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Abstract: Thermo-mechanical analysis of functionally graded hollow sphere subjected to time dependant 

mechanical and thermal boundary conditions is carried out analytically in this study. The material properties 

are assumed to vary non-linearly in the radial direction, and the Poisson’s ratio is assumed constant. For 

thermal boundary conditions, temperature is prescribed on both surfaces whereas for mechanical boundary 

conditions tractions are prescribed on the boundaries. Obtaining the distribution of the temperature, the 

dynamical structural problem is solved and closed form solution is obtained for stress components.     
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I. Introduction 
Functionally graded materials (FGMs) are being increasingly considered in various applications in the 

recent years. These materials have received considerable attention in many engineering applications since they 

were first reported in 1984 in Japan [1,2]. Because of Continuous change in the microstructure of FGMs may 

not be subjected to a mismatch of mechanical properties across the interface as a reinforced or laminated 

material does. As a result, these materials are able to withstand high-temperature gradients without structural 

failures. This feature is vital, especially in space and aeronautical applications. During the past years, many 

researchers have studied the characteristic behavior of FGMs under different loading conditions.  

Analytical solutions have been done by Johnson and Mellor [3] for thick cylindrical vessels under 

pressure and temperature loading. Applying the Frobenius series method, Zimmerman and Lutz [4] found a way 

round the problem of the uniform heating of FG circular cylinder. They derived the exact solution for the 

problem of radially heated cylinder whose modulus of elasticity and thermal expansion coefficient vary linearly 

with radius. Another general analysis of one-dimensional steady-state thermal stresses in a hollow thick cylinder 

made of FGM was obtained by Eslami et al. [5]. They used a direct method to solve the heat conduction and 

Navier equations. Furthermore, the temperature distribution was assumed to be a function of radius. They used 

static formulation of thermo elasticity in their work In addition; Poultangari et al. [6] studied the steady state 

thermal and mechanical stresses in a FGM sphere under non-axisymmetric thermo-mechanical loads.  

The quasi-static and static equations of thermoelasticity for FG cylinder were solved analytically in [7-

8] and [9-12]. Wang et al. [13, 14] obtained the transient thermoelastic solutions of   non-homogeneous   and   

multilayered   orthotropic   hollow cylinders  for  axisymmetric  plane  strain  problem  by  using  the separation 

of variables method. It is noted that with the presence of inertial term, thermoelastic dynamic  analysis  becomes 

really complicated  and  difficult. 

As for dynamic case: Cho et al. [15,16] investigated the dynamic thermoelastic problem of a thick 

orthotropic cylindrical shell concerning the axial strain. Wang [17] studied the thermal shock effect in a hollow 

cylinder by means of finite Hankel transform and Laplace transform technique. Abd-alla[18]  investigated  the 

thermal stress in a transversely isotropic circular cylinder due to an instantaneous heat source by using the 

Laplace transform method. As a general rule, the effect of coupling term in the energy equation is small in many 

industrial applications and the distinction between coupled and uncoupled theories is negligible. 

In this article Dynamic thermo elasticity problem of a pressurized sphere made of functionally graded 

material is solved analytically where material properties vary with radial position. What is new in this paper, in 

problems with a high loading rate, the inertia term in the equation of motion cannot be ignored and the problem 

is regarded as the dynamic thermo elasticity problem. Here, the dynamic thermo elasticity problem is solved 

using an innovative mathematical technique for thick sphere with FGM material. As a result of the analytical 

solution of the dynamic problem, thermal shock appeared in the results. Time dependant thermal and 

mechanical boundary conditions are assumed to act on the boundaries. For thermal boundary conditions, 

temperature is prescribed on both surfaces whereas for mechanical boundary conditions tractions are prescribed 

on the boundaries. In order to solve the problems, a finite Hankel transform is utilized to obtain the distribution 

of the temperature throughout the sphere and then this is used as input to solve the dynamical structural 

problem. A numerical example is considered as the case study; a hollow FG cylinder under thermal shock. 

Solving the problem, the results are shown graphically which in shock waves are obvious and the effect of 
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material inhomogeneity is investigated too. The solution method used in this work has such a generality which 

is applicable for any other types of boundary conditions are prescribed just by altering the kernels of the 

transformations introduced in the subsequent sections. 

