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Abstract: In this paper a unique common end point result is proved for pair of set valued mappings satisfying a 

generalized ),(  weak contractive condition in complete metric space. This theorem is the extension of some 

results existing in the literature. An example has been provided to validate the main result of this paper. 
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I. Introduction 
The Banach fixed point theorem is an important tool in the theory of metric spaces; it guarantees the 

existence and uniqueness of fixed points of certain self maps of metric spaces and provides a constructive 

method to find those fixed points.  

Alber Y. et al [2] defined weakly contractive maps on a Hilbert space and established a fixed point 

theorem for such a map. Latter Rhoades B.[11] obtained a fixed point theorem in a complete metric space using 

the notion of weakly contractive maps,. Beg I. et al [3] obtained a common fixed point theorem extending weak 

contractive condition for two maps . In this direction , Zhang Q.et al [12] introduced the concept of a 

generalized  - weak contraction condition and obtained a common fixed point for two maps. Doric D. [5] 

proved a common fixed point theorem for generalized   ,  - weak contractions. 

First time Nadler S.[9] extended the Banach fixed point theorem from the single valued maps to the set- 

valued contractive maps in complete metric space. Further many fixed point theorems for multi-valued 

mappings were established by Ciric L. [4] , Dube L. [6] , Klim D. et al [8] , Namdeo R. et al [10] , Fisher B. [7] 

etc.  

In the present paper we obtain a unique common end point result for  two set-valued mappings without 

use of continuity of any map involved therein. Also it do not require any commutativity condition to prove the 

existence on common end point of two mappings. This theorem  improves the earlier result by Abbas M. & 

Doric D. [1]. 
Now, we give preliminaries and basic definitions which are used through-out the paper. 

Definition 1.1: Let  dX ,  be a metric space. A sequence  nx  of points of X  is said to be a Cauchy sequence 

in  dX ,  if it has the property that given 0  there is an integer N such that  mn xxd ,
 
 when ever   

Nmn , . 

Definition 1.2: A sequence  nx  of points of  X  is said to be convergent to a point  x  if for given 0  , 

there is an integer N such that    xxd n ,  , for all Nn  . 

Definition 1.3: The metric space  dX ,  is said to be complete if every Cauchy sequence in X converges in X. 

Definition 1.4: Let  dX ,  be a metric space and let )(XB be the class of all nonempty bounded subsets of X 

. We define the functions 
 RXBXB )()(:  and 

 RXBXBD )()(:  as follows: 

                 BbAabadBA  ,:),(sup,  

                 BbAabadBAD  ,:),(inf,   

where  
R  denotes the set of all positive real numbers. For   Ba ,  and     ba , , we write  Ba ,  

and  bad ,  respectively. Clearly ,    ABBA ,,   . We appeal to the fact that   0, BA  if and only 

if  xBA   , for )(, XBBA   and  

                       BCCABA ,,,0   , for all )(,, XBCBA  .  
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A point Xx  is called a fixed point of T if  Txx . If there exists a point Xx  such that  xTx  , 

then x is called the end point of the mapping T.      

 

II. Main Result 
The following is the theorem for two set valued mappings: 

Theorem 2.1: Let ),( dX  be a complete metric space and let )(:, XBXgf   be two set valued 

mappings satisfying generalized ),(  - weak contraction as  

                                      yxyxgyfx ,,,                           -------------- (2.1.1) 

where  

                








 gyyDfxxDfyyfyxgyyfxxyxdyx ,,
2

1
,,,,,,,,,,.max,  ------(2.1.2) 

    ,0,0:  is a continuous monotone non-decreasing function with 0)( t  if and only if 0t  

and     ,0,0:  is a lower semi continuous function with 0)( t  if and only if 0t . Then there 

exists a unique end point Xu  such that    gufuu  .  

Proof: Construct the convergent sequence  nx  in X and to prove that limit of that sequence is a unique 

common fixed point of  f  and g . 

Let Xx 0  and n be some non-negative integer and   

Let  nnn Pfxx 2212   , 121222   nnn Pgxx                                        ----------------- (2.1.3) 

Also let ),( 1 nnn PP   and     ),( 1 nnn xxd                                 -------------------- (2.1.4) 

Now, we show that the sequences n  and n  are convergent. 

