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Abstract:   This paper studies two stochastic bulk arrival and bulk service queueing Models (A) and (B) with k 

varying environments. The system has infinite storing capacity and the arrival and service sizes are finite valued 

random variables. Matrix partitioning method is used to study the models. In Model (A) the maximum of the 

arrival sizes in all environments is greater than the maximum of the service sizes in all environments and the 

infinitesimal generator is partitioned as blocks of k times the maximum of the arrival sizes for analysis and in 

Model (B) the maximum of the arrival sizes in all environments is less than the maximum of the service sizes in 

all environments where the generator is partitioned using blocks of k times the maximum of the service sizes. 

The basic system generator is seen as a block circulant matrix. The stationary queue length probabilities, its 

expected values, its variances and probabilities of empty levels are derived for the two models using the rate 

matrix iterated. Numerical examples are presented for illustration. Bulk arrival and bulk service M/PH/1 and 
PH/M/1 queues become special cases of the models when the PH generator is identified as the generator of the 

randomly varying environment.  

Keywords: Block Circulant Matrix, Bulk Arrival, Bulk Service, Matrix Geometric Methods, Phase Type 

Distribution. 

 

I. Introduction 
In this paper two bulk arrival and bulk service queues have been studied with random environment 

using matrix geometric methods. Aissani.A and Artalejo.J.R [1] and Ayyappan, Subramanian and Gopal Sekar 

[2] have analyzed retrial queueing system using matrix geometric methods. Bini, Latouche and Meini [3] have 

studied numerical methods for Markov chains. Chakravarthy and Neuts [4] have discussed in depth a multi-
server queueing model. Gaver, Jacobs and Latouche [5] have treated birth and death models with random 

environment. Latouche and Ramaswami [6] have studied Analytic methods. For matrix geometric methods and 

models one may refer Neuts [7].  The models considered in this paper are general compared to existing queueing 

theory models. Here random number of arrivals and random number of services are considered at a time 

whereas a fixed number of customers arrive and are served at any arrival or service epochs in many queueing 

models. Bulk service queueing model with service for fixed b customers when more than b customers are 

waiting has been studied by Neuts and Nadarajan [8]. In the models considered, the service sizes are of random 

size. In a similar way arrival sizes of customers are usually fixed in bulk arrival queueing systems but the 

models here treat bulk arrival of customers subject to a probability law. In real life situations when a machine 

manufactures a fixed number of products in every production schedule, the defective items are rejected in all 

production lots, making the production lot is only of random size and not a fixed one always. Further in the 
models considered here, the arrival rates, the service rates, the probabilities of bulk sizes of arrivals and service, 

change whenever changes occur in the randomly varying environments. Such situations are seen often in 

software based industries where finished software projects waiting for marketing are sold in bulk sizes when 

there is economic boom and the business may be very dull when there is economic recession. In industrial 

productions, bulk types are very common. Manufactured products arrive in bulk sizes and several bulk sizes of 

products are sold in markets. In general demands vary depending on market requirements. Recently M/M/1 

queueing systems with disaster has been studied by Noam Paz and Uri Yechali [9]but random arrival size or 

random service size with varying environments have not been treated at any depth. Usually bulk arrival models 

have M/G/1 upper-Heisenberg block matrix structure with zeros below the first sub diagonal. The 

decomposition of a Toeplitz sub matrix of the infinitesimal generator is required to find the stationary 

probability vector. Matrix geometric structures have not been noted so far as mentioned by William J. Stewart 

[10]. But in this paper the partitioning of the matrix is carried out in a way that the stationary probability vector 
exhibits a matrix geometric structure for finite bulk queues with randomly varying environment.  

Two models (A) and (B) on M/M/1 bulk queueing systems under k varying environments with infinite 

storage space for customers are studied here using the block partitioning method to obtain matrix geometric 

results. In the models considered here, the maximum arrival sizes and the maximum service sizes are different 
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for different environments. Model (A) presents the case when M, the maximum of all the maximum arrival sizes 

in all the environments is bigger than N, the maximum of all the maximum sales sizes in all the environments. 

In Model (B), its dual, N is bigger than M, is treated. In general in Queueing models, the state space of the 
system has the first co-ordinate indicating the number of customers in the system but here the customers in the 

system are grouped and considered as members of M sized blocks of customers (when M >N) or N sized blocks 

of customers (when N >M) for finding the rate matrix. Using the maximum of the bulk arrival size or maximum 

of the bulk service size and grouping the customers as members of the blocks for the partitioning the matrices of 

the infinitesimal generator is a new approach in this area. The matrices appearing as the basic system generators 

in these two models due to block partitions are seen as block circulant matrices. The stationary probability of the 

number of customers waiting for service, the expectation, the variance and the probability of empty queue are 

derived for these models. Numerical cases are presented to illustrate their applications. M/PH/1 and PH/M/1 

bulk arrival and bulk service queues become special cases of M/M/1 bulk queues with randomly varying 

environments treated here when the PH generator is identified as the generator of the randomly varying 

environment. 
The paper is organized in the following manner. In section II and section III the M/M/1 bulk arrival and 

bulk service queues with randomly varying environment in which maximum arrival size M is greater than 

maximum service size N and the maximum arrival size is M less than the maximum service size N are studied 

respectively. In section IV, bulk arrival and bulk service M/PH/1 and PH/PH/1 queues are treated as special 

cases. In section V numerical cases are presented and section VI presents the conclusion. 

