m,n=1 k=0 I+ j+q+p+b=k (k_l)'(l_.])'

aN-1-k+b ;7 B\l+l-q
7 ak+(a—6)- —a,a
(/ll )| ( r') ||:tA( 5) lEﬁ,a—é(_}ﬂ / )]
(/-9 g-p)(p-b)!
(28)
Setting d =2a,, h=2b, and changing the origin of the coordinate system (taking x = x" +a, y= Y +b, and

dropping out the star notation), the complex velocity can be written in the form

w AU men €08(0ty,X) cOS(By¥) |~ VA, pek bl v
F(x,y,1)=Ue __Z(_l) (27) (ﬂhy){Z[ MV] zl'(k Z)||: B lEkk (= A)

alb] m,n=1 aM ﬁN k=0

k N
ket (k-Blra+1)-1 pk v A5) [ iot-s ket (k- Bl+1)-1 1k
+° +(k=plra+l)- E A ﬁ1+a+1( ilala):|+6()12[ MV] Z J em(r )|:sa +(k=pl+1)— E f ﬁ[+1( j’lasa)

Al = N(k-1)o
1,j,q,p,b>0 r L+k- P( 1)1(0)1)/“1. A%y 1- k+b(/1ﬂ)1+l q
gk B~ 1E1fA ﬂl+a+l( A asa)]ds}+_ z( 1)m+nz( 1) z ( MA) ' ' ' ' '
ab, mon=1 k=0 I+j+qt+p+b=k (k=D =D g—p)(p-b)!
1,j.q,p.b>0 l ' l+k=p i)
COS(aMx) COS(ﬂNJ’) |:tak+(a7§+n]) lEﬁ . ( ﬂ,lfata ):|__U Z ( I)mMZ( 1) Z (V M]\) ( a)l)
Ay ﬂN ' b m,n=1 I+ j+q+p+b=k (k_l)'(l_.])'

an-l-k+b 7 f\l+I-q
(11 ) (/L ) .:tak+(a 5)- 1 ;a ﬁ( /1] ata):|
(J=9g=p)(p-b)!
(29)
The velocity field corresponding to the cosine oscillation of the ducts, respectively to the sine oscillation of the
duct is given by

u(x, y,t) = Re[F(x, v, t)]

~Ucos(on -2y > cos(at, x) cos(fyy) {

VA X (/1/}) ak+(k-pl+1)-1
( A le!(k—l)![t

40 =i (297 By

k
Ek (-7 )+tak+(k Blra+)- lEk (-A°t )] wz —VAy Zk: ( rﬁ)l tsin(a)(t—s))
Bl J—Blra+l « ! 1Jo

k=0

ak+ + a ak+ +a+ W < m-*—nOQ
[ K+ (Bl +1)— 1Ekkﬂl+1( A% @) 4 g@kH=pl l)lEkkﬁHaH( A7 J }+Re|:_bz(_1) z(_l)k

40 =1 =0

P (Vg ) D (@) )T ) cos(ay, ) OB tcsonrips | (o]
pdgn R=DW=DG=a-PUp=D @y By

P (Vagy ) " i) (A1) T @A)
1 1
ab, n;l( ) Z::( ) l+j+qZ];+b:k (k=D - DG -9 (g—p)(p-b)!

1+k—p

I:tak+(a—5)—lE£’a76 (_ﬂ]—ata )ﬂ
(30)

www.iosrjournals.org 73 | Page



Flow through an Oscillating Rectangular Duct for Generalized Oldroyd-B Fluid with ....

v(x,p,t) = Im[F(x,y,t)]

~Usin(an -2 3 (pyren €@ cos(ﬁm {Z

al 1 m,n=1 aM k=0

VA i (iﬂ) |:ak+(k—ﬁ1+l)—1
A7 o [1(k=1)!

