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I.  Introduction
Let R be a commutative ring with unity and let M be a unitary R-module, M is called a monoform
module if for each nonzero submodule N of M and for each f € Hom(N,M), f # 0 implies ker f = (0), [15].
Equivalently M is monoform if and only if every nonzero submodule N of M is rational, that is N < K <M,

Hom (%,M) =0, [14].

The concept small monoform appeared in [S] where an R-module M is called small monoform if for
each 0 N <M and for each nonzero f € Hom(N,M), implies ker f <N. Also this class of modules studied in
[8]. In this paper we introduce another generalization of monoform. M is called S-monoform module if for each
nonzero small submodule N of M and for each nonzero f € Hom(N,M), implies ker f = 0. And a proper
submodule N of M is called small (denoted by N < M) if N+ K # M for any proper submodule, [9].

We give the basic properties of S-monoform module and their relationships with small monoform,
monoform module and other related modules.

I1. S-Mono form Modules-Basic Results
In this section, as a generalization of monoform modules, S-monoform modules are introduced. Basic
properties of S-monoform modules are given (see theorem (1.4)).

Definition (1.1):

Let M be an R-module. M is called S-monoform if for each N <« M, N # (0) and f € Hom(N,M)
implies ker f= (0).

A ring R is called S- monoform if it is S-monoform R-module.

Remarks and Examples (1.2):
(1) [Itis clear that Z4 as Z-module is S-monoform.

(2) Zs as Z-module is not S-monoform, since there exists f: <2 >—— Zg, such that f (X)=2X, for each

X € <2> and hence ker f= {0,4}# (0) = (0). Also notice that Zs is small monoform. Thus small

monoform does not imply S-monoform.

(3) Clearly every monoform module is S-monoform, but the converse is not true. For example: Z, as Z-module
1s S-monoform, but not monoform.

(4) IfM is semisimple, then M is S-monoform.

Proof:
As M is semisimple, (0) is the only small submodule of M. Hence the result follows directly. In particular

each of Z¢, Z,, Z,®Z, as Z-module is S-monoform.

(5) The epimorphic image of S-monoform modules not necessarily S-monoform, for example: the Z-module Z
is S-monoform. But n: Z—— Z/8Z = Zg, where 7 is the natural epimorphism. However Zg as Z-module is
not S-monoform (see remarks and examples (1.2)(2)).

(6) Every nonzero submodule of S-monoform module is S-monoform module.

Proof:
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Let M be an S-monoform R-module and let (0) # N < M, for any (0) # U < N, let f: U—— N, £ (0).
Consider the diagram

U—L5N—5M, iof = (0)
Where i is the inclusion mapping N to M. But U < N, implies U < M. Hence ker (iof) = (0), since M is S-

monoform. But ker f < ker (iof'), so ker f=(0). Thus N is S-monoform.

Note (1.3):

The direct sum of S-monoform modules is not necessarily S-monoform module. Now, consider the
following example:

Let M = Z, ® Z, as Z-module, let N= <2 >@®< 2> M and let f: N—> M defined by f (X,y) =(X,2Y),

for each (X,y) € N, ker f= {(0,0),(0,2)}# {(0,0)}, then M is not S-monoform, but Z; as Z-module is S-
monoform (see remarks and examples (1.2) (1)).

Recall that an R-module M is called fully stable if for each N < M, N is stable; that is for each
f € Hom(N,M), f(N) < N, see [1]. Equivalently M is fully stable if and only if ann(ann(x)) =(x) , for each x €
M R

M, see [1,corollary 3.5,p.22].

Theorem (1.4):

Let M =M; @ M,, M;, M, <M such that for each f: N; ® N, — M, f= 0 implies f (N;) = (0),
f(Ny) =0 (i.e. fIN; =0, fN, # 0 and M is fully stable, then M; and M, are S-monoform if and only if M is S-
monoform.

Proof:
(<) It is clear by remarks and examples (1.2)(6).

