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Approximate analysis of thin beam with variable prestress on 

elastic foundation 
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Department of Mathematical Sciences, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria. 

 
Abstract: In this article, the effect of variable prestress on the behavior of thin beam on constant elastic 

foundation is presented. The moving load is distributed over the entire span of the beam and governs by fourth 

order partial differential equation. It is shown from the numerical analysis that the higher values of axial force

N , the lower the amplitude response of the beam with variable prestress. The same argument goes for 

foundation rigidity bK . Results in plotted curves indicate that resonance is reached earlier in moving mass 

solution than moving force solution. 
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I. Introduction 

Study pertaining to the subject of moving load on elastic foundation has attracted several researchers in 

the field of dynamics of structures. Extensive work has been done in this area especially when the structural 

members have uniform cross-section. 

Many authors have widely studied behavior of structures (beam or plate) under moving loads [1,2,3,4]. 

In most of these studies, the assumption has been that prestress in beams have been of uniform type all through 

the length of the structural members. Cases where the effects of axial force is of non-uniform on the frequencies 

has been neglected especially when the loads on the structure are in the distributed form. In most of the existing 

literature in dynamics of structure, moving loads have been idealized as moving concentrated loads which acts 

at a certain point on the structure and along a single line in space [5,6]. The problem of traverse oscillations of 

beams under the action of moving loads for the general case of any arbitrary prescribed law of motion was 

solved by Lowan [7] using Green’s functions. Furthermore, Timoshenko [8] and Timoshenko et al [9] 

considered a case when a pulsating force is moving along a beam with a constant velocity using the principle of 
virtual work. 

Omolofe and Ajibola [10] considered, the transverse motions of thin beam with variable prestress 

under moving loads using Generalized Galekin’s method and the modified Asymptotic method of Struble to 

obtain analytical solutions. They considered in their study moving concentrated load system on constant 

foundation. 

It is observed that beams having variable prestress and resting on elastic foundation under moving 

distributed loads have received scanty attention. Therefore, since prestress varies from a point to another along a 

structural member (beam or plate), this present work investigated the effects of variable axial force on the 

dynamic response to moving distributed load resting on a constant elastic foundation. 

 

II. Statement Of The Problem 

One of the well-known models in the family of beam’s model is the thin beam theory (B-E beam 

theory). According to this theory, the length of each section is much greater than the height of each section and 

the shear and rotatory inertia effects are ignored.  

Consider a thin beam of elastic material with modulus of elasticity E , moment of inertia J , the 

transverse displacement ( , )V x t , constant mass per unit length, the foundation stiffness bK , the position 

coordinate in the axial direction x , time t , the flexural rigidity EJ  and the variable axial force ( )N x . 

4 2

4 2
( , ) ( , ) ( ) ( , ) ( , ) ( , ) 1 ( , )b kEJ V x t V x t N x V x t K V x t Q x t V x t

x t x x g


      
            

 (1) 

where
x




is the partial derivative with respect to x . Since the thin beam has simple support at both ends, the 

pertinent boundary conditions  



Approximate analysis of thin beam with variable prestress on elastic foundation 

www.iosrjournals.org                                                    7 | Page 

2 2

2 2
(0, ) 0 ( , ),      (0, ) 0 ( , )V t V L t V t V L t

x x

 
   

 
    (2) 

The initial conditions(IC’s) is given as 

( ,0) 0 ( ,0)V x V x
t


 


       (3) 

The moving  force ( , )kQ x t and operator
 is as well defined in [6,10] 

Let the variable axial force be of the form 
3

0( ) 1 sin
x

N x N
L

 
  

 
       (4) 

where 0N is the variable value of the axial force. 

