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Abstract: The Cayley Hamilton theorem for  an arbitrary matrix A is generalized to a polynomial matrix. It is 

proved that if h( ) = det[f( )g( )] then h(A) = 0 iff det f(A) = 0 or det g(A) = 0. 
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I. Introduction 
 In England, J.J.Sylvester first introduced the term “Matrix” in the year 1848. Matrix algebra was 
nurtured by the work of Arthur Cayley in 1855. Matrices are vital and essential part of the area of mathematics. 

Applications of matrices are found in most of the scientific fields. 

 The Cayley Hamilton theorem is one of the most important theorem in Matrix analysis which is 

extremely versatile and useful. It was given by Cayley in his 1858 Memoir on the Theory of Matrices. It says 

that every square matrix satisfies its own characteristic equation .0 IA 
 

 Early in the development the formula det(AB) = det(A)det(B) provide a connection between matrix 
algebra and determinants.

 

 The Cayley-Hamilton theorem and its generalizations have been used in control systems [2] and also 

au-tomation and control in [3], electronics and circuit theory [4], time-systems with delays [5], singular 2-D 

linear systems [6], 2-D continuous discrete linear systems [7], automation and electrotechnics [8], etc. 

 In this paper a generalization of the Cayley Hamilton theorem for polynomial matrices  is presented. 

The linear polynomial matrix (A –  I) of det (A –  I) in the classical Cayley Hamilton theorem is replaced by 

the general polynomial matrix  
n

nAAAf   .....)( 10  where 
'

iA s for i = 0, 1, 2,…,n are square 

matrices of the same order. 

 It is proved that if h( ) = det [f( )g( )] then for a square matrix  A, h(A) = 0 iff  det f(A) = 0 or 

   det g(A) = 0. It is illustrated with help of some examples. 

 

II. Preliminaries 
Definition 2.1 

 A  matrix A whose entries are polynomials is said to be a  polynomial matrix. 

 

Example  2.2 

 A 3 x 3 polynomial matrix of degree 2 is given below. 
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Example 2.3 

 A 3 x 3 polynomial matrix of degree 2 with coefficient matrices are symmetric is given below. 
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                where 
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Example 2.4 

 A 3 x 3 polynomial matrix of degree 2 with coefficient matrices are skew symmetric is given below. 
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Example 2.5 

 A 2 x 2 polynomial matrix  of  degree2 with coefficient matrices  are Hermitian is as follows 
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Example  2.6 

 A 2 x 2 polynomial matrix of degree 2 with coefficient matrices are skew Hermitian is as follows 

 

 

 
 

              

where 













ii

ii
A

31

1
0 , 












0

0
1

i

i
A  and 














02

20
2

i

i
A  

 

III. Main Theorem 
Lemma 3.1 

 If A and B are square matrices of order n having elements as polynomials in   each of degree m  

then the elements of the  matrix AB are also polynomials in   degree mn. 

Example 3.2 

 

 

 
 

Theorem:3.3 

 Let
m

mAAAf   .....)( 10  and 
m

mBBBg   .....)( 10 be polynomial matrices for 

])[()(),(  FMgf n where )(, '' FMsBsA nii   for i = 1, 2, 3,….m are square matrices of order n over the 

field F. If h( ) = det[ f( )g( )], then h(A) = 0 if and only if  det f(A) = 0 (or)  det g(A) = 0. 

Proof: 

 Let h(A) = 0. We have to prove that det f(A) = 0 (or)  det g(A) = 0. 

Assume the contrary that det f(A)   0 and   det g(A)   0. 

 Since for any two square matrices A and B, we have  

2

210

22

22

22

522351

22332

5120









AAAA 
























2

21022

22

53)2()1(

)2()1(1





AAA

iii

iii
A 



















2

2102

2

3)2()1(

)2()1(





AAA

iiii

iiii
A 

























































0

2

1

0

0

1
4

22

2











ABthenBandALet



On the Determinant of a Product of Two Polynomial Matrices 

www.iosrjournals.org                                                    12 | Page 

     det(AB) = det A det B                    (3.1) 

using (3.1), we have  det (f( )g( )) = det f( ) det g( ). 

 h(A) = det[f(A)g(A)] = det f(A) det g(A)  0. 