(=) Let (0) # N < M and let f € Hom(N,M), f# 0. Since M is fully stable, N =N; @ N,, where N, =N N M,,

N,= N N M,. Moreover, f (N) € N. As N < M, we get N; < M, and N, < M, by [2, proposition 5.20]. Let
g =f/N;,:N,—> M, g, = /N, : N, —> M. Again, since M is fully stable g(N;) < Ny, g(N,) < N,. Thus
gi: N —— M,, g N, —> M, and so ker g; @ ker g = <0> @ <0> = <0>. Now, let n € ker f <N, then
n=n; + n, for some n; € N, n, € N; and f (n) = 0. Thus 0 = f (n) = f (n;) + f () = g(ny) + g(n,). Hence
g(n)) = — g(ny) € Ny N N, = (0), it follows that g(n;) = g(ny) = 0; that is n; € ker g; = (0), n, € ker g, = (0).
Therefore n; +n, = 0 and hence ker f=(0).

Note (1.5):
The condition M is fully stable in theorem (1.4) cannot be dropped, since the module M (in note (1.3))

is not fully stable, since for W=<2 >@® < 0>, there exists f: W —> M defined by f (X,0)=(0,X), for
each (X,0) € W, then f(W)=<0>+<2> W

2 S-Monoform Modules and S-Uniform Modules
It is known that monoform (small monoform) module implies uniform (see [3,theorem (2.3)] where an
R-module M is called uniform if every nonzero submodule N of M is essential (large), and a submodule N of M,

N #( 0) is called essential (denoted by N < M) if N " W = (0) for each W = (0), see [6]. However this is not true

for S-monoform (see remarks and examples (1.2)(4)). However we introduce the concept of S-uniform and we
see that there are some connections between S-monoform module and S-uniform module (see theorems
(2.5,2.13), propositions (2.2,2.14) and corollary (2.7).

Definition (2.1):

Let M be an R-module. M is called S-uniform if every nonzero small submodule of M is essential in
M.
It is clear that every uniform module is S-uniform, but the converse is not true as the following example
shows:
Zs as Z-module is S-uniform, since Z¢ has no nonzero small submodule. However Zg is not uniform.
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Let M be an R-module, put Z(M) = {m € M: agn(M)SR} , Z(M) is called a singular submodule of M. M
is called singular if Z(M) = M and M is called nonsingular if Z(M) = (0), see [6].

Proposition (2.2):

Let M be a nonsingular R-module, if M is S-uniform. Then M is S-monoform.
Proof:

Let (0) # N < M and let f € Hom(N,M), f # (0). To prove ker f = (0). By 1" Fundamental theorem
N/ker f = £ (N). But f (N) € M and M is nonsingular, hence f (N) is nonsingular by [6,proposition 1.22,p.32].
Thus N/ker fis nonsingular. But ker f € N and N < M, so ker f << M. As M is S-uniform we have ker f < M.

Hence ker f £ N. Also, since N < M, so N is nonsingular, hence N/ker f'is singular by [6,proposition 1.21,p.32].

Thus N/ker f singular and nonsingular. It follows that N/ker f= (0); that is N = ker f and so that f= 0 which is a
contradiction. Thus ker = (0).

Remark (2.3):

The converse of proposition (2.2), is not true in general. For example:
Consider Z;, as Z-module; < 6 > is the only nonzero small submodule of Z;,, let f: < 6> —> Z1,, £#(0),
then f'is the inclusion mapping. Thus ker f= (0). Hence Z,, is S-monoform. However Z,, is not S-uniform, since
<6><Z; But <6> £ 7, since <6>N<4>=(0).
€

Corollary (2.4):

Let M be a nonsingular R-module, if M is small monoform. Then M is S-monoform.
Proof:

Since M is small monofrm, then M is uniform by [8,proposition 1.6]. Hence M is S-uniform and so by
proposition (2.2), M is S-monoform.