 

II. Formulation 

A hollow FGM sphere with the inner and the outer radii a  and b  is considered. The equations of 

uncoupled thermoelasticity at axisymmetric condition are 

The energy equation: 

 

 

 

 

'2

2
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(1a) 

The equation of motion: 
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(1b) 

In which 


 is the density, k the thermal conduction coefficient, 
c  the specific heat and   the 

coefficient of thermal expansion. In the motion equation rr
 and 

 are the radial and circumferential stress 

components, respectively. A dot over the quantity denotes its partial derivative with respect to time. In order to 

account for the changing material properties along the radius, a power law relationship [2] is used as follows 

  pk r k r    

(2a) 

  pr r    

(2b) 

  pE r E r   

(2c) 

  pr r    

(2d) 

Where 
p

 is the power law indices of the material inhomogeneity. Constitutive law states that the 

relation between stress components, radial displacement component and temperature is as follows:  
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(3b) 

The thermal boundary conditions of the sphere are considered as follows 

   1,T a t f t
 

 (4a) 

   2,T b t f t
 

 (4b) 

At the inner and the outer surfaces are subjected to the traction boundary conditions; that is, 

   1 1,
r a

u
k u a t B t

r 


 


 

(5a) 

   1 2,
r b

u
k u b t B t

r 


 


 

  

(5b) 

All Initial conditions namely initial temperature, radial displacement and radial velocity are assumed to 

be zero.  

Substituting Eqs. (2) and (3) into Eqs. (1a) and (1b) result in the following equations. 



Analytical solution of dynamic thermo elasticity problem for the FGM thick-walled sphere 

www.iosrjournals.org                                                    15 | Page 

2

2

2 cT p T
T

r r r k

  
 

 


 

  

(6a) 

   

  

2
1

2 2

2 2 1 1

1 1

1 1 2

1

pu p u p T p
u pr T T

r r r rr r

r
u

E r

   
 

 

  



         
       

       

 








 

(6b) 

III. Solution Of The Energy Equation 
Substituting equation (8) into Eq. (6a) gives the Eq. (8) 
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(8) 

Rewriting the thermal boundary conditions we have 

   1

1, pa t a f t 
 

(9a) 

   1

2, pb t b f t 
 

(9b) 

Eq. (8) is Bessel type equation that may be solved using finite Hankel transform as defined in [19] 

       , ,
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(10) 

 K r
 

is the kernel of the transformation. The choice of a proper kernel depends on the form of the governing 

equation and the boundary conditions of the problem. The kernel of the transformation should satisfy 

homogeneous boundary conditions, and hence can be considered as and should satisfy the corresponding 

homogeneous boundary conditions and hence can be considered as [19] 
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a
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(11a) 

As mentioned earlier, the kernel of the transformation must fulfill the homogeneous boundary 

conditions. Hence 
 1 , mK r 

 are obtained [19] 
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(11b) 

m  Is the transform parameter and they are the positive roots of the following equation 

       ( 1) ( 1) ( 1) ( 1)
2 2 2 2
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(11c) 

The Henkel inverse transform is defined as 
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Using orthogonal property of Bessel functions, we have 
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Then the ma
 can be obtained  
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Applying the Hankel transform to the heat conduction equation, one needs the following relationship to 

express the Hankel transform of the derivatives of the temperature to the Hankel transform of the temperature by 

itself [19]: 
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 Substituting Eqs. (9a) and (9b) into the above equation result in the following equation 
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Which its solution gives 
 , mt 

 as 

   
 2

1
0

,
m

k
tt

c

mt A e d
 

   
 

 


 

 

(15a) 

 
 

 
   

( 1)
1 12

1 2 1

( 1)
2

2 p m
p p

p m

J a
k

A t b f t a f t
c J b



 


 



 
  
 
  



 

 

 

(15b) 

Applying inverse transform into Equation (15) the temperature distribution is obtained as 
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(16) 

IV. Solution Of The Equation Of Motion 
Solution of the equation of motion is not as easily as of the energy equation. Introducing 

1

2

p

w r u


  

(16) 

using above equation Eq. (6b) can be rewritten as 
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Applying Eq. (16) into Eqs. (6a) and (6b) i.e. the structural boundary conditions we have 
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Field variable 
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 is resolved into two variables 
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Eq. (20) is Bessel equation which is solved using Hankel transform. The solution procedure is like that 
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followed in the previous section but with some differences which arises because boundary conditions are of 

different types. In section 3 boundary conditions were of Dirichlet type whereas in structural problem Cauchy 

type boundary conditions were prescribed on the boundaries. As mentioned in the previous section, the kernel of 

the transformation must satisfy homogeneous boundary conditions means that 

 '2
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The kernel of the transformation with considering the above equations may be chosen as the following 