1=

o0 ﬂ
Epapun CA O+t ETE i CA )}L“’z[ MNJ Zl((k )l)lj cos(a(t =)

|: ak+(k—pl+1)— lEkA ﬂ[+]( ﬁ,] S )+Sak+(k Plra+1)— lEkk ﬂ,ﬂl”( ﬁ,] asa):|ds}+lm|: Z ( 1)m+n Z( 1)

llmnl

j > L+k-p j ~Jj+n o qa—l-k+ +1-
B (VAMN) D (@) (AT cos(a,, x) cos(Byy) |:tak+(a—§+m) Lgk (- A*ata)]
a,oa—=6+n,

tejrarpio=k (=D =NWj=q)(g—p)'(p-b)! ay By
1,j,q.p,b>0 I+k=p —l—k+b ;5 B\I+l—q
Z( 1),,”,12( 1)k Z ( ) ( l) (ﬂ'l ) (ﬂ' ) [tak+(a75)7lE£’a—§(_ﬂ'liata):|:|
b mon=1 k=0 I+ j+q+ptb=k k=D -N'G - g-p)(p-b)!
(3D
Special Cases:
1- If a=p=1, we can get similar solution of complex velocity distribution for unsteady flows of an

Ordinary Oldroyd- B fluid, as obtained in Ref[10]. Thus the complex velocity field reduces to

e 16U G sin(ay, x) sin(Byy) |~ Vo - (Rl pk -1
F(x’y’t)_Ue _W z ﬂN {Z[ \J Zl'(k Z)'|: ( - El Jh— l+](_ﬂ'l t )

mn=l Oy k=0 =0

gkl D)= IE" (- ﬂ{t )]+a)lz VAMN ‘ i (4 )l ’eiw(r-x) |:Sk+(k—l+l)—1Ek (_ﬂ]-ls )
Lk—1+2 o l'(k—l)' 0 Lk—1+1

1,j.q,p,b=0 l+k=p ])] (C()l)jﬂ(ﬂ.l )—1 k+b(/»i )1+l q
gkt lEk , d +_ 1 ( ) -
(A Vo) ZZ( d Z (k=D = NI -9 g—p)(p—b)!
sin(@,, x) sin(Syy) o) pk _ 16U O O PR o (VﬂMN )Hk_p (~wi)’
a Py k Boa A2 ZZ( R vy

(ll )—1—k+h (ﬂr )1+1—q
(-9 g—p)(p-b)!

':lk+(17§)71Elli]7‘; (_ﬂ(lt)]

(32)
2-If A, —0, we can get similar solution of complex velocity distribution for unsteady flows of generalized
Maxwell fluid with fractional derivatives, as obtained in Ref[9]. Thus the complex velocity field reduces to

F(x’ y,t) — Ueimz _@ i Sin(aMx) Sin(ﬁNy) {i(_vﬂwﬁv ] |:G(I;’a7k71”6+] (_ﬂ“fa t) +

dh =2 ay By =l A (33)
k
T C t>]+w12[ J [[e ™Gl st A Gl (475 ] ds
where G, , .(d,?) is the generalized G- functions defined by [4]
Gy (dot) = z d'T(c+j) et .

ST(ON(j+1) T[(c+ j)a—b]

IV.  Numerical results and discussion:

In this work, we have discussed the flow of generalized Oldroyd-B fluid with fractional derivatives
within an oscillating rectangular duct. Both cases of cosine and sine oscillations of the duct have been analyzed
and the solutions have been determined by means of discrete Lplace and double finite Fourier sine transforms.
The solutions corresponding to the generalized Maxwell fluid and the ordinary Oldroyd-B fluid have been
determined as particular cases. Finally, the effects of various parameters on the velocity distribution
characteristics are revealed by graphical illustrations.

Figures are sketched to show the profiles of the velocity field of generalized Oldroyd-B fluid with
fractional derivatives in the case of cosine oscillations of the duct, Eq.(30) (Panel a), and the case of sine
oscillations of the duct, Eq.(31) (Panel b).
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Figs. 1 and 2 prepared to show the variations of the non- integer fractional parameters « and S,
respectively, as well as a comparison between the velocity in the case of cosine oscillation of the duct (Panel a)
and the velocity in the case of sine oscillation of the duct (Panel b) for fixed values of other parameters. It is
clearly seen that the smaller the values of « , the more rapidly the velocity decays for both cases. However, one
sees a opposite trend for the variation of £ .

