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I. Introduction: 
The knowledge of matrices is very important not only in mathematics, but also in economics, sociology 

and modern psychology including industrial management. It should be important to note that the evolution of 

concept of matrices is the result of an attempt to obtain compact and simple methods of solving a system of 

linear equations. Matrix algebra is also highly significant as it can enable us to do many things. It provides 

information regarding the testing of existence of a solution by evaluation of a determinant. While for solving a 

system of linear equations the role of matrix inverse method is highly effective. 

Matrix inverse can be determined only when the given matrix is non-singular in nature. In simple sense 

we can say that matrix inverse can be determined only under the condition that determinant value of the given 
matrix is not become equal to zero. Matrix inverse, in application is defined as the ratio of adjoint matrix and 

determinant value of that matrix. The adjoint matrix is the transpose of cofactor matrix where cofactor of each 

and every element of the given matrix is determined on the basis of minor of the matrix. If A is assumed as any 

square matrix where 0A   then matrix inverse usually denoted by A-1 is defined as – 

  
1 .Adj A

A
A

   ----------------------------------> (i) 

We must have to follow certain important steps for using matrix inverse which are as follows. 

 The determinant value of the given matrix should be found out which should not be zero, otherwise it 

cannot perfectly determine inverse of the matrix. 

 The cofactors of each and every element of the coefficient matrix should be determined with their 

respective minors. 

 The cofactor matrix should be found out which is the arrangement of respective rows and columns of 

determined cofactors. 

 More importantly, the adjoint matrix which is the transpose of the cofactor matrix should be calculated. 

 Finally, by using the formula given in equation (i) the inverse of matrix can be determined. 
 

Objectives: 
The major objectives of this paper are – 

 To analyse the role of matrix inverse for solving linear market model. 

 To analyse the effectiveness of inverse of matrix for determining equilibrium national income, consumption 

expenditure and taxes. 

 Analysing the role of the same rule for solution of IS-LM model in economics. 

 To study the role of matrix inverse under two goods market model. 
 

II. Methodology: 
The methodology used in this paper to study the above mentioned objectives is completely analytical 

and descriptive in nature. The models which are used in this paper are collected from indirect sources like from 

various books of mathematical economics. 
 

III. Discussions: 
In economics, matrix algebra is used dominantly in various purposes for determining the equilibrium 

values of a system of linear economic equations. The application of matrix inverse is very much significant in 

this regard which are discussed below. 
 

Solution of Linear Market Model: 
 In linear market model, quantity demand (Qd) is a function of price (P) of the product and quantity 

supply (Qs) is an increasing function of price (P) where market clearing conditions prevail. We can construct the 

linear market model as – 
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 Qd = a – bP  a, b > 0 

 Qs = – c + dP  c, d > 0 

 Qd = Qs (Market clearing condition) 
 The above given model can be arranged as follows: 

  ( )

0

d

s

d s

Q bP a

Q dP c ii

Q Q

  


                  
  

   

 We can arrange equation (ii) in matrix form as – 

  

1 0

0 1

1 1 0 0

d

s

Qb a

d Q c

P

    
    

  
    
        

 

 
1 ( )

A B

A B iii

  

        
 

 
Now, 

 

1 0

0 1

1 1 0

b

A d 



   

 
10,A A   exists. 

 

Now, cofactor matrix of A is – 

    

      





























)01(10)1()0(1

)01(1)0(1)0()1(

)10()1()0()1()0()1(

332313

312212

312111

db

bb

dd

 

= 

1

1

1

d d

b b

b d

   
 
 
 
  

 

.Adj A   Transpose of cofactor matrix A 

= 

1 1 1

d b b

d b d

   
 
 
 
  

 

Now, inverse of matrix A is given by 

 db

dbd

bbd

A

AAdj
A





























111

.1

   

 

   1 0 0 0 1d b      

 b d    
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By substituting A-1 in equation (iii), we have 

X
 

1 1 1

d b b

d b d

b d

   
 
 
 
  

 
   

 

 

 

 

0

0

0

d

s

ad bc

b d
Q

ad bc
Q

b d
P

a c

b d

   
 

   
    

            
 
   

 

 
 The equilibrium solution is 

 

 

 

 

d

s

ad bc ad bc
Q

b d b d

ad bc ad bc
Q

b d b d

a c a c
P

b d b d

  
 
  

  
 
  

  
 
  

 

 
Solution of Simple National Income Model: 
 In economics, the simple national income model is given by 

   
10

10,0

00







ttYT

baTYbaC

GICY

 

Where Y is national income, C is consumption expenditure, T is tax, t is rate of tax, I0 is government 
investment and G0 is government expenditure. 

 The above given equations can be arranged as 

0 0
( )

( )

0 ( )

Y C I G iv

bY C bT a v

tY T vi

            

            

              

 

 

When we arrange equations (iv), (v) and (vi) in matrix form, we have 

0 0

1

1 1 0

1

0 1 0

( )

I GY

b b C a

t T

A B

A B vi

     
    

 
    
         

  

         
 

Now,  

0

a

c

 
 

 
  
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               
btb

btb

t

bbA













1

01011

10

1

011

 

  0<b<1 and 0<t<1, therefore 0A 
 
and hence

1A  exits. 

 

Now, the cofactor matrix of A is 

  

       

       

    























)1()1()0()1(01

)0(1011)01(1

01)()1(011

654

543

432

bbb

t

tbtb

 

  = 

1

1 1

1

b bt t

t

b b b

 
 
 
    

 

.Adj A  Transpose cofactor matrix A 

    =

1 1

1

1

b

b bt b

t t b

 
 
 

 
  

 

Now, inverse of matrix A is given as 

  

1 .