Substituting equations (4) into equation (1), after some rearrangement, the governing equation can be written as 
4 2

4 2
( , ) ( , ) ( ) ( , ) ( , )bEJ V x t V x t N x V x t K V x t

x t x x


    
       

 

2 2 2
2

2 2
1

( ) ( , ) 2 ( , ) ( , ) ( )
N

m

MH x ct V x t c V x t c V x t MgH x ct
t x t x 

   
      

    
  (5) 

Further simplification of equation (5) yields, 

4 2

04 2

5 15 3 2 3
( , ) ( , ) sin cos sin ( , )

2 4 2

x x x
EJ V x t V x t N V x t

x t x L L L x

  


    
       

     
 

2 2 2
2

2 2
1

( , ) ( ) ( , ) 2 ( , ) ( , ) ( )
N

b

m

K V x t MH x ct V x t c V x t c V x t MgH x ct
t x t x 

   
       

    
  (6) 

which is non-homogenous partial differential equation of the dynamical system with variable and singular 

coefficient. 

 

III. Analytical Approximate Solution 
It is evidently seen that a closed form solution of equation (6) does not exist. To this end, the 

Galerkin’s method described in Oni and Ogunyebi [6] is employed to reduce the partial differential to a 

sequence of ordinary differential equation. This is defined 

   
1

( , ) ( ) ( )m n

m

V x t W t U x




       (7) 

where ( )nU x is chosen such that the desired boundary conditions are satisfied. 

Substituting equation (7) into (6) one obtains 

4 4

04
1

sin sin ( ) 10 sin 15 cos cos
4

n

m

m

m m m m m m x x m x
EJ W t N

L L L L L L L L L

        




 
   


   

2 2 3
15 sin cos 12 sin cos 6cos sin 3 cos cos

m x m x x m x x m x x m x

L L L L L L L L L L L

          
     

3
sin sin sin ( ) ( ) ( )sinb m m

m x x m x m x m x
K W t M H x ct W t

L L L L L

     
    

 

  

2 2
2

2
1

2 ( ) ( )cos ( ) ( )sin ( ) 0
n

m m

m

m m x m m x
c H x ct W t c H x ct W t MgH x ct

L L L L

   




      




(8) 

In order to determine ( )mW t it is required that the expression on the left hand side of equation (8) be orthogonal 

to the function ( )kU x  

Therefore, equation (8) becomes, 
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1 2 3

1

( ) ( ) ( ) ( , ) ( ) 2 ( , ) ( )
n

m m m m m ma m mb m

m

M m
B W t B B W t B m t W t c B m t W t

L





 
    


     

2 2
2

2
( , ) ( ) ( , )mc m md

m Mg
C B m t W t B m t

L






 

   

    (9) 

where 

 1
0

sin sin
L

m

m x k x
B dx

L L

 
         ; 

4 4

2 4 0
sin sin

L

m

EJ m m x k x
B dx

L L L

  


   

3m a b c d e f g hB F F F F F F F F        ;
0

( , ) ( )sin sin
L

ma

m x k x
B m t H x ct dx

L L

 
   

0
( , ) ( )cos sin

L

mb

m x k x
B m t H x ct dx

L L

 
  ;

0
( , ) ( )sin sin

L

mc

m x k x
B m t H x ct dx

L L

 
    

0
( , ) ( )sin

L

md

k x
B m t H x ct dx

L


         (10) 

and 

 

2 2

0

2 0

5
sin sin

2

L

a

N m m x k x
F dx

L L L

  


  ;  

2

0

2 0

15
cos cos sin

4

L

b

N m x m x k x
F dx

L L L L

   
   

2

0

2 0

15
sin sin sin

4

L

c

N m x x k x
F dx

L L L L

   
  ; 

2

0

0

3 2
sin cos sin

4

L

d

N m x m x k x
F dx

L L L

   
   

0

0

3 2
cos sin sin

2

L

e

m N x m x k x
F dx

L L L L

   
  ;

2

0

2 0

3 3
cos cos sin

4

L

f

m N x m x k x
F dx

L L L L

   
   

 

2 2

0

0

3
sin sin sin

4

L

g

N m x m x k x
F dx

L L L L

   
  ; 

0
sin sin

L

h b

m x k x
F K dx

L L

 
   (11)

 
The Heaviside function is defined in terms of Fourier sine series 

0

1 1 (2 1) ( )
( ) sin

4 2 1n

n x ct
H x ct

n









  
     

      (12) 

Substituting equation (12) into equation (9), after some simplification and rearrangement takes the form 

1 2 3

1 0 0

1 (2 1) 1 (2 1)
( ) ( ) ( ) cos sin ( )

