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I. Introduction 
         Let R be a commutative ring with unity and let M be a unitary R-module, M is called a monoform 

module if for each nonzero submodule N of M and for each f  Hom(N,M), f  0 implies ker f = (0), [15]. 

Equivalently M is monoform if and only if every nonzero submodule N of M is rational, that is N  K  M, 

Hom
N

( ,M)
K

=0, [14]. 

         The concept small monoform appeared in [5] where an R-module M is called small monoform if for 

each  0  N  M and for each nonzero f  Hom(N,M), implies ker f ≪N. Also this class of modules studied in 
[8].  In this paper we introduce another generalization of monoform. M is called S-monoform module if for each 

nonzero small submodule N of M and for each nonzero f  Hom(N,M), implies ker f = 0. And a proper 

submodule N of M is called small (denoted by N ≪ M) if N + K  M for any proper submodule, [9]. 
        We give the basic properties of S-monoform module and their relationships with small monoform, 

monoform module and other related modules. 
 

II. S-Mono form Modules-Basic Results 

         In this section, as a generalization of monoform modules, S-monoform modules are introduced. Basic 

properties of S-monoform modules are given (see theorem (1.4)). 

 

Definition (1.1):   

         Let M be an R-module. M is called S-monoform if for each  N ≪ M, N  (0) and f  Hom(N,M) 
implies ker f = (0). 

 

        A ring R is called S- monoform if it is S-monoform R-module. 

 

Remarks and Examples (1.2):   

(1) It is clear that Z4 as Z-module is S-monoform. 

(2) Z8 as Z-module is not S-monoform, since there exists f : 2  Z8, such that (x) 2xf  , for each           

x   2   and hence ker f = {0, 4} (0)   (0). Also notice that Z8 is small monoform. Thus small 

monoform does not imply S-monoform. 

(3) Clearly every monoform module is S-monoform, but the converse is not true. For example: Z4 as Z-module 

is S-monoform, but not monoform. 

(4) If M is semisimple, then M is S-monoform. 

Proof: 

        As M is semisimple, (0) is the only small submodule of M. Hence the result follows directly. In particular 

each of Z6, Z10, Z2Z2 as Z-module is S-monoform. 
(5) The epimorphic image of S-monoform modules not necessarily S-monoform, for example: the Z-module Z 

is S-monoform. But : Z  Z/8Z ≅ Z8, where  is the natural epimorphism. However Z8 as Z-module is 
not S-monoform (see remarks and examples (1.2)(2)). 

(6) Every nonzero submodule of S-monoform module is S-monoform module. 

Proof:   
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        Let M be an S-monoform R-module and let (0)  N  M, for any (0)  U ≪ N, let f : U  N, f  (0). 
Consider the diagram 

i
U N M

f
  , i∘f  (0) 

Where i is the inclusion mapping N to M. But U ≪ N, implies U ≪ M. Hence ker (i∘f ) = (0), since M is S-

monoform. But ker f  ker (i∘f ), so ker f = (0). Thus N is S-monoform. 

Note (1.3):   

         The direct sum of S-monoform modules is not necessarily S-monoform module. Now, consider the 
following example: 

Let M = Z4  Z4 as Z-module, let N = 2 2 M    and let f : N  M defined by (x, y) (x,2y)f  , 

for each (x, y)   N, ker f = {(0, 0), (0, 2)} {(0, 0)} , then M is not S-monoform, but Z4 as Z-module is S-

monoform (see remarks and examples (1.2) (1)). 

 

         Recall that an R-module M is called fully stable if for each N  M, N is stable; that is for each                       

f  Hom(N,M), f (N)  N, see [1]. Equivalently M is fully stable if and only if 
M R

ann(ann(x)) (x) , for each x  

M, see [1,corollary 3.5,p.22]. 

 

Theorem (1.4):   

         Let M = M1  M2, M1, M2  M such that for each f : N1  N2  M,            f  0 implies f (N1)  (0), 

f (N2)  0 (i.e. f |N1  0, f |N2  0 and M is fully stable, then M1 and M2 are S-monoform if and only if M is S-
monoform. 

 

Proof:   

() It is clear by remarks and examples (1.2)(6). 