[19] 
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n  are the positive roots of the following equation 
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Using Hankel transformation in Eq. (20a) and utilizing Bessel functions identities as was done in [19], 

we have  
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In Which 
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Solution of the above ordinary differential equation, Eq. (24a), gives 
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Then 
 1 ,w r t

 is obtained using the inverse Hankel transform which is defined as 
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In which [19] 
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(26b) 

 2 ,w r t
 is considered to be multiplying  of two function 

 S t
 and 

 2 , nK r 
 

     2 2, , nw r t S t K r 
 

(27) 

 In which 
 S t

 is unknown function of time. Since boundary conditions of Eq. (21a), Eqs. (21b) and 

(21b), are homogeneous and also the kernel of the transformation satisfy homogeneous boundary conditions, the 

general form considered above is valid. Inserting Eq. (27) into Eq. (21a) yields 
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(28) 

 Orthogonal property of Bessel functions are employed to compute 
 S t

 as follows 
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nq
 is the Kronecker delta and  
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(29b) 

Multiplying both sides of Eq. (28) by 
 2 , nrK r 

 and integrating over the thickness of the cylinder, 

we have 
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(30) 

Substituting Eq. (11) into the above equation gives the following ordinary equation 
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Solving above equation the 
 S t

 can be obtained as follows 
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(32b) 

Then 
 ,u r t

 can be obtained 
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(33) 

Computing 
 ,T r t

 and 
 ,u r t

, stress components can be computed using Eqs. (3a) and (3b) which 

are: 
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V. Conclusion 
The analytical solution presented in the previous section was applied to a thick hollow sphere of inner 

radius
1a m

, and outer radius of
2b m

.  The hollow sphere assumed to be traction free at inner and outer 

surfaces. The thermal boundary conditions are as follows: 

  0,T a t T
 

(35a) 

 , 0T b t 
 

(35b) 

 The material properties of sphere are shown in Table.1. 

Solving the problem, the results are shown graphically which in shock waves are obvious and the effect 

of material inhomogeneity is investigated too. The temperature distribution through the wall of sphere has 

shown in Fig.1. It can be seen that with increasing the time the temperature distribution reaches to steady state 

one. 

The distribution of hoop and radial stress at 
1.5r m

 are plotted versus time in Figs.2, 3.Non-

dimensional stress components have been used in these figures as follows: 
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(36-b) 

The thermal shock phenomena can be seen in these Figs which relate to the hyperbolic nature of 

equation (1b).the shock waves for all p after 
58 10  second reach to 

1.5r m
. It is worth mentioning that 

when the tensile wave reaches any radial position, tangential stress components also become suddenly tensile 

due to the resistance exerted by the medium; the wave decays gradually with time. These figures also shows that 

the amplitude of both radial and hoop stress become larger with increasing power law index of FGM sphere. 

The History of radial displacement at mentioned location are plotted for different values of 
p

are 

plotted at Fig.4. The radial displacement value become greater with increasing time up to 
58 10  second after 

this time reduce and its value become negative. Also greater 
p

 result in larger radial displacement values at 
515 10  second. 

 

 
Figure 1.  Time-dependent temperature distribution versus the radial distance 

 

 
Figure 2.  History of non-dimensional radial stress 

 
Figure 3.  History of non-dimensional hoop stress 
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Figure 4.  History of radial displacement 

 

 
Figure 5.  History of non-dimensional radial stress at different r  

 

 
Figure 6.  History of non-dimensional hoop stress at different r  

 

 
Figure 7.  History of radial displacement at different r  
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                  Table.1. material properties 

0.3   70E GPa  
32707 /kg m   

3204 /k W mk  903 /c J kgK  
623 10 1/ K  

 

1, 2, 3, 4p 
 

  

  

The distribution of hoop and radial stress at 
1.2 ,1.4 ,1.6 ,1.8r m

are plotted versus time in Figs.5, 7.The 

spherical dilatation wave propagates outward from the inner boundary and at different times reach to selected 

location. Also the amplitude of radial stress is greater than hoop stress.  The wave decays gradually with time 

for both non-dimentiontional radial and hoop stresses.  

History of radial displacement at selected position is plotted at Fig.7. As the figure shows that at outer radius the 

radial displacement for all times is greater than inner ones. As the time increase the radial displacement become 

more positive and then decrease and become negative 
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