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Abstract: In this paper, we have considered an allelopathic model of two species and discussed the dynamics of 

the model when the effect of interaction on prey is based on the rate of consumption of the prey by the predator 
and the rate of release of toxicant by the predator. The interaction of the predator and prey results on the 

growth of predator after a time interval (τ). It is shown that the time delay can cause a switch from stable state 

to unstable state and there by Hopf-bifurcation occurs. 
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I. Introduction 

Lotka [1] and Volterra [2] initiated the research in the field of theoretical ecology. Since then many 

researchers studied the Predator-Prey or competitive model with Mutualism and commensalism. The dynamical 

relationship between predators & their prey is one of the important aspect in the population dynamics. There has 
been great interest in dynamical characteristics like stable, unstable & oscillatory behavior. The problem of 

harvesting two ecological independent & logistically growing fish species was studied by C.W. clark [3], Brauer 

and Soudack [4, 5] , Dai & Tang [6] , Myerscough [7]. 

Allelopathy can be defined as the direct or indirect harmful effect of one species on another through the 

production of a chemical released into the environment. In recent times many researchers are extensively 

studying the eco-toxicological effects of toxicants released by the marine biological species among themselves.  

An example of this kind is the toxicant produced by the Uni celluar green alga chlorella vulgaris. The toxicant 

limits the size of it’s own population and also inhabits growth of the Planktonic algaes, Asterionella Formosa  

and Nitzschia frustulum.Maynardsmith[8],Chattopadhyay [9] studied a two species Lotka –Volterra competitive 

system, in which  toxic substance produced by one species effects the other.They also studied the stability 

properties of the system. 

 Das [10,11] studied & analyzed the harvesting of fish species,as aPrey –Predator model in the presence 
of a toxin released by some other source. In their work a catch-rate function is defined in place of the usually 

catch-per unit effort hypothesis for the problem of non-selective harvesting. Kar and Chaudhuri(9) proposed a 

model for  two competing fish species in the presence of toxin and Combined harvesting of the species, keeping 

in view the  Maynard smith conjecture. As  Maynard smith’s conjecture is valid for the large classes of marine 

species, the model proposed by Kar and Chaudhuri (9) is applicable to large class of other marine species. 

R.P.Gupta  etal . [13] extended the models proposed by Kar and Chaudari [12]  for any two populations having 

competition and harvested by different agencies with different harvesting efforts.They discussed the existence of 

two saddle-node bifurcations using Sotomayor’s theorem. 

In nature there are large classes of marine species other than fish such as Algae and bacterial that 

produce toxic substance which effect the other species while competing for food [14]. But in some cases the 

toxic substance released by one species may not effect the other species immediately, but with some delay in 
time. 

In this paper we propose a two species Prey-Predator model in which the two species having densities 

1 2( ), ( )z t z t  are harvested by different agencies with harvesting efforts 1H  & 2H
 
 respectively and the 

corresponding catchability coefficients of the two species being 1 2,C C . In this proposed dynamical model the 

two species obey law of logistic growth with intrinsic growth rates ,r s  and have carrying capacities K, L .Both 

the species release toxic substances which affect the other, the toxic coefficients of prey & predator are 

respectively 1 , 2 .The predator population has food source other than the prey. The effect of interaction of the 

species on prey is based on the rate of consumption of the prey by the predator and the rate of release of toxicant 

by the predator. The net rate of effect of interaction on prey is denoted by 1a . Similarly the effect of interaction 
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of the species on predator is based on the rate of its predation and the rate of release of toxicant by the prey. The 

net rate of effect of interaction on predator is denoted by 2a . All these parameters are assumed to be positive. 

It is well known that in some prey-predator systems the rate of change in the predator depends on 

numbers of prey and predator at time t and in some other systems the rate of change in the predator depends on 

prey & predators population present at some previous times say( t-  ) .In this paper we studied the changes 

occurred in stability of the dynamical system when a delay ( ) is incorporated in predation term. The 

theoretical results are validated by the numerical simulations. 

 

II. Mathematical Model 
The mathematical formulation of the toxicant prey-predator dynamical problem with different 

harvesting efforts is    
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It is well known that in some prey-predator systems the rate of change in the predator depends on 

numbers of prey and predator at time t and in some other systems the rate of change in the predator depends on 

prey & predators population present at some previous times say ( t-  ).By incorporating time delay  in 

predation term,the equation (2.1.1) becomes 

 . 
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From biological point of view we only interested on the interior equilibrium E (
*

2

*

1 , zz ).  

 Let 
*
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111 , zzZzzZ  be the perturbed variables  

After removing the non-linear terms we obtain linearaized system corresponding to (2.1.2) is 
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The characteristic equation of the linear system is given by 

   

( , )  =   X (µ) + Y(µ)
e  = 0                                                                - - - - -      (2.1.4) 

 
Where X(µ) = µ 2+Pµ + R ,Y(µ) = Qµ +S 
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We discuss the stability of the system at the interior equilibrium E(
*

2

*

1 , zz ).       

 

III. Stability Analysis 
Case 1: when τ = 0 

In the absence of discrete time delay we investigate the stability of the system (2.1.2) around the 

interior equilibrium (E) . The system (2.1.2) becomes a system of ordinary differential Equations (2.1.1),then the 
corresponding characteristic equation is  

X (µ) + Y(µ) = 0. 