() Let (0)  N ≪ M and let f  Hom(N,M), f  0. Since M is fully stable, N = N1  N2, where N1 = N  M1, 

N2= N  M2. Moreover, f (N)  N. As N ≪ M, we get N1 ≪ M1 and N2 ≪ M2 by [2, proposition 5.20]. Let         

g1 = f /N1 : N1  M, g2 = f /N2 : N2  M. Again, since M is fully stable g(N1)  N1, g(N2)  N2. Thus                 

g1: N1  M1, g2: N2  M2 and so ker g1  ker g2 = <0>  <0> = <0>. Now, let n  ker f  N, then                

n = n1 + n2 for some n1  N1, n2  N2 and f (n) = 0. Thus 0 = f (n) = f (n1) + f (n2) = g(n1) + g(n2). Hence               

g(n1) = – g(n2)  N1  N2 = (0), it follows that g(n1) =  g(n2) = 0; that is n1  ker g1 = (0), n2  ker g2 = (0). 
Therefore n1 + n2 = 0 and hence ker f = (0). 

 

Note (1.5): 

         The condition M is fully stable in theorem (1.4) cannot be dropped, since the module M (in note (1.3)) 

is not fully stable, since for W= 2 0    , there exists  f : W  M defined by (x, 0) (0,x)f  , for 

each (x, 0)   W, then f (W) = 0 2 W      . 

 

2 S-Monoform Modules and S-Uniform Modules 

         It is known that monoform (small monoform) module implies uniform (see [3,theorem (2.3)] where an 

R-module M is called uniform if every nonzero submodule N of M is essential (large), and a submodule N of M,     

N ( 0) is called essential (denoted by N 
e
  M) if N  W  (0) for each W  (0), see [6]. However this is not true 

for S-monoform (see remarks and examples (1.2)(4)). However we introduce the concept of S-uniform and we 

see that there are some connections between S-monoform module and S-uniform module (see theorems 

(2.5,2.13), propositions (2.2,2.14) and corollary (2.7). 

 

Definition (2.1):   

         Let M be an R-module. M is called S-uniform if every nonzero small submodule of M is essential in 

M. 

         It is clear that every uniform module is S-uniform, but the converse is not true as the following example 

shows: 

Z6 as Z-module is S-uniform, since Z6 has no nonzero small submodule. However Z6 is not uniform. 
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        Let M be an R-module, put Z(M) = {m  M: 
eR

ann(M) R} , Z(M) is called a singular submodule of M. M 

is called singular if Z(M) = M and M is called nonsingular if Z(M) = (0), see [6]. 

 

Proposition (2.2):   

        Let M be a nonsingular R-module, if M is S-uniform. Then M is S-monoform. 

Proof:   

        Let (0)  N ≪ M and let f  Hom(N,M), f  (0). To prove ker f = (0). By 1st Fundamental theorem               

N/ker f ≅ f (N). But f (N)  M and M is nonsingular, hence f (N) is nonsingular by [6,proposition 1.22,p.32]. 

Thus N/ker f is nonsingular. But ker f  N and N ≪ M, so ker f ≪ M. As M is S-uniform we have ker f 
e
  M. 

Hence ker f 
e
  N. Also, since N  M, so N is nonsingular, hence N/ker f is singular by [6,proposition 1.21,p.32]. 

Thus N/ker f singular and nonsingular. It follows that N/ker f = (0); that is N = ker f and so that f = 0 which is a 

contradiction. Thus ker f = (0). 

 

Remark (2.3):   

        The converse of proposition (2.2), is not true in general. For example: 

Consider Z12 as Z-module; 6   is the only nonzero small submodule of Z12, let f : 6    Z12, f  (0), 

then f is the inclusion mapping. Thus ker f = (0). Hence Z12 is S-monoform. However Z12 is not S-uniform, since 

6 ≪ Z12. But 
e

6   Z12, since 6 4 (0)    . 

 

Corollary (2.4):   

        Let M be a nonsingular R-module, if M is small monoform. Then M is S-monoform. 

Proof:   
        Since M is small monofrm, then M is uniform by [8,proposition 1.6]. Hence M is S-uniform and so by 

proposition (2.2), M is S-monoform. 

 

 

        Recall that M is an R-module, then M is monoform if and only if M is uniform prime, see [13,theorem 2.3]. 

We prove the following: 

 

Theorem (2.5):   

        If M is S-uniform and semiprime R-module, then M is S-monoform. 

Proof:   

        Let (0)  N ≪ M and f  Hom(N,M) such that f  0. To prove ker f = (0). Suppose ker f  (0).                   

