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Abstract: A traveling wave solution, using the proposed Tan-Cot Function Method for Nonlinear Partial 

Differential Equations, has been established in this paper. This method is used to obtain new solitary wave 

solutions for nonlinear partial differential equations such as the Coupled Klein-Gordon system of equations, 

Huxley equation, Dispersive Long Wave Equation and Korteweg-dVries (KDV) equation.  
 

I. Introduction 

Nonlinear partial differential equations govern many physical, biological, chemical and other area of 

study. One of the most exciting advances of nonlinear science and theoretical physics has been the development 

of methods to look for exact solutions of nonlinear partial differential equations as discussed by Mahmood 

Jawal Abdul Rasool Abu Al-Shaeer[4]. Nonlinear partial differential equations can provide much physical 

information and more insight into the physical aspects of problems, and therefore can lead to further 

applications  
In particular, nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and convection 

are very important in nonlinear wave equation as discussed by Mahmood Jawal Abdul Rasool Abu Al-Shaeer 

[4].  

As discussed by Mahmood Jawal Abdul Rasool Abu Al Shaeer[4], he used the Tan-Cot function 

method to establish solitary wave exact solutions for the (1+1)-dimensional Ito equation of Pochhamner-Chree 

(PC) equation, MIKP equation, Konopelchenko and Dubrovsky (KD) system of equations.  

Also, as discussed by Anwar Ja’far Mohammed Jawal [1] used the Tan-Cot function method to solve 

the (2+1)-dimensional nonlinear Schrodinger equation, Gardner equation, modified KDV equation, Perturbed 

Burger Benjamine-Bona Mahony (BBM) equation.  

The Coupled Klein-Gardon equation as discussed by Nasir Taghizadeh, Mohammad Mirzaza and 

Faroozon Farahrooz [5], using the infinite series method and exact solition solutions were obtained for the 

Huxley equation as discussed by N. Taghizadeh et al [6], by applying the modified  
G ′

G
  –expansion method. 

Anwar Ja’afar Mohammad Jaw[1] used the tanh and sine-cosine methods to obtain exact solition solutions for 

the nonlinear dispersive long wave equation.  

In this paper, we applied the new Tan-Cot function method to solve the Klein-Gordon system of 

equations, Huxley equation, nonlinear Dispersive Long Wave equation and Korteweg-dVries equation, all now 

given respectively by:  

 uxx − utt − u + 2u3 + 2uv = 0
vx − vt − 4uut = 0

  ……………………………(1) 

ut = uxx + u k − u  u − 1 ………………………………….(2) 

 uyt + vxx +
1

2
(u2)xy = 0

vt + (uv + u + uxy )x = 0
  …………………………………..(3) 

Ψt + ΨΨx + Ψxxx = 0 ………………………………………...(4)  

 

II. Materials and Methods 
2.1 The Tan-Cot Function Method  

A nonlinear partial differential equations in the form as discussed by Mahmood Jawal Abdul Rasool 

Abu Al-Shaeer [4]  

F u, ut , ux , uy , utt , uxx , uyy , uxy , …  = 0 …………………….(5),  

 

where u(x, y, t) is a traveling wave solution of the nonlinear partial differential equations given in (5). 

We use the transformations,  

u x, y, t = f ξ , ………………………………………………(6), 

Where ξ = kx + ∂y − λt ………………………………………(7) 
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This enables us to use the following changes:  

 
∂f

∂t
= −λ

df

dξ
,

∂f

∂x
= −k

df

dξ
,

∂f

∂y
= −δ

df

dξ
, ……………………….(8) 

Using (8) to transform the nonlinear partial differential equation (5) to an ordinary  

differential equation,  

Q f, f ′ , f ′′ , f ′′′ , …  = 0 ………………………………………(9) 

 

The  ordinary differential equation (9) is then integrated as long as all terms contain derivatives, where 

we neglect the integration constants. The solution of many nonlinear equations can be represented or expressed 

in the form [4],  
 

 f ξ = αtanβ μξ ,  ξ ≤
π

2μ
………………………………………(10) 

f ξ = αCotβ μξ ,  ξ ≤
π

2μ
 ……………………………………….(11) 

Where α, µ and ß are parameters to be determined, α and µ are the wave number and wave speed respectively.  