 

II. Model (A). Maximum Arrival Size M is Greater Than the Maximum Service Size N 
2.1Assumptions for M > N. 

i)There are k environments. The environment changes as per changes in a continuous time Markov chain with 

infinitesimal generator 𝒬1of order k.                                                                       

ii) Customers arrive in different bulk sizes for service. The time between consecutive bulk arrivals of customers 

has exponential distribution with parameterλi , in the environment i for 1 ≤ i ≤ k. At each bulk arrival in the 

environment i, χi customers arrive with probability given by P(χi= j)=pj
i for1 ≤ j ≤ Mi and  pj

iM i
j=1 =1 for 1 ≤ i ≤ k  

iii) Customers are served in different bulk sizes. The time between consecutive bulk services of customers has 

exponential distribution with parameter μi in the environment i for1 ≤ i ≤ k. At each service epoch in the 

environment i,ψi customers are served with probability given by P (ψi = j) =qj
i  for 1≤j ≤ Ni when more than Ni 

customersare waiting for service where qj
iN i

j=1   =1. When n customers n <Niare waiting for service, then j 

customers are served with probability, qj
i for1≤ j ≤ n-1 and n customers are served with probability qj

iN i
j=n for 1 ≤ 

i ≤ k. 

iv) When the environment changes from i to j, the parameters of times between consecutive bulk arrivals and 

consecutive bulk services change from (λi , μi) to (λj , μj ), the bulk arrival size χichanges to χj ,the bulk service 

size ψichanges to ψj  and the maximum arrival size Mi and the maximum service size Ni change to 

Mj  and Njrespectively for1 ≤ i, j ≤ k.                                                                                     

v) The maximum of the maximum of arrival sizes M = max1 ≤i ≤k Mi is greater than the maximum of the 

maximum of service sizes N =max1 ≤i ≤k Ni. 

 

2.2Analysis 

The state of the system of the continuous time Markov chain X(t) under consideration is presented as follows.                                                                                                                                                                                              

X (t) ={(n,j, i): for 0 ≤ j ≤ M-1; 1 ≤ i ≤ k and n ≥ 0}                                                                                           (1). 

The chain is in the state (n, j, i) when the number of customers in the queue is nM + j, for 0≤ j ≤M-1 and 0 ≤ n < 

∞ and the environment is i for 1 ≤ i ≤ k. When the number of customers in the system is r, then r is identified 
with (n, j) where r on division by M gives n as the quotient and j as the remainder. Let the survivor probability 

of the number of arrivals be 

P(χi> j) =Pj
i=1- pn

i j
n=1 , and P0

i = 1for 1 ≤ j ≤ Mi-1, in the environment i for 1 ≤ i ≤ k.(2)                                                    

Let the survivor probability of number of services be 

P (ψi> j) = Qj
i=1- qn

i j
n=1 , and Q0

i = 1  for 1 ≤ j ≤Ni-1  in the environment i for 1 ≤ i ≤ k                                  (3)              

The chain X (t) describing model has the infinitesimal generator QA of infinite order which can be presented in 

block partitioned form given below. 
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QA =

 
 
 
 
 
 
B1 A0 0 0 . . . ⋯
A2 A1 A0 0 . . . ⋯
0 A2 A1 A0 0 . . ⋯
0 0 A2 A1 A0 0 . ⋯
0 0 0 A2 A1 A0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                                      (4) 

In (4) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . n,…. Here  the vector n is of type 1 x 

k M and n = ((n, 0, 1), (n, 0, 2) …   (n, 0, k), (n, 1, 1), (n, 1, 2),…(n, 1, k),…(n, M-1, 1), (n,M-1, 2)…(n, M-1, k) 

for n ≥ 0. 

The matrices B1and A1 have negative diagonal elements, they are of order Mk and their off diagonal elements 

are non- negative. The matrices A0 , andA2 have nonnegative elements and are of order Mk and they are given 

below. Let the following be diagonal matrices of order k 

Λj= diag (λ1pj
1 , λ2pj

2 , … . , λkpj
k)     for 1 ≤ j ≤ M; Uj = diag (μ1qj

1, μ2qj
2, … . , μkqj

k) for 1 ≤ j ≤ N(5)          

 Vj = diag  μ1Qj
1 , μ2Qj

2 , … . , μkQj
k for 1 ≤ j ≤ N;  Λ =diag (λ1 , λ2 , … . , λk);  U = diag (μ1 , μ2 , … . , μk)  (6)  

Let 𝒬1
′ = 𝒬1 − Λ − U.  (7)                                                                                                                                    

Here 𝒬1  is the infinitesimal generator of the Markov chain of the environment.