As ker f  N ≪ M, ker f ≪ M and since M is S-uniform, then ker f 
e
  M. Since f  0, then there exists x  N 

such that f (x)  0. Hence (ker f )  <x>  (0); that is there exists r  R, r  0 such that 0  r x  ker f. Thus 
f(rx)= r f (x) = 0                                                                                                                                                  

        On the other hand N ≪ M, rx  M implies <r x> ≪ M. But M is S-uniform, so that <rx> 
e
  M and hence 

<rx>  < f (x)>  (0). Then there exists r1  R, r1  0 such that r1rx  0 and r1rx  < f (x)>. This implies               

r1rx = c f (x), for some 0  c  R. It is follows that r1r
2x = crf (x) = 0. Thus (r1r)

2x = 0. Hence r1rx = 0, since M 
is semiprime, which is a contradiction. Thus ker f = (0) and hence M is S-monoform. 

 

Remark (2.6):   

        The converse of theorem (2.5), is not true. For example: 

The Z-module Z4 is S-monoform. But Z4 is not semiprime since 
22 1 0  , but 2 1 0  . 

 

Corollary (2.7):   

        If M is an S-uniform and prime R-module, then M is S-monoform. 

Proof:   
        Since every prime module is semiprime, the result follows directly. 

        Recall that an R-module M is called small prime if 
R R

ann M ann N  for each N ≪ M, see [10]. 

        To prove the next two corollaries, we need the folowng lemma: 
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Lemma (2.8):   

        Let M be a small prime. Then for each x  0 with (x) ≪ M and for each f  Hom((x),M) with f  0, then 
ker f = (0). 

Proof:   

        Let x  0 and let (x) ≪ M, let 0  f  Hom((x),M) and let rx  ker f, then f (rx) = 0. This implies                
r f (x) = 0. But M is small prime; that is (0) is a small prime submodule. Hence either f (x) = 0  or                          

r  ((0)
R
: M) = annM. As f (x) 0, we get r  annM. Thus rx = 0, which implies ker f = (0). 

 

Corollary (2.9):   

        Let M be an R-module such that every submodule of M is cyclic and small. If M is small prime, then M is 

S-monform. 

Proof:   

        It is follows by lemma (2.8). 

 

        Recall that an R-module M is a hollow module if M  (0) and every proper submodule of M is small in M, 

see [4]. 
 

Corollary (2.10):   

        Let M be a small prime such that every submodule is hollow and Noetherian R-module. Then M is S-

monoform. 

Proof:   

        Let N  M and N  (0). Since M is Noetherian, then N is a finitely generated submodule of M. But M is 

hollow, so that N is cyclic submodule. Hence N = (x), for some x  M, x  (0). Thus the result is obtained by                
lemma (2.8). 

         An R-module M is called quasi-Dedekind if every nonzero R-submodule N of M is quasi-invertable; 

that is Hom(M/N,M) = 0. A ring R is quasi-Dedekind if it is quasi-Dedekind R-module see [11,definition 

1.1,p.24]. Equivalently M is quasi-Dedekind module if and only if for each nonzero f  End(M), f is 
monomorphism see [11, theorem 1.5,p.26]. 

        The following proposition shows that S-monoform implies monoform under the class hollow quasi-

Dedekind module. 

 

Proposition (2.11):   
         Let M be a hollow module and quasi-Dedekind R-module. If M is S-monoform, then M is monoform. 

Proof:   

         Let (0)  N  M and let f  Hom(N,M) with f  0. If N  M. Since M is hollow, then N ≪ M. But M is 
S-monoform by hypothesis, implies ker f = (0). If M = N, then ker f = (0), since M is quasi-Dedekind. Thus M is 

monoform. 

 

Note (2.12):   

         The condition M is quasi-Dedekind in proposition (2.11) is necessarily. For example: Z4 as Z-module is 

S-monoform and hollow. Also it is not quasi-Dedekind and it is not monoform. 

 

        Under the class of fully stable modules, we have the following result: 

 

Theorem (2.13):   
         Let M be a fully stable R-module. If M is a small prime and S-uniform, then M is S-monoform. 

Proof:   

        Let (0)  N ≪ M and let f  Hom(N,M) with f  0. To prove ker f = (0), suppose ker f  (0). Since                 

ker f  N ≪ M, then ker f ≪ M. But M is S-uniform, so ker f 
e
  M. Hence <x>  ker f  (0), for any x  N,           

x  0. This means there exists r 0, 0  rx ker f which implies 0= f (rx)= r f (x). But f  Hom(N,M) and N is 

stable, so f (N)  N, hence < f (x)>  N. But N ≪ M, so < f (x)> ≪ M. As M is small prime and r f (x) = 0, we 

get that either f (x) = 0  or  r  annM. But x  ker f. Thus r  annM, so rx = 0 which is a contradiction. 
Therefore ker f = (0). 