Accordingly, we now use,  
 

f ξ = αtanβ μξ     
f ′ = αβμ tanβ−1 μξ + tanβ+1 μξ                  

 f ′′ = αβμ2  β − 1 tanβ−2 μξ + 2βtanβ μξ +  β + 1 tanβ+2 μξ   

f ′′′ = αβμ3  β − 1  β − 2 tanβ−3 μξ +  3β2 − 3β + 2 tanβ−1 μξ +  β + 1  β + 2 tanβ μξ +

2β2tanβ+1μξ+β+1β+2tanβ+2μξ  
 

Let the expressions of  ξ  , f ′ , f ′′ , and f ′′′  constitute our equation 12, or we may choose to use 

f ξ = αCotβ μξ   
f ′ = −αβμ Cotβ−1 μξ + Cotβ+1 μξ    

f ′′ =  αβμ2  β − 1 tanβ−2 μξ + 2βCotβ μξ +  β + 1 Cotβ+1 μξ   , 
 

and so on. Again let the expression of  f ξ  , f ′ , f ′′ and so on for the tan and Cot be equation (12) and (13) 

respectively.  
We now substitute equation (12) or (13) into equation (9), balance the tan and Cot functions and solve the 

resulting system of algebraic equations. 

  

Next we collect all terms with the same power in  

tank(μξ) or Cotk(μξ) and set to zero their coefficients to get a system of algebraic equations with the unknowns 

α, ß and µ, and solve the subsequent system of equations.   

 

2.1.1 Applichation of the Tan-Cot Function Method to solve different Nonlinear Partial Differential 

Equations  

2.1.1.1: The Coupled Klein-Gordon System of Equations as discussed Elsewhere  

[5,7].  

It is as follows: 

 uxx − utt − u + 2u3 + 2uv = 0
vx − vt − 4uut = 0

   ……………………………….(14) 

We use the transformations 

u x, t = u ξ , v x, t = v ξ , ξ = x −  λt ………………(15) 

 

and from equation (8), we have equation (14) transformed into the ordinary differential equations u(ξ) and v(ξ)   

  1 − λ2 u′′ − u ξ + 2u3 ξ + 2u ξ v ξ = 0
 1 + λ v′ ξ + 4λu ξ u′ ξ = 0

    ……………………(16) 

 

By integrating the second equation in (16) with respect to ξ and neglecting the constant of integration, we have 

 

v ξ =
−2λ

1+λ
u2 ξ …………………………………..(17) 

Substituting (17) into the first equation of (16) and integrating the resulting equation, we have 

 1 − λ2 u′′  ξ − u ξ + 2
 1−λ 

1+λ
u3 ξ = 0 ………………………..(18), 



Exact Solution of Nonlinear Partial Differential Equations, Using the New Tan-Cot Function Method 

www.iosrjournals.org                                                    37 | Page 

which is an ordinary differential equation. Now to solve (18), we choose to use 

u = αtanβ μξ ,  where 

u′ = αβμ tanβ−1 μξ + tanβ+1 μξ    

u′′ = αβu2  β − 1 tanβ−2 μξ + 2βtanβ μξ +  β + 1 tanβ+2 μξ  . 
where the expression for u, u′  and u′′  constitute equation (19). Substituting (19) into (18), we have  

 1 + λ2  αβu2[ β − 1 tanβ−2 μξ + 2βtanβ μξ +  β + 1 tanβ+2 μξ − αtanβ μξ + 2
 1−λ 

1+λ
α3tan3β μξ =

0 ………………………………………(20) 

Equating exponents of each pair in equation (20), we have  

 

β + 2 = 3β,⟹ β = 1   
Substituting ß =1 into equation (20) and simplify, then we get  

 2 1 − λ2  αu2 − α tan μξ +  2 1 − λ2  αu2 + 2
 1−λ α3

1+λ
 tan3 μξ = 0 …………….(21) 

 

Equating the coefficient of a pair of  tank(μξ) to zero in (21), we have for  tan μξ ,  
2 1 − λ2  αu2 − α = 0   

⟹ μ = ±
1

 2 1−λ2 
1
2

 ………………………………………………(22) 

and for tan3 μξ , 2 1 − λ2  αu2 + 2
 1−λ α3

1+λ
= 0 

α = ±
i(1+λ)

1
2

 2 1−λ2 
1
2

………………………………………………………….(23) 

ß =1, μ = ±
1

 2 1−λ2 
1
2

  and α = ±
i(1+λ)

1
2

 2 1−λ2 
1
2

  into (17) and (19) we have 

u x, t = ±
i(1+λ)