Figs. 3 and 4 provide the graphically illustrations for effects of relaxation and retardation parameters
A, and A on the velocity field. The velocity is decreasing with the increased the A, and A for both cases,
cosine and sine oscillations.

Fig. 5 demonstrates the influence of frequency of oscillation @ on the velocity profile for two cases
cosine and sine oscillations. The velocity is increasing with the increase of the values of @ .

Fig. 6 represents the variation of velocity profiles for two cases cosine and sine oscillations for different value
of y . It is seen that the amplitude of oscillation decreases as y increases. Fig. 7 represents the variation of
velocity profile for different values of ¢ . It is seen that effect of ¢ on transient velocity is opposite to that of y .

Comparison shows that the velocity profile in the case of cosine oscillation are greater in magnitude when
compared to those of the case of sine oscillation.

Velocity u
Velocity v

a-0.1 v=0051r=15 43=1 020 L = .1z
osl (@) 1, =02, v=00012, &= 0.1 T b3,
@=0.3 F=08,0=2 U=0001 a>0.3 (b) 1, =02 .
=08,w=2, =0 [=08,w=2 U=0001
a—+0.6 — a-0.6

L x et E—
—-0.02 —-0.01 0.01 0.0z —0.02 —0.01

Fig. 1. The velocity for different value of « when keeping other parameters fixed a) cosine oscillation b) sine

P R x
0.01 0.02

oscillation
Velocity u

Velocity v

¥=005,r=15 1, =1 o
— B8-0.1 0L (@) 1, =02, v=00012, Bo0.1 e y=005,1=15 1 =1

B-0.5 a@=06,0=2 =000l 5 0.5 (b) 1, =02, v=00012,
—— B-0.9 0.12 : a=06,0=2 U=0001
—— £-0.9

0.10 (-

0.08

0.06

0.04

0.02

L L L x T S S — T S S — x
—-0.02 —-0.01 0.01 0.0z —0.02 —0.01 0.01 0.02

Fig. 2. The velocity for different value of g when keeping other parameters fixed a) cosine oscillation b) sine

oscillation

Velocity u

20F Velocity v

— A -50.3 vy=005r=1521,=02 — A1 -00.3 0.8
AL 0.5 (a) v=0.0012,a =06

=08, w=2 U=0.001

=005, =15 1,=02
A; - 0.5 (b) v=00012.a=06
ﬁ—U.ﬁ.u::. U =0.001

. x N x
-0.02 —0.01 0.01 002 —p.p2 —0.01 0.01 0.02
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Fig. 3. The velocity for different value of 4 when keeping other parameters fixed a) cosine oscillation b) sine

oscillation
Velocity u
N Velocity v
025 —005 Ff=15 —
=00571=15144=1
—— >0 a) © o - 0.05
N @) 5 _00012,0 =06 Ax 20 V=005, =151 =1
Lo, i “ ~ 03, S =
r =08, w=2 U=0001 Ap 0.01 (b) v=00012,0=06

— A - 0.1 0.04 L=08,w=2 U=0001

I I x PR E— P — L x
—0.02 —0.01 0.01 002 002 —0.01 0.01 0.02

Fig. 4. The velocity for different value of 4 when keeping other parameters fixed a) cosine oscillation b) sine

oscillation
Velocity u
010k o _ Velocity v
wo0.5 y=0057r=1521=1 0.06 - ) . R
(a) ,=02.v=00012,a=06 w=+0.5 y=005, =151 =1
wol Fo08, =000 oot (b) \=02v=00012.0=06
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—0.02 oot 0.01 002 © Zo0l o1 oo T
Fig. 5. The velocity for different value of » when keeping other parameters fixed a) cosine oscillation b) sine
oscillation
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Fig. 6. The velocity for different value of y when keeping other parameters fixed a) cosine oscillation b) sine
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