         Recall that a submodule N of an R-module M is called rational in M if 
R

Hom (X/N,M) = 0 for any                

N  X  M, see [3]. 
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         It is known that every rational submodule is essential [3]. Also it is known that: M is monoform if and 

only if Hom(X/N,M) = 0 for each N  M and for each N  X  M, see [14]. 
 

        We have the following result: 

 

Proposition (2.14):   

         Let M be an R-module. If for each N ≪ M, Hom(X/N,M)= 0, N  X  M (i.e. for each N ≪ M, N is 
rational, then M is S-monoform and S-uniform. 

Proof:   

        Let (0)  W ≪ M and let f  Hom(W,M) with f  0. If ker f = (0), then nothing to prove. If ker f  (0), 

then W/ker f ≅ f (W)  M. Hence there exists an isomorphism g such that g: W/ker f  f (W). Consider the 
diagram 

g i
W / ker (W) Mf f   

Where  i  is the inclusion mapping. Thus i∘g  Hom(W/ker f,M) and i∘g  0. On the other hand ker f  

W ≪ M, so ker f ≪ M. But Hom(W/ker f,M)  (0), so we get a contradiction with the hypothesis. Thus ker f = 

(0). Also for each N ≪ M, then N 
e
  M, since N is rational submodule. Therefore M is S-uniform. 

         Recall that an R-module M is called multiplication if for each submodule N of M, N = IM for some 

ideal I of R. Equivalently M is multiplication R-module if for each submodule N of M, N = (N
R
: M)M, where              

(N
R
: M) = {r R:rM  N}, see [12]. 

        Under the class of multiplication module we have the following result: 

 

Proposition (2.15):   

        Let M be a multiplication R-module with 
R

ann (M) is a prime ideal of R. Consider the following: 

(1) For each N ≪ M, N is rational submodule. 

(2) For each N ≪ M, N is essential (i.e. M is S-uniform). 
(3) M is S-monoform. 

Then (1)  (2) and (1)  (3) 

Proof:   

(1)  (2) It is clear. 

(2)  (1) Let (0)  N ≪ M. Suppose there exists N  X  M such that Hom(X/N,M)  (0), then there exists                

f  Hom(X/N,M), f  0. So there exists x + N  X/N, x  N such that f (x + N) = m  0. Since N 
e
  M, there 

exists   r  0 such that 0  rx  N. It follows that rm = r f (x + N)= f (rx + N) = 0, then rm = 0. Since M is 

multiplication Rm = <m> = IM, for some ideal I  R. Hence rIM = (0). Thus rI  
R

ann M. But  
R

ann M is prime 

ideal, so either  r  
R

ann M  or  I  
R

ann M. If r  
R

ann M, then rM = (0) which implies rx = 0, which is a 

contradiction. Thus I  
R

ann M, hence <m> = IM = (0), which is a contradiction. Thus Hom(X/N,M) = (0), for 

each N  X  M (i.e. N is rational submodule). 

(1)  (3) It follows by proposition (2.14). 

 
         Recall that an R-module M is called comonoform module if for every N < M, Hom(M,N/L) = (0), for 

all            L  N, see [7]. 
 

Proposition (2.16):   

         M is comonoform and S-monoform quasi-Dedekind R-module, then M is monoform. 

 

Proof:   

         Since M is comonoform, then M is hollow by [7, lemma 17]. Byproposition (2.11), M is monoform. 

        Now we introduce the following: 

 

 



S-Mono form Modules 

www.iosrjournals.org                                                    31 | Page 

Definition (2.17):   

        An –R-module M is called small polyform if for each N ≪ M, N  (0), f  Hom(N,M), ker f 
e

 N. 

 

        The following result explains some connection between S-monoform module and small polyform module. 

 

Proposition (2.18):   

        If M is S-monoform, then M is small polyform. 

Proof:   

        Let (0)  N ≪ M and f  Hom(N,M), f  0. Since M is S-monoform, ker f = (0) 
e

  N. Thus M is small 

polyform. 

 

Proposition (2.19):   

        If M is small polyform and S-uniform, then M is S-monoform. 

Proof:   

        Let (0)  N ≪ M and f  Hom(N,M) with f  0. To prove ker f = (0). Suppose ker f  (0). It is clear that 

ker f  N ≪ M, hence ker f ≪ M. On the other hand, M is S-uniform implies ker f 
e
  M. But this contradits the 

hypothesis, M is small polyform. Thus ker f = (0) and so that M is S-monoform. 

Corollary (2.20):   

        If M is S-uniform, then M is small polyform if and only if M is S-monoform. 
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