Which is a contradiction to our assumption that h(A) = 0. 

Hence det f(A) = 0 (or)  det g(A) = 0. 

Conversely,  

 Let us assume that det f(A) = 0 (or)  det g(A) = 0. We have to prove that h(A) = 0. 

  Since 

  
m

m

m

m BBBgandAAAf   .....)(.....)( 1010     (3.2) 

are matrices of order n x n having elements as polynomials in   each of degree   m, therefore by lemma 3.1, 

we have 

  
mn

mnCCCCgf   ......)()( 2

210                                 (3.3) 

 also det f( ) and det g( ) are polynomials in   over F[ ] of degree .mn  

Using lemma 1 of [1], we have  

    
mn

mnQQQf   .....)(det 10                (3.4) 
and 
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mnRRRg   .....)(det 10     (3.5)
 

 Also h( ) = det [f( )g( )] is a polynomial in   over F[ ] of degree .2mn  

Using lemma 1 of [1], we have  

   h( ) = det [f( )g( )] = 
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mnPPPP 2
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210 ......  
  (3.6)

 

Now using (3.1), we have   

    det (f( )g( )) = det f( ) det g( )                       (3.7) 

Using  (3.3), (3.4) and (3.6) in  (3.7) 
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 Comparing coefficients of the like terms on both sides of equation (3.8), we get 
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 Multiplying the equations in (3.9) by the matrices I, A, A2, A3,……. Am, Am+1,…… A2mn-1, A2mn respectively 

and adding, we get  
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Example 3.4  
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where 
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 If h( ) = det [f( )g( )] = 
6
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210  AAAAAAA   = 
643   . 

det f( ) = 1 +   –  3 and det g( ) =  3. 

 Let )(0)( 33643 AAIAAAAAh 

 
              

.0)(det0)(det  AforAg
 

Conversely,
 

 Let det f(A) = 0 = I + A – A3  or det g(A) = A3 = 0. 

             
.0)0()()( 333643  AAAIAAAAAh
 

 

IV. Conclusion 
 In this paper we have proved a theorem on the determinant of the product of two polynomial matrices. 

Similarly we can prove all results relating to matrices and their determinants. 

 

References 
[1]   Raj Kumar Kanwar, „ A Generalization of the Cayley-Hamilton Theorem,” Advances in PureMathematics, 2013, 3, 109-115  

Published Online January  2013 (http://www.scirp.org/journal/apm). 

[2]  M. Buslowicz and T. Kaczorek, “Reachability and Mini-mum Energy Control of Positive Linear Discrete-Time Systems with One  

Delay,” Proceedings of 12th Mediter-ranean Conference on Control and Automation, Kasadesi- Izmur, CD ROM, 2004. 

[3]  B. G. Mcrtizios and M. A. Christodolous, “On the Gener-alized Cayley-Hamilton Theorem,” IEEE Transactions on Automatic 

Control,       Vol. 31, No. 1, 1986, pp. 156-157. 

[4]  T. Kaczorek, “Generalization of the Cayley-Hamilton Theo-rem for Non-Square Matrices,” International Conference of 

Fundamentals of Electronics and Circuit Theory XVIII- SPETO, Gliwice, 1995, pp. 77-83. 

[5]   T. Kaczorek, “Extension of the Cayley-Hamilton Theo-rem for Continuous-Time Systems with Delays,” Interna-tional Journal of  

Applied Mathematics and Computer Sci-ence, Vol. 15, No. 2, 2005, pp. 231-234. 

[6]  T. Kaczorek, “An Existence of the Cayley-Hamilton Theo-rem for Singular 2-D Linear Systems with Non-Square Matrices,” 

Bulletin of  the Polish Academy of Sciences. Technical Sciences, Vol. 43, No. 1, 1995, pp. 39-48. 

[7]  T. Kaczorek, “Extensions of the Cayley-Hamilton Theo-rem for 2D Continuous-Discrete Linear Systems,” Ap-plied Mathematics 

and  Computation Sciences, Vol. 4, No. 4, 1994, pp. 507-515. 

[8]  T. Kaczorek, “Vectors and Matrices in Automation and Electrotechnics,” Polish Scientific Publishers, Warsaw, 1988. 

 

 

 

 
 

 

 

 