1 1

1

1

1

Adj A
A

A

b

b bt b

t t b

b bt

 

 
 
 

 
  
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By substituting 
1A

in equation (vii) we have 

  

0 0
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1

1

1
0

b

b bt b
I G

t t b
X a
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  
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 

  

 

0 0
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0

1

0

1

. 0

1

I G a

b bt
Y

b bt I G a
C

b bt
T
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 

   
     

      
       
   
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 The solution of the model is 

  
  

 

0 0

0 0

0 0

1

1

1

I G a
Y

b bt

I G b bt a
C

b bt

I G a t
T

b bt

 


 

  


 

 


 

 

 

General Solution of IS-LM Model: 
The IS-LM model is related to determination of equilibrium rate of interest(r) and income (Y) where 

product market (IS) and money market (LM) simultaneously achieves equilibrium. The linear equation related 

to product market is given as 

Y C I   

Where       
00

100





 andrI

bandabYaC
 

 

 Again, the mathematical form of LM model is given as 

d s
M M

 
Where,

 

  
0sup

00,





plymoneyfixedisKKM

andrYM

s

d 
  

Here, Md and Ms are respectively money demand and money supply. 

We can arrange the IS-LM model as 

  

)()1( viiiarYb

arbYY

rbYaY

ICY














 

  

Again, Md = Ms 

 

)(ixKrY

KrY








 

   
When we arrange equations (viii) and (ix) in matrix form, we have 

  



























 









K

a

r

Yb1
 

  
1

.

( )

A X B

X A B x

 

        
 

 
Now, 

 




b
A

1

 

                  








b

b)1(
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       existsAA 1,0   

   

Now, cofactor matrix of A 

  

   

       

















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b

b

1
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







 

   

 .Adj A  Transpose of cofactor matrix A 

     = 








 b1


 

 

Now, inverse of matrix A is given as 

  













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








b

b

A

AAdj
A

1
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When we substitute 
1A in equation (x), we have 

  


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

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
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
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
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b

Kba

b
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r
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K
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b

b
X
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 The solution is  

  



















b
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r

b
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Y

)())(1(

)()(

 

 

Solution under Two Goods Market Model: 
The two goods market model is related to two markets producing two commodities which are sold in 

each respective market. In such a market, the matrix inverse is significant for determining the selling prices of 

commodities at equilibrium in each market. The derivation form of such a model is shown as follows. 

 In market 1,  

   

1 1 2

1 1

1 1

, , 0

, 0

( )

d

s

d s

Q a bP mP a b m

Q c dP c d

Q Q Market clearing condition

   

   


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Where Qd1 and Qs1 are respectively the quantity demand and supply in market 1, P1 and P2 are the 

prices of market 1 and 2 respectively. 

 
Again, in market 2 

2 1 1

2 2

2 2

, , 0

, 0

( )

d

s

d s

Q P nP n

Q P

Q Q Market clearing condition

   

   

   

   



 

We can arrange the equations in both markets as, 
 

In market 1, 

   

1 1

1 2 1

1 1 2

1 2
( ) ( )

d S
Q Q

a bP mP c dP

a c bP dP mP

b d P mP a c xi
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In market 2, 

2 2

2 1 2

1 2 2

1 2
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d S
Q Q

P nP P

nP P P

nP P xii

   

   

   



     

     

               

 

When we arrange equations (xi) and (xii) in matrix form, we have 

   
1

2

Pb d m a c

n P   

      
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A B
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  
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1
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0,
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n
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 
 



 
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Now, cofactor matrix of A is  
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n
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 
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.Adj A Transpose of cofactor matrix A 

 =
 

 

m

n b d

  
 
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Now, inverse of matrix A is 
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  

 
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When we substitute 
1A

in equation (xiii), we have 
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b d nm

a c m
P

b d nm

n a c b d
P

b d nm

 

  

   

 

 

 

   

 

 

 

 
 

      
    

    
 

             
 

    

   
 

  

   
 

  

 

These are the equilibrium prices of commodities in each of the market. 

 

IV. Conclusion: 
The concept of matrix inverse is very useful in economics in solving simultaneous equations, in input-

output analysis and even in regression analysis. While for determining the sectoral outputs in static and dynamic 

input-output analysis, the application of matrix inverse is very important. From our discussion, it is clear that 

inversion of matrix is possible if and only if two conditions are satisfied. Firstly, matrix whose inverse is 

required is a square matrix otherwise we cannot be able to form the determinant of the matrix. Secondly, the 

determinant of the matrix should not be zero which implies that the matrix whose inverse is required should be 

non-singular. 

 

References: 
[1]. R.G.D Allen, Mathematical Analysis for Economics, A.I.T.B.S. Publishers (2008). 

[2]. Srinath Baruah, Basic Mathematics & its applications in Economics, Macmillan (2011). 

[3]. A.C. Chiang, Fundamental Methods of Mathematical Economics, Mcgraw-Hill International Editions (1984). 

[4]. E.T. Dowling, Introduction to Mathematical Economics, Mcgraw-Hill (2001). 

[5]. R.K.Lekhi & J. Singh, Agricultural Economics: An Indian Perspective, Kalyani Publishers, Ludhiana (2010). 

[6]. Mehta- Madnani, Mathematics for Economists, Sultan Chand & Sons (2007). 

[7]. Anupam Sarma, Mathematical Economics & Its Applications, Kasturi Printers & Publishers, Guwahati (2014). 

[8]. R.N. Soni, Leading Issues in Agricultural Economics, Vishal Publishing Co., Delhi. 