4 2 1 2 1

n

a
m m m m m b c m

m n n

n nH
B W t B B W t ctH ctH W t

n n
  

 

 


  

   
      

   
   

 
0 0

1 (2 1) 1 (2 1)
2 cos sin ( )

4 2 1 2 1
d

e f m

n n

n nH
c ctH ctH W t

n n
 

 

 

 

 
   

  
    

2

0 0

1 (2 1) 1 (2 1)
cos sin ( )

4 2 1 2 1

g
h i m

n n

H n n
c ctH ctH W t

n n
 

 

 

 

 
   

   
   

cos cos
Mg m ct

m
m L




 

 
   

 
       (13) 

where 

M

L




          (14) 

Equation (13) is called the transformed equation of our dynamical system. Two special cases of 

equation (13) are considered to give analytical solution of moving force and moving mass respectively in the 

distributed sense of the structural element [6]. 
 

3.1 Moving distributed force case 

Setting the inertia term effect of equation (13) to zero and considering only a mass M moving with a 

constant velocity c, equation (13) is re-arrange to take the form 
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1 4( ) ( ) cos cosm m m m

Mg m ct
B W t B W t m

m L




 

 
    

 

     (15) 

where 

4 2 3m m mB B B          (16) 

Further simplification yields 

 1

( ) ( ) cos cosm f m

m

Mg m ct
W t W t m

m B L


 

 

 
    

 

     (17) 

Where 

  4

1

m
f

m

B

B
 

  

       (18) 

Using Laplace method [3,6] equation (17) can be arranged to give 

  
2 2 0

5 2 2
( )m f m

m

fS
W t S B

S S




 
         

    (19) 

where 

0 ( 1)mf   , m

m c

L


   and 

5

1

m

m

Mg
B

m B 


     

(20) 

then 

  
1 25( )m m a aW t B f f     

      (21) 

where 

   
1 2 2 2 2

1
a

m f

S
f

S S 
 

 
 

     (22) 

and   
2

0

2 2

1
a

f

f
f

S S 
 


       (23) 

Clearly, 

   
1 2 2

cos cosm f

a

f m

t t
f

 

 





      (24) 

and 

   
 

2

1 cos f

a

f

t
f






        (25) 

Substituting values of
1af and

1af into equation (21), one obtain 

 
5 2 2

1 coscos cos
( )

fm f

m m

f m f

tt t
W t B

 

  

 
  

    

   (26) 

which when inverted yields 

 
5

2 2
1

1 coscos cos2
( , ) sin

fm fm

m f m f

tt tB m x
V x t

m L

  

   





 
   

  
    (27) 

Equation (27) is the traverse displacement response to moving distributed force moving at constant speed on 
constant elastic foundation. 

 

3.2 Moving distributed mass case 

In this section, the entire solution to equation (13) is sought when all terms of inertia effect of the 

moving load is considered i.e. 0    

To this end equation (13) is rearranged to take the form 
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2

0 0

1 (2 1) 1 (2 1)
( ) ( ) cos sin ( )

4 2 1 2 1
a

m f m b c m

n n

n nH
W t W t ctH ctH W t

n n
   

 

 


 

  
    

  
    

0 0

1 (2 1) 1 (2 1)
2 cos sin ( )

4 2 1 2 1
d

e f m

n n

n nH
c ctH ctH W t

n n
 

 

 

 

 
   

  
    

2

0 0

1 (2 1) 1 (2 1)
cos sin ( )

4 2 1 2 1

g
h i m

n n

H n n
c ctH ctH W t

n n
 

 

 

 

 
   

   
   

1

cos cos
m

Mg m ct
m

m B L




 

 
   

 
       (28) 

To solve equation (28), the method of Struble’s technique discussed in Oni and Ogunyebi [6] is 

employed. This is so because an exact analytical solution to equation (28) is not possible. 
Therefore equation (28) can now be written as 

0 0

0 0

1 (2 1) 1 (2 1)
cos sin

4 2 1 2 1
( ) 2 ( )

1 (2 1) 1 (2 1)
1 cos sin

4 2 1 2 1

d
e f

n n

m m

a
b c

n n

n nH
ctH ctH

n n
W t c W t

n nH
ctH ctH

n n

 
 