Suppose that ''n  is an odd number, substituting 1 nxx  , nxy   in (2.1.1) and using properties of    and 

 , we obtain ,      nnnn gxfxPP ,, 11     

                                                                 nnnn xxxx ,, 11             -------------- (2.1.5) 

                                                              nn xx ,1   

which implies that      nnnn xxPP ,, 11                                                     -------------- (2.1.6) 

Now , from (2.1.2) and using the triangle inequality for  , we have  

 
         

     
























nnnn

nnnnnnnnnn

nn
gxxDfxxD

fxxfxxgxxfxxxxd

xx
,,

2

1

,,,,,,,,,,

max,
11

1111

1



   

                   

         

     






















nnnn

nnnnnnnnnn

PPPP

PPPPPPPPPP

,,
2

1

,,,,,,,,,,

max
11

1111





 

                       11 ,,,max  nnnn PPPP    

If     nnnn PPPP ,, 11    , then    nnnn PPxx ,, 11                          ----------------- (2.1.7) 

From (2.1.6) and (2.1.7) it follows that       0,,, 111   nnnnnn PPPPxx    ------ (2.1.8) 

It further implies that ,         111 ,,,   nnnnnn xxxxPP   

                                                             nn xx ,1                             ---------------- (2.1.9) 

                                                             1,  nn PP  

which is a contradiction , so we have ,      nnnnnn PPxxPP ,,, 111      ---------- (2.1.10) 

Similarly, (2.1.9)  can be obtained also in the case when ''n  is an even number. 

Therefore the sequence  n  defined in (2.1.4) is monotone non-increasing and bounded. 
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Let  n  when  n . 

From (2.1.10) , we have ,     0,lim,lim 11  





 nn
n

nn
n

xxPP         ------------- (2.1.11) 

Taking n  in the inequality  

        122122122 ,,,   nnnnnn xxxxPP                                   --------------- (2.1.12) 

We get  , )()()(   , which is a contradiction unless 0 .  

Hence          0,limlim 1  


nn
n

n
n

PP                                  --------------- (2.1.13) 

From (2.1.13) and (2.1.3) , it follows that ,   0,limlim 1  


nn
n

n
n

xxd           ---------- (2.1.14) 

Now , show that  nx  is a Cauchy sequence. 

i.e. for each 0  there exists Nn 0 , such that for all  

                  nm PPnnm 220 ,,                                                    ---------------- (2.1.15) 

By the method of contradiction we assume that   nx  is not a Cauchy sequence. 

There exists 0  for which we can find non-negative integer sequence  )(km and  )(kn , such that 

)(kn  is the smallest element of the sequence  )(kn  for which  

            kkmkn  )()(  ,  )(2)(2 , knkm PP                                               -------------- (2.1.16) 

This means that   2)(2)(2 , knkm PP                                                        ---------------- (2.1.17) 

From (2.1.16) and triangle inequality for   , we have ,  

                        )(2)(2 , knkm PP        

                                
)(21)(21)(22)(22)(2)(2 ,,, knknknknknkm PPPPPP           --------- (2.1.18) 

                               
)(21)(21)(22)(2 ,, knknknkn PPPP    

Taking limit as k  and using (2.1.13) , we can conclude that ,  

                         


)(2)(2 ,lim knkm
k

PP                                                        ---------------- (2.1.19) 

Also from ,      1)(2)(2)(2)(21)(2)(2 ,,,   knknknkmknkm PPPPPP   

                        1)(2)(2)(2)(2)(21)(2 ,,,   kmkmknkmknkm PPPPPP                ------------- (2.1.20) 

Using (2.1.13) and (2.1.19) as k  , we get , 

     





1)(2)(2)(21)(2 ,lim,lim knkm
k

knkm
k

PPPP                                           -------------- (2.1.21) 

and   from  

     1)(2)(2)(21)(21)(21)(2 ,,,   knknknkmknkm PPPPPP                           -------------- (2.1.22) 

Using (2.1.13) and (2.1.21) , we get    


1)(21)(2 ,lim knkm
k

PP          -------------- (2.1.23) 

Also, from the definition of (2.1.2) and from (2.1.13) , (2.1.21) , (2.1.23) , we have 

                                


1)(2)(2 ,lim knkm
k

xx                                          ---------------- (2.1.24) 

By substituting  )(2 kmxx   , 1)(2  knxy  in (2.1.1) , we get 

                    
1)(2)(21)(2)(2 ,,   knkmknkm gxfxPP   

                                                   1)(2)(21)(2)(2 ,,   knkmknkm xxxx   

Taking limit as k  and using (2.1.21) , (2.1.24) , we will have 

                                    )()()(                                             ---------------- (2.1.25) 

which is a contradiction as 0 . 