A0 =

 
 
 
 
 
 
 
 
ΛM 0 ⋯ 0 0 0
ΛM−1 ΛM ⋯ 0 0 0
ΛM−2 ΛM−1 ⋯ 0 0 0
ΛM−3 ΛM−2 ⋱ 0 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
Λ3 Λ4 ⋯ ΛM 0 0
Λ2 Λ3 ⋯ ΛM−1 ΛM 0
Λ1 Λ2 ⋯ ΛM−2 ΛM−1 ΛM  

 
 
 
 
 
 
 

(8) 

A2

=

 
 
 
 
 
 
 
 
0 ⋯ 0 UN UN−1 ⋯ U2 U1

0 ⋯ 0 0 UN ⋯ U3 U2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ UN UN−1

0 ⋯ 0 0 0 ⋯ 0 UN

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

 (9)

A1 =

 
 
 
 
 
 
 
 
 
 
 
𝒬1

′ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1 ΛM−N ⋯ ΛM−2 ΛM−1

U1 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2 ΛM−N−1 ⋯ ΛM−3 ΛM−2

U2 μU1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3 ΛM−N−2 ⋯ ΛM−4 ΛM−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
UN UN−1 UN−2 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1

0 UN UN−1 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2

0 0 UN ⋯ U2 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ UN UN−1 UN−2 ⋯ 𝒬1

′ Λ1

0 0 0 ⋯ 0 UN UN−1 ⋯ U1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

. (10) 

B1 =

 
 
 
 
 
 
 
 
 
 
 
𝒬1 − Λ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1 ΛM−N ⋯ ΛM−2 ΛM−1

U 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2 ΛM−N−1 ⋯ ΛM−3 ΛM−2

V1 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3 ΛM−N−2 ⋯ ΛM−4 ΛM−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
VN−1 UN−1 UN−2 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1

0 UN UN−1 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2

0 0 UN ⋯ U2 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ UN UN−1 UN−2 ⋯ 𝒬1

′ Λ1

0 0 0 ⋯ 0 UN UN−1 ⋯ U1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

 . (11) 

𝒬A
′′ =
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=

 
 
 
 
 
 
 
 
 
 
 
 
 

𝒬1
′ + 𝛬𝑀 𝛬1 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈2 𝛬𝑀−1 + 𝑈1

𝛬𝑀−1 + 𝑈1 𝒬1
′ + 𝛬𝑀 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 + 𝑈3 𝛬𝑀−2 + 𝑈2

𝛬𝑀−2 + 𝑈2 𝛬𝑀−1 + 𝑈1 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 + 𝑈3 𝛬𝑀−3 + 𝑈3

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬𝑀−𝑁+2 + 𝑈𝑁−2 . ⋯ . . . ⋯ 𝛬𝑀−𝑁 + 𝑈𝑁 𝛬𝑀−𝑁+1 + 𝑈𝑁−1

𝛬𝑀−𝑁+1 + 𝑈𝑁−1 . ⋯ . . . . 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁

𝛬𝑀−𝑁 + 𝑈𝑁 . ⋯ 𝒬1
′ + 𝛬𝑀 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁 ⋯ 𝛬𝑀−1 + 𝑈1 𝒬1
′ + 𝛬𝑀 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−2 + 𝑈2 𝛬𝑀−1 + 𝑈1 𝒬1
′ + 𝛬𝑀 ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬2 𝛬3 ⋯ 𝛬𝑀−𝑁 + 𝑈𝑁 𝛬𝑀−𝑁+1 + 𝑈𝑁−1 𝛬𝑀−𝑁+2 + 𝑈𝑁−2 ⋯ 𝒬1

′ + 𝛬𝑀 𝛬1

𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 + 𝑈𝑁 𝛬𝑀−𝑁+1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈1 𝒬1
′ + 𝛬𝑀  

 
 
 
 
 
 
 
 
 
 
 
 

(12)

The basic generator 𝒬A
′′ of the bulk queue, which is concerned with only the arrival and service, is a matrix of 

order Mk given above in (12) where𝒬A
′′ =A0 +  A1 + A2 (13)                                                                                  

Its probability vector w gives, w𝒬A
′′  =0 and w. e = 1                                                                                           (14) 

              It is well known that a square matrix in which each row (after the first) has the elements of the previous 

row shifted cyclically one place right, is called a circulant matrix. It is very interesting to note that the matrix𝒬A
′′   

= A0 + A1 + A2 is a block circulant matrix where each block matrix is rotated one block to the right relative to 

the preceding block partition. Let the probability vector of the environment generator 𝒬 be π. Then   π𝒬 = 0 and 

π e =1. It can be seen in (13) that the first block-row of type k x Mk is, 

W = (𝒬1
′ + ΛM , Λ1,Λ2 , …ΛM−N−2 ,  ΛM−N−1,ΛM−N + UN , …ΛM−2 + U2 ,ΛM−1 + U1) 

This gives as the sum of the blocks  𝒬1
′ + ΛM + Λ1+Λ2  +…. . +ΛM−N−2 +  ΛM−N−1 + ΛM−N + UN+… 

…+ΛM−2 + U2 +  ΛM−1 + U1 =𝒬1. The stationary vector of 𝒬1 is π. This gives π 𝒬1 =0 and π 𝒬1
′ + ΛM +

π Λi
M−N−1
i=1 + π  (ΛM−i + Ui)