1
2

 2 1−λ2 
1
2

tan ±
1

 2 1−λ2 
1
2

ξ   

u x, t = i(1 + λ)
1

2 tan ±
1

 2 1−λ2 
1
2

 x − λt  ………………………………….(24) 

 

2.1.1.2 The Huxley Equation as discussed by N. Taghizadeh et al [6]  
We now consider the Huxley equation,  

ut = uxx + u k − u  u − 1 ……………………………………….(26), 

where k≠0 and u = u(x, t) is the solution of equation (26). We use the transformations  

u x, t = f ξ , Where ξ = x − λt and equation (8) to transform equation (26) to the ordinary differential equation 

−λu′ − u′′ + u3 −  k + 1 u2 + ku = 0 …………………………………(27) 
 

 The solution of (27) can be expressed as  

u ξ = αtanβ(μξ), where 

u′ = αβμ tanβ−1 μξ + tanβ+1 μξ    

u′′ = αβu2  β − 1 tanβ−2 μξ + 2βtanβ μξ +  β + 1 tanβ+2 μξ  ,  
 

and we represent the expressions of u ξ , u′  and u′′   by equation (28). Substitute equation (28) into (27), we 

have, after simplification  

 

[kα − 2αβ2u2]tanβ μξ − λαβμtanβ−1 μξ − αβu2 β − 1 tanβ−2 μξ − λαβμtanβ−1 μξ − αβu2 β +
1tanβ+2μξ−k+1α2tan2βμξ+α3tan3βμξ=0 
………………………………………………………………………………………………..(29) 

Equating the exponents of each pair of the tan function in equation (29) we obtain  

β + 2 = 2β, ⟹ β = 2  
Substituting β = 2 into equation (29) and simplify, we have 

kα − 8αμ2]tan2 μξ + 4λαμtan μξ − 2αμ2 − 6αμ2tan4 μξ −  k + 1 α2tan4 μξ + α3tan6 μξ =
0 ………………………………………………………………………………(30) 

 

In equation (30), equating the coefficients of each pair of the tan function, we get for 

tan2 μξ , k − 8μ2 = 0  ⟹ μ = ± 
k

8
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and for tan4 μξ , -(6 αμ2 + (k + 1)α2)  = 0 

⟹ α = ±
−3k

4(k+1)
 

Substituting μ = ± 
k

8
 and α = ±

−3k

4(k+1)
 into 

u ξ = αtan2 μξ , we get 

u ξ = u u, t =
−3k

4 k+1 
tan2   

k

8
 x −  λt   ………………………………(31) 

 

2.1.1.3 The Dispersive Long Wave System of Equations as discussed by Anwar  

Ja’afar Mohammed Jawal [2] 

The system of equation 

 uyt + vxx +
1

2
(u2)xy = 0

vt + (uv + u + uxy )x = 0
  ………………………………………………………..(32) 

Now, using the traveling wave transformations  

u x, y, t = u ξ , v x, y, t = v ξ ,   ξ = kx + ∂y +  λt ……………………….(33) 

and also using equation (8), the nonlinear system of partial differential equation (32) is  

transformed to the system of ordinary differential equations 

  
δu′′  ξ + k2v′′ + kδ uu′ ′ = 0

λv′ + k uu′ + k′δu′′′ = 0
  ………………………………………………..(34) 

 

By integrating the first equation in (34) twice with zero constant, then it reduce to 

δλu + k2v +
kδ

2
u2 = 0 ………………………………………………..(35)  

Secondly, integrate the second equation of (34) once with zero constant, we have  

λv + kuv + ku + k2δu′′ = 0 ………………………………………………….(36) 

From equation (35), v =
k2δu2

2k2 −
δλ u

k2 , substitute v into (35), and simplify, we get 

[-λ − ku]  
k2δu2 +2δλ u

2k2
 + ku + k2δu′′ = 0………………………………(37) 

which is an ordinary differential equation. We now seek the solution of (37) as,  

 u ξ = αCotβ μξ , where 

u′′ = αβu2  β − 1 Cotβ−2 μξ + 2βCotβ μξ +  β + 1 Cotβ+2 μξ   
and we represent the expressions of u  and u′′  by equation (38). Substitute equation (38) into  

(37) and simplify, we get   

 2β2u2k2δα + kα −
δλ2α

k2
 Cotβ μξ −  

k2δα

k
−

α2δλ

k
 Cot2β μξ + k2δαβu2 β − 1 Cotβ−2 μξ + k2δα β +

1Cotβ+2μξ−α3δ2Cot3βμξ=0.. ……………………(39)  