Recall that M is an R-module, then M is monoform if and only if M is uniform prime, see [13,theorem 2.3].
We prove the following:

Theorem (2.5):

If M is S-uniform and semiprime R-module, then M is S-monoform.
Proof:

Let (0) # N < M and f € Hom(N,M) such that f # 0. To prove ker f = (0). Suppose ker f = (0).
Asker fc N < M, ker f << M and since M is S-uniform, then ker f < M. Since f# 0, then there exists x € N

€

such that f (x) # 0. Hence (ker f) n <x> # (0); that is there exists r € R, r # 0 such that 0 #r x € ker f. Thus
frx)=r f(x)=0
On the other hand N < M, rx € M implies <r x> < M. But M is S-uniform, so that <rx> < M and hence

<rx> N < f (x)> # (0). Then there exists r; € R, r; # 0 such that rjrx # 0 and rirx € < f (x)>. This implies
rirx = ¢ £ (x), for some 0 # ¢ € R. It is follows that r;r’x = crf (x) = 0. Thus (r;r)*x = 0. Hence r;rx = 0, since M
is semiprime, which is a contradiction. Thus ker f= (0) and hence M is S-monoform.

Remark (2.6):

The converse of theorem (2.5), is not true. For example:

The Z-module Z4 is S-monoform. But Z, is not semiprime since 22.1=0 , but 2 1#0.

Corollary (2.7):

If M is an S-uniform and prime R-module, then M is S-monoform.
Proof:
Since every prime module is semiprime, the result follows directly.

Recall that an R-module M is called small prime if agn M= a%m N for each N < M, see [10].

To prove the next two corollaries, we need the folowng lemma:
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Lemma (2.8):

Let M be a small prime. Then for each x # 0 with (x) < M and for each f € Hom((x),M) with f# 0, then
ker £=(0).
Proof:

Let x # 0 and let (x) < M, let 0 # f € Hom((x),M) and let rx € ker f, then f (rx) = 0. This implies
r f (x) = 0. But M is small prime; that is (0) is a small prime submodule. Hence either f (x) = 0 or

r € ((0) I:{ M) = annM. As f(x) #0, we get r € annM. Thus rx = 0, which implies ker f= (0).

Corollary (2.9):

Let M be an R-module such that every submodule of M is cyclic and small. If M is small prime, then M is
S-monform.
Proof:

It is follows by lemma (2.8).

Recall that an R-module M is a hollow module if M # (0) and every proper submodule of M is small in M,
see [4].

Corollary (2.10):

Let M be a small prime such that every submodule is hollow and Noetherian R-module. Then M is S-
monoform.
Proof:

Let N <M and N # (0). Since M is Noetherian, then N is a finitely generated submodule of M. But M is
hollow, so that N is cyclic submodule. Hence N = (x), for some x € M, x # (0). Thus the result is obtained by
lemma (2.8).

An R-module M is called quasi-Dedekind if every nonzero R-submodule N of M is quasi-invertable;
that is Hom(M/N,M) = 0. A ring R is quasi-Dedekind if it is quasi-Dedekind R-module see [11,definition
1.1,p.24]. Equivalently M is quasi-Dedekind module if and only if for each nonzero f € End(M), f is
monomorphism see [11, theorem 1.5,p.26].

The following proposition shows that S-monoform implies monoform under the class hollow quasi-
Dedekind module.

Proposition (2.11):
Let M be a hollow module and quasi-Dedekind R-module. If M is S-monoform, then M is monoform.
Proof:

Let (0) # N <M and let f € Hom(N,M) with f# 0. If N # M. Since M is hollow, then N << M. But M is
S-monoform by hypothesis, implies ker f= (0). If M =N, then ker f= (0), since M is quasi-Dedekind. Thus M is
monoform.

Note (2.12):

The condition M is quasi-Dedekind in proposition (2.11) is necessarily. For example: Z, as Z-module is
S-monoform and hollow. Also it is not quasi-Dedekind and it is not monoform.

Under the class of fully stable modules, we have the following result:

Theorem (2.13):
Let M be a fully stable R-module. If M is a small prime and S-uniform, then M is S-monoform.

Proof:
Let (0) # N < M and let f € Hom(N,M) with f# 0. To prove ker f = (0), suppose ker f # (0). Since
ker f< N <« M, then ker f << M. But M is S-uniform, so ker f < M. Hence <x> m ker f# (0), for any x € N,

x # 0. This means there exists r# 0, 0 # rxe ker f which implies 0= f (rx)=r f (x). But f € Hom(N,M) and N is
stable, so f(N) < N, hence < f (x)> < N. But N << M, so < f (x)> < M. As M is small prime and r f (x) =0, we

get that either f (x) =0 or r € annM. But x ¢ ker f. Thus r € annM, so rx = 0 which is a contradiction.
Therefore ker f = (0).