N
i=1  = 0 which implies (π, π… π, π). W = 0 = (π, π… π, π) W’ where W’ is the 

transpose column vector of W.  Since all blocks, in any block-row are seen somewhere in each and every 

column block due to block circulant structure,  the above equation shows the left eigen vector of the matrix 𝒬A
′′  

is (π,π…π).Using(14) 

 w =  
π

M
,

π

M
,

π

M
, … ,

π

M
 .                                                                                                                                        (15)         

Neuts [7], gives the stability condition as, wA0  e < 𝑤 A2  e where w is given by (15). Taking the sumof the same 

cross diagonally using the structure in (8) and (9)for the A0  and A2 matrices, it can be seen that  

wA0  e =
1

M
π   nΛn

M
n=1  e = 

1

M
 π . (λ1E(χ

1
), λ2E(χ

2
) , … . , λkE χ

k
  )<w A2 e = 

1

M
 π( nUn)eN

n=1   

=
1

M
 π . (μ

1
E(ψ

1
), μ

2
E(ψ

2
) , … . , μ

k
E ψ

k
  ) .   Taking the probability vector of the environment generator𝒬1as π = 

(π1 , π2 , … , πk−1 , πk) , the inequality reduces to  πi
k
i=1 λiE(χ

i
) <  πiμi

E(ψ
i

k
i=1  ).(16)                                                                                                                                                                                                                                                                                                                                                                             

This is the stability condition for M/M/1 random environment bulk arrival and bulk service queue where 

maximum of the maximums of arrival sizes in all environments is greater than the maximum of the maximums 

of service sizes in all environments.   By (16), the stationary distribution exists as proved in Neuts [7]. 

Let π (n, j, i), for 1≤ j ≤ M-1,  0 ≤ i ≤ k and 0 ≤ n < ∞ be the stationary probability of the states in (1) and πnbe 

the vector of type 1xMk  with, πn=  (π(n, 0, 1), π(n, 0, 2) … π(n, 0, k), π(n, 1, 1), π(n, 1, 2),…π(n, 1, k),…π(n, 
M-1, 1), π(n, M-1, 2)…π(n, M-1, k) )for n ≥ 0.  

The stationary probability vector 𝜋 = (π0 , π1 , π3 , …… )satisfies 𝜋QA =0, and 𝜋e=1.                                          (17)                                               

From (17), it can be seen π0B1 + π1A2=0.                                                                                                         (18) 

πn−1A0+πnA1+πn+1A2 = 0, for n ≥ 1.                                                                                                                 (19)  

Introducing the rate matrix R as the minimal non-negative solution of the non-linear matrix equation                                              

A0+RA1+R2A2=0, (20)                                                                                                                                                                                                                                                                                                                                                           

it can be proved (Neuts [7]) that πn  satisfies πn = π0 R
n     for n ≥ 1.                                                                  (21)                                                                                                                                                                                                                                                               

Using (17) and (21), π0 satisfies  π0  [B1 + RA2] =0                                                                                           (22) 

The vector  π0 can be calculated up to multiplicative constant by (22). From (17) and (21)π0 I − R −1e =1.  (23)                                                                                                                                                                                                                                                                                                                                                                                                         

Replacing the first column of the matrix multiplier of   π0 in equation (22) by the column vector multiplier of π0 

in (23), a matrix which is invertible may be obtained. The first row of the inverse of that same matrix is π0 and 
this gives along with (21) all the stationary probabilities of the system.  The matrix R given in (20) is computed 

by substitutions in the recurrence relation     

R 0 = 0;  R(n + 1) =  −A0A1
−1 –R2(n)A2A1

−1 , n ≥ 0.                                                                                      (24)  

The iteration may be terminated to get a solution of R at an approximate level where  R n + 1 − R(n )  < ε 
where ε is very small number. 
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2.3. Performance Measures 
(1) The probability P(S = n), of the queue length S = n, can be seen as follows. Let k ≥ 0 and j for 0 ≤ j ≤ M be 
non-negative integers such that n = k M + j. Then using (21) (22) and (23)it is noted that P(S=n) 

= πk
i=1  k, j, i  , where n = k M + j.(2) P (Queue length is 0) =P (S=0) =  πk

i=1 (0, 0, i).                                                                          

(3) The expected queue level E(S), can be calculated as follows. Since π (n, j, i) =P [S = M n + j, and 

environment state = i], for n≥0, and 1 ≤ j ≤ M-1 and 1 ≤ i ≤ k, we find E(S) =   π n, j, i k
i=1  Mn +M−1 

j=0
∞
n=0

j=n=0∞πn. (Mn… Mn, Mn+1…Mn+1, Mn+2…Mn+2…Mn+M-1… Mn+M-1)where in the multiplier vector 

Mn appears k times, Mn+1 appears k times and so on and finally Mn+M-1appears k times. So E(S) 

=M nπn
∞
n=0 e +π0( I − R)−1ξ.Here Mk x1 column vector ξ= 0, …0,1,… ,1,2,… ,2,… , M − 1, … , M − 1 ′. So   

E(S)=π0( I − R)−1ξ + Mπ0(I − R )−2Re                          (25)                                                                                                     