                                         i. e, (µ2+Pµ+R) + (Qµ+S) =0 

                                             µ2+ (P+Q) µ+(R+S) = 0                                            -----    (3.1.1)                           

   

Sum of the roots = - (P+Q) < 0  

Product of the roots = R+S 

R+S > 0 if  1 1

2 2

a L r

s Ka




   

We can say that both the roots of (3.1.1) are real & negative (or) complex conjugate with negative real part  iff 

P+Q > 0 & R+S > 0 .                                                                                           -----       (3.1.2) 

 Hence, in the absence of time delay, the system is locally asymptotically stable when 1 1

2 2

a L r

s Ka




  is 

valid. 

Theorem  3.1:  In the absence of the delay, the system (2.1.1) is locally asymptotically stable at the  * *

1 2,E z z ) 

iff  1 1

2 2

a L r
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


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We augment our analytical findings through numerical simulations by the following example. 

Example 1 

The parameters in the model (2.1.1) are taken as 

r =4, s=5, 1a =0.1, 2a =0.9, 1 =0.008 , 2 =0.005, 1c =0.1 , 2c =0.2, 1H =30, 2H =40,K=500,L=400. 

Initial values of the species are 1 210, 5z z  and = 0 

 
Fig.1 show the variation of populations against time. 

 
Fig.2 show the phase- portraits of prey and predator 
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Case 2:  when τ > 0,  

Let      i        be a root of the characteristic equation (2.1.4). 

Let  be a particular value of the delay such that    =0,    >0 

Put µ = i  in (2.1.4) we get 

 [(i  )2 + P(i  )+R] + [Q (i  ) + s] 
ie 

= 0 
  i2  2 + P (i  ) + R +[Q( i  )+S ]{ cos  τ – i sin  τ} = 0 

-
2 + p (i  ) + R + [ iQ  + S ]{ cos  τ – i sin τ}=0 

Separating   the real & imaginary parts, we get  

 2- R = S cos  τ + Q  sin  τ                                                                              -----      (3.1.3) 

Ρ   = S sin  τ – Q   cos τ 

Squaring & adding these two equations, we get the fourth order equation  

 4 +  2(P2-2R-Q2) + (R2-S2) = 0                                                                              -----     (3.1.4)  

Sub case 1: If
2 2 2 22 0 0P R Q and R S     then the equation (3.1.4) does not have any real solutions. 

Hence this case is omitted as     is a real number. 

Sub case 2: If 
2 22 0P R Q    and

2 2 0R S   then the equation (3.1.4) have a unique positive root, it is 

2

0 and let the corresponding  be 0 . 

Sub case 3: If 
2 22 0,P R Q   2 2 0R S  and    

2
2 2 2 22 4 0P R Q R S     then the 

equation (3.1.4) have two positive roots. Let them be 
2 and the corresponding be n


. 

The above said positive roots, either from sub case 2 or from sub case 3,satisfy all the equations from (3.1.3) to 

(3.1.4). 

Eliminating sin  from (3.1.3), we get 

2
1

2 2 2

1 (S ) 2
cos 0,1,2....k

PQ RS k
wherek

S Q

 


  

   
   

 
                            ------     (3.1.5)  

   Now differentiating equation (2.1.4)  w.r.t τ, we obtain  
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-----         (3.1.8)                                                                     

Note that the   may be 0 or   

Theorem 3.2:  In the presence of the delay, the system (2.1.2) is locally asymptotically stable at  * *

1 2,E z z iff 

2 2 0R S  for all 0  .It is unstable for all 0  and hopf - bifurcation occurs at 0   

Proof: 

 From equation (3.1.8)   we have    
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This signify that there exits Eigen values  with negative real part for 0  and there exits Eigen values  with 

positive real part for 0  .Therefore, the transversality condition holds and hence hopf-bifurcation occurs at 

0  , 0   

Theorem 3.3: In the presence of delay, the system is locally asymptotically stable at  * *
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Proof:  

From (3.1.8) it follows that 
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Hence , the  transversality conditions are 

satisfied . This completes the proof. 

 

We augment our analytical findings through numerical simulations by the following examples. 

Example 2  

The parameters of the model (2.1.2) are taken as 

r =4, s=5, 1a =0.1, 2a =0.9, 1 =0.008 , 2 =0.005, 1c =0.1 , 2c =0.2, 1H =30, 2H =40,K=500,L=400. 

Initial values of the species are 1 210, 5z z  and =0.25< 0 0.29 
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Fig.3 show the stable variation of populations against time 

 
Fig.4 show the phase- portraits of prey and predator 

 

Fig.5 show the unstable variation of populations against time when  = 0 0.29   

 

Fig.6 show the phase- portraits of prey and predator = 0 0.29   
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Fig.7 show the unstable variation of populations against time When  = 0.5 > 0.29 

 
Fig.8: show the Phase portraits of prey and predator when  = 0.5 > 0.29 

 

IV. Concluding Remarks 
The model discussed here has the following characteristics  

(a) The prey population decreases not only by predation but also by the toxic substance released by the predator.  
(b) The predator population also decreases by the toxic substance released by the prey population. Hence the 

model has not only the prey-predator relationship but also the two species have effects of toxicants released by 

them on each other. 

It is observed that delay of all dimensions does not induce any instability; the delay of certain 

dimensions can induce instability oscillation via Hopf bifurcation. It is also observed that switching of stability 

occurs. The effect of delay incorporated in the predation term is clearly studied, and the theoretical results 

obtained are validated through the numerical simulations using MATLAB. 
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