In (39), equating the exponents of each pair of the Cot function, we get 

β + 2 = 3β,  ⟹ β = 1 

Substituting β = 1 into equation (39) and simplify, we have 
 

 2μ2k2δα + kα −
δλ2α

2
 Cot μξ − 3λkδα2Cot2 μξ + 2μ2k2δαCot2 μξ −

α3δ

2
Cot3 μξ =

0 ………………………………………………………………………..(40) 

In equation (40), equating the coefficients of each pair of the Cotk μξ  to zero for each pair, we get for Cot μξ ,  

2μ2k2δα + kα −
δλ2α

2
= 0, which gives 

μ = ± 
λ2

2k4 −
1

2kδ
 

1

2
 and for 

Cot2 μξ , 2μ2k2δα + kα − 3λkδα2 = 0 which gives 
 

α =
1

3
 
λ2

k3 −
1

δ
 .  Substitute values of µ, α and β into equation (38), we obtain 

u x, y, t =
1

3
 
λ2

k3 −
1

δ
 Cot  ±  

λ2

2k4 −
1

2kδ
 

1

2
ξ   

where ξ = kx + δy + λt. 

And also using equations (33), (38) and v = −
δu2

2k
−

δλu

k2 , we have  
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v x, y, t =
δ

18k
 
λ2

k3 −
1

δ
 

2

Cot2  ±  
λ2

2k4 −
1

2kδ
 

1

2
ξ −

δλ

3k2
 
λ2

k3 −
1

δ
 Cot ±  

λ2

2k4 −
1

2kδ
 

1

2
ξ ….(42) 

where   ξ = kx + δy + λt 
 

2.1.1.4 The Korteweg-dVries(Kdv) Equation as discussed by Arfken and Weber[3]  

The nonlinear Kuortweg-dVries equation, models the lossless propagation of shallow water waves and 

other phenomena. It is as follows: 

Ψt + ΨΨx + Ψxxx = 0………………………………………………………..(43) 

 

Again, we use the transformations. 

Ψ x, t = Ψ ξ , ξ = x − λt  with equation (8) to transform (43) to the linear ordinary  

differential equation 

k3Ψ′′ + kΨ2 − λΨ = 0……………………………………………(44) 
Integrating (44) once, we obtain,  

k3Ψ′′ + kΨ2 − λΨ = 0……………………………………………………..(45) 
We seek the solution of (45) as 

Ψ ξ = αtanβ μξ , where 

Ψ′′ = αβμ2  β − 1 tanβ−2 μξ + 2βtanβ μξ +  β + 1 tanβ+2 μξ    
 

and let the expression of Ψ, and Ψ′′  be represented by equation (46). 

Substituting equation (46) into (45) and simplify, we have  

k3αβμ2  β − 1 tanβ−2 μξ + 2βtanβ μξ +  β + 1 tanβ+2 μξ  + kα2tan2β μξ − λαtanβ μξ =

0…………………………………………………………………….(47) 

  

Equating the exponents of each pair of the tan function, we get 

 β + 2 = 2β ⟹ β = 2 
Substituting β = 2  into equation (47) and simplify, we have  

2k3αμ2 4k3αμ2 −  λα tan2 μξ +  3k3αμ2 + kα2 tan4 μξ = 0 ………………………..(48) 

Equating coefficients of each tank μξ  to zero, we get for tan2 μξ , 
4k3αμ2 −  λα = 0  

⟹ μ =
± λ

2k2 3  and for tan4 μξ  

3k3αμ2 + kα2 = 0  

⟹ α =
−3λ

4k
 

Substituting values of μ, β and α into equation (46), we get 

Ψ x, t = −3λtan2  
−λ1 2 

2k3 2 ξ ……………………………………………….(49) 

Where ξ = x − λt. 
 

III. Results/ Discussion 
The new Tan-Cot Function Method has been applied successfully in this paper, to establish new 

solitary wave solutions for coupled and non coupled non linear partial differential equations.  

However, the new method could not establish exact solutions for the coupled nonlinear partial 

differential momentum equations of Navier-Stokes’ and the convection heat transfer equation, because the linear 

parts of these nonlinear partial differential equations cannot be separated from the nonlinear parts  
 

IV. Conclusion 
We can therefore say that the new method can be extended to solve the problems of nonlinear partial 

differential equations which may arise in the theory of solitons and other area of nonlinear science.  
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