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Abstract: Atmospheric internal waves can be represented by a nonlinear system of partial differential equation 

(PDE) under shallow-fluid assumption. In this paper, we exploited the homotopy analysis method (HAM) and 

variational iteration method (VIM) to obtain an approximate analytical solutions of the system. The results of 

both methods  are then compared with numerical method. It is shown that both HAM and VIM are efficient in 

approximating the numerical solutions. 

Keywords: Atmospheric internal waves, homotopy analysis method, nonlinear PDE system, variational 

iteration method. 

 

I. Introduction 
Internal waves, also called internal gravity waves, is a natural phenomenon whose existence cannot be 

seen because it propagates in the interior of a fluid, rather than on its surface. Other than below of the ocean 

surface, there are also internal waves in the upper atmosphere. The propagation of internal waves can be 

recognized by changes in temperature which occurs through the fluid in three dimensions. So, the wavelength 

consists of three spatial components. Internal waves may also transfer their momentum and energy to the flow 

with which they interact, such as winds or other waves [1]. Atmospheric internal waves can be visualized by 

wave clouds. In Australia, internal waves in the atmosphere result in Morning Glory clouds. Many researchers 

have used propagation and interaction of internal waves in the atmosphere to mathematical models and 

numerical simulations [1,2,3,4]. 

Internal waves in the atmosphere can be represented by a mathematical equation under the shallow 

fluid assumption. The name “shallow fluid” refers to the fact that the depth of the fluid layer is small compared 

to the horizontal scale of the perturbation [4]. Shallow fluid assumption has been applied to climate modeling 
[5], Kelvin waves [6], Rossby waves [7] and tsunami models [8]. Basically, the mathematical model of internal 

waves in the atmosphere is represented by a system of partial differential equations system (PDE). In many 

cases, these equations cannot be solved analytically. So, they must be converted to a form that can provide an 

approximate solution. Liao in 1992 was introduced Homotopy Analysis Method (HAM) as an analytical 

approach [9]. The HAM is rather general and valid for nonlinear ordinary and partial differential equations in 

many types [10]. It has been applied in a variety of nonlinear problems such as Klein-Gordon equation [11], 

generalized Huxley equation [12], Zakharov-Kuznetsov equation [13], and a single species population model 

[14]. The advantage of  HAM method is  presence  of  auxiliary parameter that allows us to fine-tune the region 

and rate of convergence of a solution [15].  

Another analytical approach that can be used in solving the nonlinear system of PDE is Variational 

Iteration Method (VIM). It was first introduced by He in 1997 [16]. VIM is a powerful tool which is capable of 
solving linear/nonlinear partial differential equation. The VIM has been successfully applied to nonlinear 

thermoelasticity [17], Sawada-Kotera equation [18], nonlinear Whitham-Broer-Kaup equation [19], KdV-

Burgers-Kuramoto equation [20], and reaction-diffussion-convection problems [22]. The VIM has many 

advantages, such as it avoids linerization and perturbation in order to find solutions of a given nonlinear 

equations. In addition, the VIM provides explicit and numerical solutions with high accuracy [22].  

In this paper, we focused on solving the mathematical model of atmospheric internal waves by 

implementing HAM and VIM as analytical approaches. Solutions by both methods were then compared with the 

solution by numerical method (NUM) of mathematical models of internal waves in the atmospheric problem. 

 

II. Atmospheric Internal Waves Models 
Models of internal waves in the atmosphere are represented by a system of nonlinear PDE. This model 

was developed from the basic equations of fluid under shallow-fluid assumption. The fundamental equations of 

fluid motion in differential from are derived by conservation of mass and momentum.  Shallow fluid refers to 

the fact that the depth of the fluid layer is the small compared with the wavelength. Here, the atmosphere is 

assumed to be fluid homogeneous (condition of fluid means that density does not vary in space), autobarotropic, 

and hydrostatic. The system is 

http://en.wikipedia.org/wiki/Wave_cloud
http://en.wikipedia.org/wiki/Morning_Glory_cloud
http://numericaltank.sjtu.edu.cn/sjliao.htm