(4) Variance of queue level can be seen using Variance (S) = E (S2) – E(S)2 . Let η be column vector 

η=[0, . .0, 12 , …1222 , . . 22 , …  M − 1)2 , … (M − 1)2 ′of type Mkx1. Then it can be seen that the second 

moment, E (S2) =    π n, j, i k
i=1 [MM−1

J=0 n + j∞
n=0 ]2=M2  n n − 1 πn

∞
n=1 e +  nπn

∞
n=0 e +  πnη∞

n=0  +

2M n πn
∞
n=0 ξ. So, E(S2)=M2[π0(I − R)−32R2  e + π0(I − R)−2Re]+π0(I − R)−1η + 2M π0(I − R)−2Rξ  (26)                         

Using (25) and (26) variance can be written.  

 

III. Maximum Arrival Size M is Less Than the Maximum Service Size N 
 In this Model (B) the dual case of Model (A), namely the case, M < N is treated. (When M =N both 

models are applicable and one can use any one of them.) The assumption (v) of Model (A) is modified and all 

its other assumptions are unchanged. 

 

3.1Assumption. 

v) The maximum of the maximums of arrival sizes in all the environments M = max1 ≤i ≤k Miis less 

than the maximum of the maximums of service sizes in all the environments N =max1 ≤i ≤k Niwhere the 

maximum arrival and service sizes areMi and Ni in the environment i for 1 ≤ i ≤ k. 

 

3.2. Analysis 
Since this model is dual, the analysis is same as that of Model (A). The differences are noted below. The state 

space of the chain is as follows defined in a similar way.                                                                                                       

X (t) = {(n, j, i): for 0 ≤ j ≤ N-1 for 1 ≤ i ≤ k and 0 ≤ n < ∞}.                                                                            (27) 

The chain is in the state (n, j, i) when the number of customers in the queue is, n N + j, and the environment 

state is i for 1 ≤ j ≤ N-1,for 0 ≤ i ≤ k and 0 ≤ n < ∞.When the customers in the system is k then k is identified 

with (n, j) where k on division by N gives n as the quotient and j as the remainder. 

The infinitesimal generator QB  of the model has the same block partitioned structure given in (4) for Model (A) 
but the inner matrices are of different orders and elements. 

QB = 

 
 
 
 
 
 
 
B′

1 A′
0 0 0 . . . ⋯

A′
2 A′

1 A′
0 0 . . . ⋯

0 A′
2 A′

1 A′
0 0 . . ⋯

0 0 A′
2 A′

1 A′
0 0 . ⋯

0 0 0 A′
2 A′

1 A′
0 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 
 
 
 
 
 
 

                                                                                                 (28) 

In (28) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . n,….Here the state vector is given 

as follows.n = ((n,0, 1),…(n, 0, k),(n, 1, 1),…(n, 1, k),(n, 2, 1),…(n, 2, k),…(n, N-1, 1),…(n, N-1, k)), for 0 ≤ n 

< ∞.  The matrices, B′1,A′0  , A′1  and A′2 are all of order Nk. The matrices B′1  and A′1 have negative diagonal 

elements and their off diagonal elements are non- negative. The matrices A′0  and A′2 have nonnegative 

elements. They are all given below. As in model (A), letting Λj , for 1 ≤ j ≤ M , and   Uj , Vj   for 1 ≤ j ≤ N, Λ 

and U as diagonal matrices of order k given by (5) and (6) and letting𝒬1
′ = 𝒬1 − Λ − U, the partitioning 

matrices are defined as follows 
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A′
0

=

 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0

ΛM 0 ⋯ 0 0 0 ⋯ 0
ΛM−1 ΛM ⋯ 0 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
Λ2 Λ3 ⋯ ΛM 0 0 ⋯ 0
Λ1 Λ2 ⋯ ΛM−1 ΛM 0 ⋯ 0 

 
 
 
 
 
 
 

(29)  

A′2

=

 
 
 
 
 
 
 
 
UN UN−1 UN−2 ⋯ U3 U2 U1

0 UN UN−1 ⋯ U4 U3 U2

0 0 UN ⋯ U5 U4 U3

0 0 0 ⋱ U6 U5 U4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ UN UN−1 UN−2

0 0 0 ⋯ 0 UN UN−1

0 0 0 ⋯ 0 0 UN  
 
 
 
 
 
 
 

(30)

A′1 =

 
 
 
 
 
 
 
 
 
 
 

𝒬1
′ Λ1 Λ2 ⋯ ΛM 0 0 ⋯ 0 0

U1 𝒬1
′ Λ1 ⋯ ΛM−1 ΛM 0 ⋯ 0 0

U2 U1 𝒬1
′ ⋯ ΛM−2 ΛM−1 ΛM ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
UN−M−1 UN−M−2 UN−M−3 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−1 ΛM

UN−M UN−M−1 UN−M−2 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−2 ΛM−1

UN−M+1 UN−M UN−M−1 ⋯ U2 U1 𝒬1
′ ⋯ ΛM−3 ΛM−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
UN−2 UN−3 UN−4 ⋯ UN−M−2 UN−M−3 UN−M−2 ⋯ 𝒬1