  
 

 

 

 


 

 
  

  
  
   

   

 

 

   

2 2

0 0

0 0

1 (2 1) 1 (2 1)
cos sin

4 2 1 2 1
( )

1 (2 1) 1 (2 1)
1 cos sin

4 2 1 2 1

g
f h i

n n

m

a
b c

n n

H n n
c ctH ctH

n n
W t

n nH
ctH ctH

n n

   
 

  
 

 


 

 


 

 
   

  
  
   

   

 

 

  

1

0 0

1 (2 1) 1 (2 1)
1 cos sin

4 2 1 2 1

m

a
b c

n n

MgB m

n nH
ctH ctH

n n

  

  
 



 


 


  
   

   
 

 (29) 

The homogenous part of equation (29) is first treated and a modified frequency corresponding to the 

frequency of the free system due to the presence of moving distributed mass is sought. To this end, an 

equivalent free system operator defined by the modified frequency then replaces equation (29). To do this, we 

consider a parameter 1m  for any arbitrary mass ratio 
defined as 

1
m












        (30) 

so 
21 0( ) 0( )m m m                (31) 

since 

 
  21

1 ( ) 0( )
1 ( )

mm m

m mm

H n
H n

 


   
   

    (32) 

where 

  
0 0

1 (2 1) 1 (2 1)
( ) cos sin

4 2 1 2 1
a

mm b c

n n

n nH
H n ctH ctH

n n
 

 

 

 

 
  

 
    (33) 

Therefore all the coefficients of ( )mW t and its derivatives in equation (29) are written in terms of m . 

And setting m to zero we obtain a situation corresponding to the case in which the inertia effect of the mass of 

the system is regarded as negligible is obtained. Then the solution is written in the form 

( ) cos ( )m mm f fW t f t t          (34) 
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where
mmf and f are constants and 4

1

m
f

m

B

B
   

By Struble’s technique, it is required that the solution of the homogenous part of equation (2.27) be written in 

the form 

  
2

1( ) ( )cos ( ) ( ) 0( )m mm f f m mW t C t t t W t            (35) 

Substituting equations (35) and its derivatives into homogenous parts of equation (29) one obtains 

  2 ( ) sin ( ) 2 ( ) ( )cos ( )mm f f f mm f f f fC t t t C t t t t            
   

  
22 ( ) sin ( ) ( )cos ( )

4 4
d a

m mm f f f m f mm f f

H H
c C t t t C t t t                

  ( )cos ( ) 0
4

g
m mm f f

H
C t t t           (36) 

It is noted that in equation (36), higher order terms 0( )m and terms that do not contribute to the variational 

equations have been neglected. Thus setting the quotient of sin ( )f ft t   andcos ( )f ft t   to zero 

in equation (36) we obtain, 

  2 ( ) 2 ( ) 0
4

d
mm f m mm f

H
C t c C t         (37) 

and 

22 ( ) ( ) ( ) ( ) 0
4 4

ga
mm f f m f mm m mm

HH
C t t C t C t          (38) 

from equation (37) we have 

 
0

4( )
d

m
H

C

mmC t f e


         (39) 

and from (38) 

  
2

2
( )

4 42

m ga
f f f f

f

HH
t t

t


  



 
    

 
     (40) 

where f is a constant 

Substituting (39) and (40) into (35), we have 

   

  4
0( ) cos

d
m

H
c

m ff fW t f e t


           (41) 

Therefore when the mass effect of the particle is considered, the first approximation to the homogenous system 

is given as 

  ( ) ( )cosm mm ff fW t C t t           (42) 

where 

  
2

2
1

4 42

m ga
ff f f f

f

HH
   



  
    

   

     (43) 

is the modified frequency corresponding to the frequency of the free system due to the presence of the moving 

distributed mass. In view (41), the homogenous part of the equation (29) can be written as 

  

2
2

2
( ) ( ) 0m ff m

d
W t W t

dt
         (44) 

So, the entire equation (29) takes the form 

  

2
2

2

5

( ) ( ) cos cosm ff m

m

d Mg m ct
W t W t m

dt m B L


 

 

 
    

 
   (45) 

Employing Laplace transformation technique and the convolution theory, one obtain an expression for f and 

when inverted gives 
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 

5

2 2
1

1 coscos cos2
( , ) sin

ff

ffm ffm

m m ff

tt tB m x
V x t

m L

  

   





 
  

  

   (46) 

which represents the traverse displacement response to moving distributed mass moving at constant speed on 

constant elastic foundation. 