Recall that a submodule N of an R-module M is called rational in M if Hgm (X/N,M) = 0 for any
N <X <M, see [3].
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It is known that every rational submodule is essential [3]. Also it is known that: M is monoform if and
only if Hom(X/N,M) = 0 for each N < M and for each N < X < M, see [14].

We have the following result:

Proposition (2.14):

Let M be an R-module. If for each N << M, Hom(X/N,M)=0, N < X <M (i.e. for each N < M, N is
rational, then M is S-monoform and S-uniform.
Proof:

Let (0) # W < M and let f € Hom(W,M) with f= 0. If ker f= (0), then nothing to prove. If ker f# (0),

then W/ker f = f (W) < M. Hence there exists an isomorphism g such that g: W/ker f—— f (W). Consider the
diagram

W/ker/ —& 5f (W)——M

Where i is the inclusion mapping. Thus icg € Hom(W/ker f M) and iog # 0. On the other hand ker f <

W <« M, so ker f < M. But Hom(W/ker f,M) = (0), so we get a contradiction with the hypothesis. Thus ker f=
(0). Also for each N << M, then N < M, since N is rational submodule. Therefore M is S-uniform.

Recall that an R-module M is called multiplication if for each submodule N of M, N = IM for some
ideal I of R. Equivalently M is multiplication R-module if for each submodule N of M, N = (N : M)M, where

(N]:{ M) = {r eRirtM < N}, see [12].

Under the class of multiplication module we have the following result:

Proposition (2.15):
Let M be a multiplication R-module with ann (M) is a prime ideal of R. Consider the following:

(1) For each N <« M, N is rational submodule.

(2) For each N <« M, N is essential (i.e. M is S-uniform).

(3) M is S-monoform.

Then (1) < (2) and (1) = (3)

Proof:

(1) = (2) It is clear.

(2) = (1) Let (0) # N < M. Suppose there exists N < X <M such that Hom(X/N,M) # (0), then there exists
f € Hom(X/N,M), f# 0. So there exists x + N € X/N, x ¢ N such that f(x + N) =m # 0. Since N < M, there

exists r # 0 such that 0 # rx € N. It follows that rm =r f (x + N)= f (rx + N) = 0, then rm = 0. Since M is
multiplication Rm = <m> = IM, for some ideal I € R. Hence rIM = (0). Thus r] agn M. But agn M is prime

ideal, so either r e agn M o Ic agn M. Ifr e agn M, then rM = (0) which implies rx = 0, which is a
contradiction. Thus I < agn M, hence <m> = IM = (0), which is a contradiction. Thus Hom(X/N,M) = (0), for

each N < X <M (i.e. N is rational submodule).
(1) = (3) It follows by proposition (2.14).

Recall that an R-module M is called comonoform module if for every N < M, Hom(M,N/L) = (0), for
all L <N, see [7].

Proposition (2.16):
M is comonoform and S-monoform quasi-Dedekind R-module, then M is monoform.

Proof:
Since M is comonoform, then M is hollow by [7, lemma 17]. Byproposition (2.11), M is monoform.
Now we introduce the following:
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Definition (2.17):
An —R-module M is called small polyform if for each N « M, N # (0), f € Hom(N,M), ker f £ N.

The following result explains some connection between S-monoform module and small polyform module.

Proposition (2.18):
If M is S-monoform, then M is small polyform.
Proof:

Let (0) # N < M and f € Hom(N,M), f# 0. Since M is S-monoform, ker = (0) X N. Thus M is small

polyform.

Proposition (2.19):

If M is small polyform and S-uniform, then M is S-monoform.
Proof:

Let (0) # N < M and f € Hom(N,M) with f = 0. To prove ker f= (0). Suppose ker = (0). It is clear that
ker f <N <« M, hence ker f << M. On the other hand, M is S-uniform implies ker f < M. But this contradits the

hypothesis, M is small polyform. Thus ker f= (0) and so that M is S-monoform.
Corollary (2.20):
If M is S-uniform, then M is small polyform if and only if M is S-monoform.
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