′ Λ1

UN−1 UN−2 UN−3 ⋯ UN−M−1 UN−M−2 UN−M−1 ⋯ U1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

(31)  

B′1 =

 
 
 
 
 
 
 
 
 
 
 
𝒬1 − Λ Λ1 Λ2 ⋯ ΛM 0 0 ⋯ 0 0

U 𝒬1
′ Λ1 ⋯ ΛM−1 ΛM 0 ⋯ 0 0

V1 U1 𝒬1
′ ⋯ ΛM−2 ΛM−1 ΛM ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
VN−M−2 UN−M−2 UN−M−3 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−1 ΛM

VN−M−1 UN−M−1 UN−M−2 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−2 ΛM−1

VN−M UN−M UN−M−1 ⋯ U2 U1 𝒬1
′ ⋯ ΛM−3 ΛM−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
VN−3 UN−3 UN−4 ⋯ UN−M−2 UN−M−3 UN−M−2 ⋯ 𝒬1

′ Λ1

VN−2 UN−2 UN−3 ⋯ UN−M−1 UN−M−2 UN−M−1 ⋯ U1 𝒬1
′  
 
 
 
 
 
 
 
 
 
 

(32) 

𝒬𝐵
′′ =

  

 
 
 
 
 
 
 
 
 
 

𝒬1
′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1

𝑈1 𝒬1
′ + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2` 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝒬1

′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1

𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝒬1
′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀

𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 𝒬1
′ + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2 𝛬𝑀−1 + 𝑈𝑁−𝑀+1

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬2 + 𝑈𝑁−2 𝛬3 + 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝒬1

′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1

𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝒬1
′ + 𝑈𝑁  

 
 
 
 
 
 
 
 
 

(33) 

The basic generator which is concerned with only the arrival and service is 𝒬B
′′ =  A′0 +  A′1 + A′2. This is also 

circulant. Using similar arguments given for Model (A) it can be seen that its probability vector 

is 
π

N
,
π

N
,
π

N
, … ,

π

N
 and the stability condition remains the same. Following the arguments given for Model (A), one 

can find the stationary probability vector for Model (B) also in matrix geometric form. All performance 

measures given in section 2.3 including the expectation of customers waiting for service and its variance for 

Model (B) have the same form as given in Model (A) except M is replaced by N. 

 

IV. M/PH/1and PH/M/1 Bulk Arrival and Bulk Service Queues 
In this section M/PH/1 and PH/M/1 bulk arrival and bulk service queues are studied. Here the varying 

environment phase discussed earlier is identified with the phase of the PH generator. The same analysis and the 
partition structure can be used to study the bulk arrival and bulk service M/PH/1 and PH/M/1queues. They are 

presented below. Only important steps are explained. 

 

4.1.M/PH/1Bulk Arrival and Bulk Service Queue 

For M/PH/1 bulk arrival and bulk service queue letpj
i  and qn

i  be the probabilities of bulk arrival size is j for 1 ≤ j 

≤ M and bulk service size is  n for 1 ≤ n ≤ N, when the PH phase is i, 1 ≤ i ≤ k taking the both bulk sizes 
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(including the arrival) are depending on the PH service phase. Let the PH distribution be given by (α,  T ) where 

the starting vector isα= (α1 , α2 … . . αk) and  αi = 1k
i=1  and the absorption rate column vector isT0 = − T e 

=(t1 , t2 , . . tk)′. The above bulk partition method may be used for studying this queue. The matrices are slightly 

modified. Taking the arrival rate is λi, when the PH service phase is i for 1≤ i ≤ k, in the following way the 

previous matrices are defined. 

Λj=diag (λ1pj
1 , λ2pj

2 , … . , λk pj
k)     for 1 ≤ j ≤ M , Uj =  t1qj

1 , t2qj
2 , … . , tkqj

k 
′
αfor 1 ≤ j ≤ N,  Vj =

 t1Qj
1 , t2Qj

2 ,… . , tkQj
k 

′
α, for 1 ≤ j ≤ N, Λ =diag (λ1 , λ2 , … . , λk)  and U = T0α .  

MatricesQ1andQ′2are now defined as 𝒬1 = T + T0α and  𝒬1
′ = T − Λ.  The analysis given above for the two 

models M >N and N > M, the block partitions of the infinite order generators presented, the circulant structures 

of the basic system generators and the performance measures seen are all valid. When π is probability vector of 

𝒬1 = T + T0α of the PH generator of the PH service distribution, then the basic system generator has invariant 

probability vector as  
π

M
,
π

M
,
π

M
, … ,

π

M
 .The stability condition becomes 

 πi
k
i=1 λi E(χi) <  πitiE(ψi

k
i=1  ).                                                                                                                (34)                             

  Here E(χi ) and E(ψi )  are expected bulk arrival and bulk service sizes in PH phase 1≤ i ≤k and π = 

(π1 , π2 , … , πk−1 , πk)is the invariant probability vector of the PH generator.  

 

4.2. PH/M/1Bulk Arrival and Bulk Service Queue 
For PH/M/1bulk arrival and bulk service queue with same probabilities of bulk arrivals and bulk service sizes 

and the PH distribution given above, the same method can be used. Taking the service rate μi, when the PH 

arrival phase is i, for 1 ≤ i ≤ k, the following the matrices are defined. 