 

IV. Discussion Of The Analytical Solution 
When an undamped system such as this is studied, it is required that phenomenon of resonance is 

examined. Equation (27) clearly reveals that the simply supported the beam under moving distributed force 

experience effect when 

   f

m c

L


          (47) 

while equation (46) shows the same beam under the action of a moving distributed mass 

   ff

m c

L


          (48) 

where 

   
2

2
1

4 42

m ga
ff f f f

f

HH
   



  
     

   

    (49) 

Thus,  

   

2

2
1

4 42

f

gm a
f f

f

m c

L

HH






 



  

    
   

    (50) 

Clearly, it is seen that for the same natural frequency, the critical speed for the moving force problem is 

greater than that of the moving distributed force problem. Thus, the resonance is reached earlier in the moving 

distributed mass system than in the moving distributed force system. 

 

4.1 Numerical calculation and discussion of results 

For practical purposes, the foregoing analysis is illustrated by considering a uniform simply supported 

thin beam resting on constant elastic foundation of length12.192mconstant velocity of 3.123 /m s ,

2.10924 09E E  and 0.0028769#I   respectively. The results are displayed on the various graphs 

below. 

Figure1 and 2 show the effect of foundation modulli on the dynamic deflection of the uniform thin 

beam with variable prestress of simply supported boundary condition in both cases of moving distributed force 

and moving distributed mass respectively. The graphs show that an increase in the foundation modulus 

decreases the dynamic response of the thin beam. 
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Fig. 1: Deflection profile of thin beam with variable prestress traversed by moving distributed force for various 

values of foundation modulus. 
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Fig. 2: Deflection profile of thin beam with variable prestress traversed by moving distributed mass for various 

values of foundation modulus. 

 

Figure 3 and 4 displays the effect of prestress on the dynamic deflection of the uniform thin beam with 

variable prestress of simply supported boundary condition in both cases of moving distributed force and moving 
distributed mass respectively. The graphs show that an increase in the prestress decreases the dynamic response 

of the thin beam. 
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Fig. 3: Desplacement response of thin beam with variable prestress traversed by moving distributed force for 

various values of prestress (N). 
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Fig. 4: Desplacement response of thin beam with variable prestress traversed by moving distributed mass for 

various values of prestress (N). 

 
Figure 5 displays the displacement response of the moving distributed force and moving distributed 

mass for the thin beam simply supported boundary condition. It is observed that the dynamic amplitude of a 

moving distributed mass is greater than moving distributed force problem. 
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Fig. 5: Comparison of moving distributed force and moving distributed mass of for thin beam with variable 

prestress traversed by moving distributed load. 

 

V. Conclusion 
The dynamical analysis of thin beam under a moving distributed load and resting on constant elastic 

foundation with variable prestress has been presented. The versatile Galerkin’s technique was used to reduce the 

governing fourth order partial differential equations and a modification of Struble’s method is used to solve 

resulting Galerkin’s equations. From the numerical analysis, it is noted that as the prestress bN increases, the 

displacement response of the simply supported beam decrease and for fixed value of prestress bN , the response 

amplitude of simply supported beam decrease as the foundation modulli bK increases. Also, as the mass ratio m

increases, the dynamic response of the simply supported thin beam resting on constant elastic foundation under 

moving distributed load decrease. 

Furthermore, for fixed value of foundation modulli bK , prestress bN and mass ratio m , the 

displacement response for the moving mass problem is greater than that of moving force problem for the simply 

supported beam on constant foundation considered. 

Finally, for the same natural frequency, the critical speed for the moving force problem is greater than 

that of the moving mass problem. Therefore, it is deduced that moving force solution is not a save 

approximation to the moving mass solution. 
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