Application of Homotopy and Variational Iteration Methods to the Atmospheric Internal …. 

www.iosrjournals.org                                                    47 | Page 

∂u

∂t
+ u

∂u

∂x
− fv + g

∂h

∂x
= 0 , 

∂v

∂t
+ u

∂v

∂x
+ fu + gH = 0 , 

∂h

∂t
+ u

∂h

∂x
+ vH + h

∂u

∂x
= 0, 

H = −
f

g
U , 

(1) 

Where x is a space coordinat, t is time, the independent variables u and v are the cartesian velocity, h is 

depth of a fluid,  f represent the Coriolis parameter, g is acceleration of gravity, H represent mean depth of a 

fluid, and U  is the specified, constant mean geostrophic speed on which the u perturbation is superimposed [4]. 

 

III. Analysis of Method 
3.1 Homotopy Analysis Method (HAM) 

The principles of the Homotopy Analysis Method (HAM) are given in [9]. In this section we ilustrate 

of the concept of HAM based on [10-14]. We considered the following nonlinear equation in a general form 

𝒩 u x, t  = 0, (2) 

where 𝒩 is a nonlinear operator, u x, t  is an unknown function, x and t denote independent variables. 

Furthermore, we defined a linear operator ℒ which satisfies 

ℒ f(x, t) = 0, when f(x, t) = 0. (3) 

Let u0(x, t) denotes an initial guess of the exact solution u x, t .  We constructed homotopy ϕ x, t; q = Ω ×
 0,1  → ℝ which satisfies 

ℋ ϕ x, t; q , u0 x, t , ℏ, , q =  1 − q ℒ ϕ x, t; q − u0(x, t) − qℏ𝒩 ϕ x, t; q  , (4) 

where q ∈  0,1  is the embedding parameter, ℏ ≠ 0 is an auxiliary parameter.  By the means of generalizing the 
traditional HAM,  Liao constructed the zero-deformation equation 

 1 − q ℒ ϕ x, t; q − u0(x, t) = qℏ𝒩 ϕ x, t; q  . (5) 

Setting q = 0, the zero-order deformation equation (5) becomes 

ℒ ϕ x, t; 0 − u0(x, t) = 0, (6) 

which gives, using the equation (2) 

ϕ x, t; 0 = u0 x, t , (7) 

when q = 1, since ℏ ≠ 0, the zero-order deformation equation (5) becomes 

𝒩 ϕ x, t; 1  = 0, (8) 

which is exactly the same as the original equation (2), provided 

ϕ x, t; 1 = u x, t . (9) 

Thus according to (7) and (9), as q increase from 0 to 1, the solution ϕ x, t; q  deforms continously from the 

initial approximation u0(x, t) to the exact solution u(x, t) of the original equation (2). Liao [6] expanded 

ϕ x, t; q  in term of a power series of q as follows : 

ϕ x, t; q = u0(x, t) +  um (x, t)qm

+∞

m=1

, (10) 

with 

um x, t =
1

m!
 ∂

mϕ x, t; q 

∂qm
 

q=0

. (11) 

Assume that auxiliary linear operator ℒ, the initial aproximation u0(x, t), the auxiliary parameter ℏ, and the 

auxiliary function ℬ x, t  are properly chosen such that the series (10) is converges at q = 1.  

Then we have the aproximate solution of equation (2), i.e. 

u x, t = u0 x, t +  um x, t 

+∞

m=1

. (12) 

Define the vectors,  

u  m−1 =  u0 x, t , u1 x, t , u2 x, t , … , um x, t  , (13) 

Differentiating the zeroth-order deformation equation (5) m times with respect to the embedding parameter q, 

then setting q = 0 and finally dividing them by m!, we have the m-order deformation equation. 