Λj=(t1pj
1 , t2pj

2 , … . , tkpj
k)′α   for 1 ≤ j ≤ M,   Λ = T0α ,             Uj = diag  μ1qj

1 , μ2qj
2 , … . , μkqj

k for1 ≤ j ≤ N, 

 Vj = diag (μ1Qj
1 , μ2Qj

2 ,… . , μkQj
k) for 1 ≤ j ≤ N, U = diag  μ1 , μ2 , … . , μk ,     𝒬1

′ = T − U  and  𝒬1 = T + T0α.         

The analysis given above for the two models M >N and N > M, the block partitions of the infinite order 

generators, the circulant structures of the basic system generators and the performance measures seen are all 

valid. The stability condition is πi
k
i=1 tiE(χi) <  πiμiE(ψi

k
i=1  )  where  E(χi) and  E(ψi)  are expected bulk 

arrival and bulk service sizes in PH phase i, 1≤ i ≤ k.  

The models, in which, the arrival pattern are not depending on PH service phase in M/PH/1 queue and the 

service pattern are not depending on PH arrival phase in PH/M/1 queue, are special cases of the models 
considered 

 

V. Numerical Illustration 

For Model (A), the varying environment is considered to be governed by the Matrix𝒬1 =  
−3 2 1
1 −3 2
2 1 −3

 . The 

maximum of the maximums of all bulk arrival sizes for all environments, M is fixed as 4 and the maximum of 

the maximums of all bulk service sizes for all environments, N is fixed as 2. The probabilities of the bulk 

arrivals of various sizes 1, 2, 3, and  4  in the three environments are considered respectively (.5,.3,.1,.1), 

(.7,.2,.1, 0), and (.8,.2, 0, 0) and the probabilities of the bulk service of various sizes 1, 2, 3, and 4 in the 

environments are considered respectively (.5, .5, 0, 0), (.6, .4, 0, 0) and (.7, .3, 0, 0 ). In table1 the various 

probabilities queue length at levels 0,1,2,3, in between0and 3, in between 4 and 7, in between 8 and 11, in 

between 13 and 16, and greater than 17 are tabulated in three columns by first fixing the service rates in the 

three environments as (4, 5, 6) and by varying the arrival rates as (3, 4, 5), (2, 3, 4) and (1, 2, 3). In a similar 
way by fixing the arrival rates in the three environments as (4, 5, 6) and by varying the service rates as (5, 6, 7), 

(6, 7, 8) and (7, 8, 9) results are obtained and listed in three last columns. Here same number of 30 iterations are 

performed to find the rate matrix R in all cases. When the service rate is fixed as (4, 5, 6) and the arrival rates 

decrease, the probability of empty queue increases, the difference-norm of the convergence of the rate matrix for 

same 30 iterations decreases, expected values of queue length and its variances also decrease. It can also be seen 

that the situation is same when the arrival rate is fixed as (4, 5, 6) and service rates are varied as (5, 6, 7), (6, 7, 

8) and (7, 8, 9). For Model (B), the varying environment is considered to be governed by the Matrix𝒬1 =

 
−3 2 1
1 −2 1
1 2 −3

 . The maximum of the maximums of all bulk arrival sizes for all environments, M is fixed as 2 

and the maximum of the maximums of all bulk service sizes for all environments, N is fixed as 4. The 

probabilities of the bulk service of various sizes 1, 2, 3, and  4 in the three environments are considered 

respectively (.5,.3,.1,.1), (.7,.2,.1, 0), and (.8,.2, 0, 0) and the probabilities of the bulk arrivals of various sizes 1, 

2, 3, and 4 in the environments are considered respectively (.5, .5, 0, 0) , (.6, .4, 0, 0) and (.7, .3, 0, 0 ). In table2, 

various probabilities of queue level 0,1,2,3, between 0 and 3, between 4 and 7, between 8 and 11, between 13 
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and 16, and greater than 17 are tabulated in three columns by first fixing the service rates in the three 

environments as (4, 5, 6) and by varying the arrival rates as (3, 4, 5), (2, 3, 4) and (1, 2, 3). In a similar way by 

fixing the arrival rates in the three environments as (4, 5, 6) and by varying the service rates as (5, 6, 7), (6, 7, 8) 
and (7, 8, 9) results are obtained and listed in three last columns. Here same number of 30 iterations are 

performed to find the rate matrix R in all cases. When the arrival rates decrease, the probability of empty queue 

increases, the difference-norm of the convergence of rate matrix for same the number of 30 iterations decreases, 

expected values of queue length and its variances also decrease. It can also be seen the situation is same when 

service rates increase. Figures 1, 2, 3 and 4 present the effects of variations of arrival and service rates on 

probabilities and expectations. 