Hence  nx  is a Cauchy sequence. 
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Since X  is a complete metric space , there exists Xu  such that uxn   as n . 

Now , we prove that ''u  is end point of  '' f  

As the limit point ''u  is independent of the choice of  nn Px  , we also get 

                                        0,lim,lim 122  


ugxufx n
n

n
n

                  --------------- (2.1.26) 

From ,  
         

     
























1212

121212121212

12
,,

2

1

,,,,,,,,,,

.max,
nn

nnnnnn

n
gxxDfuuD

fxxfxugxxfuuxud

xu



  

 As  n  ,     fuuxu n ,, 12           

Since         121212 ,,,   nnn xuxugxfu                                    -------------- (2.1.27) 

Taking limit as n  and using (2.1.26) , we get 

                            fuufuuufu ,,,                                       --------------- (2.1.28) 

which   implies   that    0, fuu  i.e.   0, fuu   or   ufu  . 

Thus u is end point of f. 

Now we prove that ''u  is also end point of   g. 

It can be easily proved   that      guuuu ,,   . 

Using that ''u  is fixed point of   f , we have ,  

                         gufuguu ,,    

                                            uuuu ,,                               --------------------- (2.1.29) 

                                             guuguu ,,                                    

and  using an argument similar to the above , it can be concluded that   0, guu
 

 i.e.   guu  . 

Lastly  to  prove that ''u  is unique end point of f  and  g . 

If there exists another fixed point Xv , then  one  can easily show that    vudvu ,,   

and  from         gvfuvud ,,    

                                       vuvu ,,    

                                        vudvud ,,    

which implies that   0, vud  i.e. vu .This completes the proof. 

Corollary 2.2: Let ),( dX  be a complete metric space and let )(: XBXf   be a set valued mapping 

satisfying generalized ),(  - weak contraction as  

                                      yxyxfyfx ,,,            -------------- (2.2.1) where  

                








 fyyDfxxDfyyfyxfyyfxxyxdyx ,,
2

1
,,,,,,,,,,.max,  ------(2.2.2)

    ,0,0:  is a continuous monotone non-decreasing function with 0)( t  if and only if 0t  

and     ,0,0:  is a lower semi continuous function with 0)( t  if and only if 0t . Then there 

exists a unique end point Xu  such that    fuu  .  

Proof: Substitute gf   in theorem 2.1 we get the required result. 

Corollary 2.3: Let ),( dX  be a complete metric space and let XXgf :,  be two self mappings 

satisfying generalized ),(  - weak contraction as  

                                      yxyxgyfxd ,,,               -------------- (2.3.1)   where 
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                








 gyydfxxdfyydfyxdgyydfxxdyxdyx ,,
2

1
,,,,,,,,,,.max, ------(2.3.2) 

    ,0,0:,
,
 both are continuous monotone non-decreasing function with 

0)()(  tt   if and only if 0t . Then there exists a unique fixed point Xu  such that gufuu  .  

Proof: The proof of this Corollary is same as theorem 2.1. 

Example 2.4: Let  7,6,5,4,3,2,1X  be a subspace of the real line with usual metric ''d   defined as  

yxyxd ),( . Let )(:, XBXgf   be defined as 

)(xf       

 
   
  7,3,2

6,5,4,5

3,2,1,}7{







x

x

x

  and     )(xg =               

   
   

  7,4

6,5,4,5

3,2,1,6







x

x

x

 

Also     ,0,0:,  be defined as tt 4)(   and  
3

2
)(

t
t   , then the mappings f, g satisfy the 

property of generalized ),(   - weak contraction (2.1.1). Also f and  g have a common unique end point 

 5)5()5(  gf .  

 

III. Conclusion 
Unique common end point theorems have been proved for pair of set valued mappings and single 

mapping satisfying a generalized ),(  weak contractive condition in complete metric space with example. 

Also a fixed point theorem for a pair of single valued mappings has been proved. 
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