ℒ um (x, t) − χm um−1(x, t) = ℏℛm  u  m−1 , (14) 

where, 

ℛm  u  m−1 =
1

(m − 1)!
 ∂

m−1𝒩 ϕ x, t; q)  

∂qm−1
 

q=0

, (15) 

and 
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χm =  
0, m ≤ 1
1, m > 1

 . (16) 

The right hand side of equation (14) depends only on the terms u  m−1. Thus, we easy by obtain the 

series of um , m = 1,2,3,…  by solving the linear high-order deformation  equation (13) using symbolic 

computation software such as Maple, Matlab or Mathematica.  

 

3.2.  Variational Iteration Method (VIM) 

In this section we ilustrate the basic ideas of variational iteration method (VIM) based on [15-20]. We 

consider  the following partial deferential equation,  

ℒ u x, t  + 𝒩 u x, t  = ℱ x, t , (17) 

where ℒ is a linear differential operator, 𝒩 is a nonlinear operator and ℱ is an inhomogeneous terms. According 

to the VIM, we constructed a correction functional as follows [16-20], 

uk+1 x, t = uk x, t +  λ ζ 

t

0

 ℒ uk x, ζ  + 𝒩 u k x, ζ  − ℱ(x, ζ)  dζ, (18) 

where λ is a general Lagrange multiplier, whose optimal value can be identified by using the stationary 

conditions of the variational theory. The second terms on the the right-hand side (18) is called correction and u k  

is considered as a restricted variation, i.e δu k = 0. The subscript k for  k = 0,1,2…,  indicates the kth-order 

approximation. As k tends to infinity, then iteration leads to the exact solution of (17). Consequently, the 

solution 

u x, t = lim
k→∞

uk x, t . (19) 

 

IV. Aplication of HAM and VIM Methods 
4.1 Aplication of Homotopy Analysis Method 

In this section, the homotopy analysis method is applied to solve the problem of internal waves in the 

atmospheric, where system (1) will be solved by generalizing the described homotopy analysis method. By 

means of the homotopy analysis method, the linear operator can be defined as below, 

ℒi ϕi x, t, q  =
∂ϕi x, t, q 

∂t
 , i = 1,2,3. (20) 

According to system (1), nonlinear operators 𝒩1 ,𝒩2 and 𝒩3 can be defined as follows: 

𝒩1 ϕ1 ,ϕ2 , ϕ3 =
∂ϕ1

∂t
+ ϕ1

∂ϕ1

∂x
− fϕ2 + g

∂ϕ3

∂x
, 
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∂ϕ2

∂t
+ ϕ1

∂ϕ2

∂x
+ fϕ1 + gH, 

𝒩3 ϕ1, ϕ2 , ϕ3 =
∂ϕ3

∂t
+ ϕ1

∂ϕ3

∂x
+ ϕ2H + ϕ3

∂ϕ1

∂x
. 

(21) 

We construct the zeroth-order deformation equation 

 1 − q ℒ1 ϕ1 x, t; q − u0 x, t  = qℏ1𝒩1 ϕ1 , ϕ2 ,ϕ3 , 
 1 − q ℒ2 ϕ2 x, t; q − v0 x, t  = qℏ2𝒩2 ϕ1 ,ϕ2 , ϕ3 , 
 1 − q ℒ3 ϕ3 x, t; q − h0(x, t) = qℏ3𝒩3 ϕ1 ,ϕ2 , ϕ3 . 

(22) 

 

According to equation  (22),  when q = 0 we can write  

ϕ1 x, t, 0 = u0 x, t = u x, 0 , 
ϕ2 x, t, 0 = v0 x, t = v x, 0 , 
ϕ3 x, t, 0 = h0 x, t = h x, 0 , 

(23) 

and when q = 1, we have 

ϕ1 x, t, 0 = u x, t , 
ϕ2 x, t, 0 = v x, t , 
ϕ3 x, t, 0 = h x, t . 

(24) 

Thus, we obtain the mth-order deformation equation 

ℒ1 um (x, t) − χm um−1(x, t) = ℏ1ℛ1,m u  m−1 , v  m−1 , h  m−1 , 

ℒ2 vm(x, t) − χm vm−1(x, t) = ℏ2ℛ2,m u  m−1 , v  m−1 , h  m−1 , 

ℒ3 hm(x, t) − χm hm−1(x, t) = ℏ3ℛ3,m u  m−1 , v  m−1 , h  m−1 . 