 

Table 1.Model (A) Results When Arrival and Service rates Vary. 
Ue’=(4,5,6) Λe’=(3,4,5) Λe’=(2,3,4) Λe’=(1,2,3) Λe’=(4,5,6) Ue’,=(5,6,7) Ue’=(6,7,8)' Ue’=(7,8,9) 

P(S=0) 0.158341371 0.351441621 0.560979439 P(S=0) 0.125832135 0.233000621 0.317787225 

P(S=1) 0.092424855 0.158874787 0.173652676 P(S=1) 0.076007652 0.123401837 0.149704004 

P(S=2) 0.084554203 0.124076102 0.109577833 P(S=2) 0.071227843 0.106497122 0.120451635 

P(S=3) 0.075038802 0.092936098 0.064991978 P(S=3) 0.064822953 0.088793362 0.093133234 

π0e 0.410359231 0.727328608 0.909201927 π0e 0.337890582 0.551692942 0.681076098 

π1e 0.225011278 0.189069376 0.080674002 π1e 0.206643766 0.230973363 0.20473389 

π2e 0.138811418 0.057851069 0.008983862 π2e 0.14170573 0.111556605 0.072993415 

π3e 0.085949763 0.017815767 0.001011659 π3e 0.097585693 0.054267298 0.026314998 

P(S>17) 0.13986831 0.00793518 0.00012855 P(S>17) 0.216174229 0.051509793 0.014881599 

Norm 9.42E-05 1.05E-07 4.95E-13 Norm 2.15E-04 1.26E-05 5.88E-07 

Arrival Rate 1.416666667 1.05 0.683333333 Arrival Rate 1.783333333 1.783333333 1.783333333 

Service rate 1.733333333 1.733333333 1.733333333 Service rate 2.083333333 2.433333333 2.783333333 

E(S) 7.47240682 2.569412223 1.074481848 E(S) 9.833692906 4.660860449 3.036884931 

Variance(S) 69.08387352 11.02162889 2.947432592 Variance(S) 114.5402812 30.15358634 14.68843333 

 

Table 2.Model (B) Results When Arrival and Service rates Vary. 
Ue=(4,5,6)' Λe=(3,4,5)' Λe=(2,3,4)' Λe=(1,2,3)' Λe=(4,5,6) Ue=(5,6,7)' Ue=(6,7,8)' Ue=(7,8,9)' 

P(S=0) 0.179914796 0.357761922 0.554165978 P(S=0) 0.153049652 0.254328475 0.334056358 

P(S=1) 0.100656184 0.156789871 0.168524782 P(S=1) 0.088354101 0.129274956 0.151706226 

P(S=2) 0.103084273 0.141038455 0.127877761 P(S=2) 0.092287239 0.126033335 0.139586554 

P(S=3) 0.083766589 0.093776814 0.06345717 P(S=3) 0.076959324 0.094550266 0.095317428 

π0e 0.467421842 0.749367062 0.914025691 π0e 0.410650315 0.604187032 0.720666567 

π1e 0.23836799 0.18230171 0.077232037 π1e 0.231321944 0.230477476 0.195283758 

π2e 0.131561696 0.049652592 0.007845428 π2e 0.140397638 0.096177458 0.058699093 

π3e 0.072728882 0.013572051 0.000804775 π3e 0.085338438 0.040227667 0.017703152 

P(S>17) 0.089919589 0.005106585 9.21E-05 P(S>17) 0.132291665 0.028930367 0.00764743 

Norm 7.28E-05 8.04E-08 8.34E-13 Norm 1.46E-04 5.64E-06 2.02E-07 

Arrival Rate 1.3875 1.0375 0.6875 Arrival Rate 1.7375 1.7375 1.7375 

Service rate 1.775 1.775 1.775 Service rate 2.1375 2.5 2.8625 

E(S) 6.02049451 2.375371055 1.069637593 E(S) 7.305500432 3.871771634 2.631698215 

Variance(S) 45.25702272 9.215029858 2.772200549 Variance(S) 64.28060484 20.77694788 10.85512971 

 
Figure 1 Model (A) Arrival, Service rates and E(S)    Figure 2. Model (B) Arrival, Service rates and E(S) 

 

 
Figure 3. Model (A) P(S=i), i = 1, 2,      Figure 4. Model (B) P(S=i), i=1, 2, 
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VI. Conclusion 
Two M/M/1 bulk arrival and bulk service queues with randomly varying environments have been 

treated. The environment changes the arrival rates, the service rates, and the probabilities of sizes of bulk 

arrivals and bulk services. Matrix geometric results have been obtained by suitably partitioning the infinitesimal 

generator by grouping of customers and environments together. The basic system generators of the queues are 

block circulant matrices which are explicitly presenting the stability condition in standard forms. With the same 

method of grouping of the customers, M/PH/1 and PH/M/1 queues with both bulk arrivals and bulk services 

have also been treated as special cases. Numerical results for varying bulk queue models are presented and 

discussed. Effects of variation of rates on expected queue length and on probabilities of queue lengths are 

exhibited. The decrease in arrival rates (so also increase in service rates) makes the convergence of R matrix 

faster which can be seen in the decrease of norm values. The variances also decrease. Bulk PH/PH/1 queue with 

randomly varying environments causing changes in sizes of the PH phases may produce further results if studied 
since PH/PH/1 queue is a most general form almost equivalent to G/G/1 queue. 
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