(25) 

Now, the solution of the mth-order deformation equation (25) for m ≥ 1 becomes, 

um x, t = χm um−1 x, t + ℏ1  ℛ1,m u  m−1 , v  m−1 , h  m−1 

t

0

ds (26) 
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vm x, t = χm vm−1 x, t + ℏ2  ℛ2,m u  m−1 , v  m−1 , h  m−1 

t

0

ds 

hm x, t = χm hm−1 x, t + h3  ℛ3,m u  m−1 , v  m−1 , h  m−1 

t

0

ds 

Where, 
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+  un
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(27) 

According to equation (12), the results of system (1) can be obtained by solving the following series: 

u x, t = u0 x, t +  um x, t 

+∞

m=1

, 

v x, t = v0 x, t +  vm x, t 

+∞

m=1

, 

h x, t = h0 x, t +  hm x, t 

+∞

m=1

. 

(28) 

 

4.2  Aplication of Variational Iteration Method 

In this section, we implement VIM for obtaining the analytical approximate solution of system (1). By 

means of the variational iteration method refers to system (1), we construct correction functionals as follow 

uk+1 x, t = uk +  λ1 ζ   uk ζ + u k u k x − fv k + gu k h k 
x
 

t

0

dζ, 

vk+1 x, t = vk +  λ2 ζ   vk ζ + u k v k x + fu k + gH 

t

0

dζ, 

hk+1 x, t = hk +  λ3 ζ   hk ζ + u k h k 
x

+ Hv k + h k uk x 

t

0

dζ, 

(29) 

 

where λ1 , λ2 and λ3are general Lagrange multipliers which their optimal values can be found by using 

variational theory. Now, taking variation with respect to indepent variables u k , v k and h k  we have 

δuk+1 x, t = δuk + δ  λ1 ζ   uk ζ + u k u k x − fv k + gu k h k 
x
 

t

0

dζ, 

δvk+1 x, t = δvk + δ  λ2 ζ   vk ζ + u k v k x + fu k + gH 

t

0

dζ, 

δhk+1 x, t = δvk + δ  λ3 ζ   hk ζ + u k h k 
x

+ Hv k + h k uk x 

t

0

dζ. 

(30) 

To find the optimal value of λ1 , λ2 and λ3, we employ δu k = 0, δv k = 0, δh k = 0, from which we have 

δuk+1 x, t = δuk x, t + δ  λ1  uk ζ 

t

0

dζ, 

δvk+1 x, t = δvk x, t + δ  λ2  vk ζ 

t

0

dζ, 

(31) 
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δhk+1 x, t = δvk x, t + δ  λ3  hk ζ 

t

0

dζ, 

The considered stationary conditions are then obtained in following from: 

1 + λ1 ζ = 0, λ′
1 ζ  = 0 

1 + λ2 ζ = 0, λ′
2 ζ  = 0 

1 + λ3 ζ = 0, λ′3 ζ  = 0 

(32) 

 

 

 

Thus, the Lagrange multipliers are defined as follow: 

λ1 ζ = −1, λ2 ζ = −1 , λ3 ζ = −1. (33) 

Substituting Lagrange multipliers in (33) into the correction functional in equation (28) gives the iteration 

formula, 

uk+1 x, t = uk −    uk ζ + uk uk x − fvk + g hk x 
t

0

dζ, 

vk+1 x, t = vk −    vk ζ + uk vk x + fuk + gH 
t

0

dζ, 

hk+1 x, t = hk −    hk ζ + uk hk x + Hvk + hk uk x 
t

0

dζ. 

(34) 

 

 

Using the initial conditions u0 x, t , v0 x, t  and h0 x, t  into (34) we obtain the following successive 

approximations: 

u x, t = lim
k→∞

uk x, t , 

v x, t = lim
k→∞

vk x, t , 

h x, t = lim
k→∞

hk x, t . 

(35) 

 

V. Results and Discussions 
In this section we compare solutions obtained by HAM and VIM with one obtained by numerical 

methods (NUM) toward system (1) through graphical representation. Suppose the following parameters are 

given for numerical simulation: coriolis parameter f = 2Ωsinα, where Ω = 7.29 × 10−5 rad/s and α =
π

3
, 

constant of gravity g = 9.8 m/s2 and constant of pressure gradient of desired magnitude H = −
f

g
U , where 

U = 2.5 m/s is specified. To get solutions of HAM, VIM and NUM, we start the procedures with the given 
initial aproximation: 

u x, 0 = ex  sech2 x , 
v x, 0 = 2 x sech2 2x,     
h x, 0 = x2 sech2 2x.  

(36) 

By means of the solution of the mth-order deformation equation (26) and the initial conditions (36) we obtain a 
number of terms as parts of series solution as follow: 

u0 x, t = ex  sech2 x 
u1 x, t = ℏ ex  sech2 x  ex  sech2 x − 2 ∙ ex  sech2 x tanhx t + 19.5997474 xt sech2 2x

− 39.2 x2t sech2 2x tanh2x  
⋮ 
v0 x, t = 2 x sech2 2x  
v1 x, t = ℏ −0.0003156662596t +  ex  sech2 x  2 sech2 2x − 8x sech2 2x tanh2x t

+ 0.0001266509 ex t sech2 2x  
⋮ 
h0 x, t = x2 sech2 2x 
h1 x, t = ℏ  ex  sech2 x  2x  sech2 2x − 4x2  sech2 2x tanh2x t

+ x2 sech2 2x  ex  sech2 x − 2  ex  sech2 x tanhx t
− 0.00006442168564 xtsech2 2x  

⋮ 

(37) 

The rest of the components of the iteration formulas by HAM can easily be obtained by symbolic computation 

software. Thus, we obtain the following aproximate solution in term of a series up to  5th
-order: 

 

u x, t ≈ u0 x, t + u1 x, t + u2 x, t + u3 x, t + u4 x, t + u5 x, t , 
v x, t ≈ v0 x, t + v1 x, t + v2 x, t + v3 x, t + v4 x, t + v5 x, t , 
h x, t ≈ h0 x, t + h1 x, t + h2 x, t + h3 x, t + h4 x, t + h5 x, t . 

(38) 
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Furthermore, by means of the iteration formula equation (34) in the VIM and the initial condition equation (36), 

we obtain the approximations by symbolic computation software. 

In Fig. 1, Fig. 2 and Fig. 3, we draw graphical solutions of u x, t , v x, t , h x, t , where for HAM, we 

use auxiliary parameter ℏ = −0.825 and a series up to  5th-order, and for VIM, we use iteration until 4th-order. 

By those figures, we can see that NUM, HAM and VIM solutions are similar. 

 
Figure 1 NUM, HAM and VIM solutions u x, t , v x, t , h x, t , for t = 0.1 and 0 ≤ x ≤ 2. 

 

 
Figure 2 NUM, HAM and VIM solutions u x, t , v x, t , h x, t , for x = 1 and 0 ≤ t ≤ 0.15. 

 

 

   
a. Solution uNUM  b. Solution uHAM  c. Solution uVIM  
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d. Solution vNUM  e. Solution vHAM  f. Solution vVIM  

   

g. Solution hNUM  h. Solution hHAM  i. Solution hVIM  

 

Figure 3 NUM, HAM and VIM solutions u x, t , v x, t , h x, t , for 0 ≤ x ≤ 2 and 0 ≤ t ≤ 0.1. 

 

VI. Conclusion 
Homotopy analysis method and variational iteration method has been succesfully applied in finding  

the approximate solution of the atmospheric internal waves model. Solutions by those methods are then 

compared with one of numerical method. It is shown that all solutions are in excellent agreement. It means that 

both HAM and VIM are efficient in approximating the numerical solution. 
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