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Abstract: The aim of this paper to develop a theory for generic representation of 2-D shape, where structural 

descriptions are derived from the shocks (singularities) of a curve evolution process, acting on bounding 
contours. The shocks are organized into a directed, acyclic shock graph and complexity is managed by 

attending to the most significant (central) shape components first. The space of all such graphs is highly 

structured and can be characterized by the rules of a shock graph grammar which permits a reduction of a 

shock graph to a unique rooted shock tree. A novel tree matching algorithm which finds the best set of 

corresponding nodes between two shock trees in polynomial time. 

Keywords: shape matching, shock graph, shock graph grammar, subgraph isomorphism 

 

I. Introduction: 

The system of shocks derived from the curve evolution process into a graph, which is defined as the 
shock graph or SG. The shock types will label each vertex in the graph and the shock formation times will 

direct edges to provide an ordering for matching and a basis for subgraph approximation. 

Blum’s skeleton is area-based and provides a description of shapes via the loci of centers of covering 

balls. Variations on this theme include smoothed local symmetries (Brady and Asada, 1984) and the process 

inferring symmetric axis (Leyton,1988). The skeleton has the advantage of providing a different (from Fu) type 

of graph on which to base matching, but again sensitivity causes problems. Proper skeletons can be found 

interactively, but not automatically. 

In this paper shock graphs of order one, two, three and four are discussed. The graphs are characterized 

by shock graph grammar which reduces shock graph to unique rooted shock tree and algorithm is discussed for 

finding best set of corresponding nodes between two shock trees in polynomial time. 

Particular shapes can vary in detail from one another, variations between shapes derive from an organization of 

these particular shapes into equivalence classes. Specifically, for simple closed curves in the plane the following 
evolution equation was studied. 

 

Ct  = (1+ αk)N 

                                C(s, 0) = C0(s)                            (1) 

Here C(s, t) is the vector of curve coordinates, N(s, t) is the inward normal, is the path parameter and t 

is the evolutionary time of the deformation. The constant α ≥ 0 controls the regularizing effects of curvature k. 

When α is large, the equation becomes a geometric heat equation, when   α = 0, the equation is equivalent to 

Blum’s grassfire transformation. 

 

II. Preliminary Notes 
Definition 2.1: At a 1-shock the radius function varies monotonically, as is the case for a protrusion. At a 2-

shock the radius function achieves a strict local minimum such that the medial axis is disconnected when the 

shock is removed, e.g., at a neck. At a 3-shock the radius function is constant along an interval, e.g., for a bend 

with parallel sides. At a 4-shock the radius function achieves a strict local maximum, as is the case when the 

evolving curve annihilates into a single point or a seed. TheLoci of these shocks give blum’smedialaxis. 

 
Fig 2.1 
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Definition 2.2: Consider the above figure, the coloring can be formalized as follows. Let X be the open interior 

of a simple closed curve and Me(X) its medial axis (the set of points reached simultaneously by two or more fire 

fronts). Let B(x, ϵ) be an open disc of radius ϵ centered at     x ϵ Xand let R(x) denote the radius of the largest 

such disk contained in X. Let                                N(x, ϵ) = Me(X) ∩ B(x, ϵ)\{x} define punctured ϵ- 

neighbourhood of x, one that does not contain x itself. A medial axis pointx ϵ Me(x) is 

1. type 4 if ∃ ϵ > 0 st. R x > R y  ∀ y ϵ N x, ϵ . 
2. type 3 if ∃ ϵ > 0 st. R x = R y  ∀ y ϵ N x, ϵ  and N(x, ϵ) ≠ ∅. 
3. type2 if ∃ ϵ > 0 st. R x = R y  ∀ y ϵ N x, ϵ  and N x, ϵ ≠ ∅ and N x, ϵ  is not connected. 

4. type 1 otherwise. 

 

Definition 2.3: A 2-D shape Shock Graph is the bounded interior of a simple closed (Jordan) curve.  
 From the coloring of shocks into four types, it can be seen that 2-shocks and 4-shocks are isolated points, 

whereas 1-shocks and 3-shocks are neighbored by other shocks of the same type. So, we denote the groups with 

labels1 , 2, 3 , 4and breaking apart the 1 ’s at branch-points. Let # denote a start symbol and ф a terminal 

symbol. The SG is a connected graph, rooted at a vertex labeled #, such that all other (non-terminal) vertices are 

shock groups and directed edges to non-terminal vertices indicate the genesis of new shock groups. 

Definition 2.4: The Shock Graph of a 2-D shape, SG is a labeled graph G = (V, E, )with  vertices V={1…n}, 

edges (i, j)   E V×V directed from vertex i to vertex j if and only if i ≠ j, ti≥ tj and i j is connected in the 

plane. labels : V→l with l ϵ  1 , 2, 3 , 4, #, ф , topology such that ∀ j ∈ V with γ j ≠ #, ∃i ∈ V with  i, j ∈ E. 

Definition 2.5: Shock Graph Grammar or SGG is a quadruple G = (V, , R, S), with 

1. V= {1 , 2, 3 , 4, #, }, the alphabet, 

2.  = { }, the set of terminals, 

3. S = # the start symbol, 

4. R = {R1,……….R10}, the set of rules in the Fig 2.1. 
 

 
Fig 2.4 

The Shock Graph Grammar, SGG. Dashed lines partition distinct ends of a 3 . The rules are grouped according 

to the differentsemantic processes (on the left) that they characterize. Note that the grammar is not context-free 

e.g., rule 3 indicates that a 1  can only be addedonto an end of a 3  that has no parent 1 . 
Definition 2.6: Given two graphs G = (V1, E1) and H = (V2, E2), find the maximum integer k, such that there 

exists two subsets of cardinality k, E’
1 E1 and E’

2   E2 and the induced subgraphs (not necessarily connected) 

G’ = (V1, E
’
1) and H’ = (V2, E

’
2) are isomorphic. 
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Definition 2.7: Let  (S ) and  (S’) denote the interpolated 4-D curves passing through the points of the sets 

S  and S’ respectively. A Hausdorff distance measure between the curves  (S ) and  (S’) is defined by 

finding the closest point on curve  (S’) for each point in the sequence S and the closest point on curve  (S ) 
for each point in the sequence S’. 

∆  Ψ S  ,Ψ S′  =   ς − η 2 +   ς− η 2 ηϵΨ S  
inf

ςϵS ηϵΨ S′  
inf

ςϵS . 

Definition 2.8: Let G = (V1, E1) and H = (V2, E2) be two shock graphs to be matched, with                          V1 = 

n1 and V2 = n2. Define d to be the maximum degree of any vertex in G and H,                               i.e., d = max (

 (G), (H)).For each vertex v, we define χ (v)   Rd-1 as the unique eigen decomposition vector. 

 

III. Shock Graph and Shape Matching 
Theorems, Algorithm and Example 

Theorem 3.1 

Any 2-D shape graph has a unique corresponding shock graph SG. 

Proof: 

The uniqueness of the skeleton S(X) follows from its definition as the union of maximum open discs. Hence the 
medial axis Me(X), which is strictly contained in the skeleton S(X) is also unique. The coloring of medial axis 

points into four types is unique, which implies that a unique set of vertices exists for the corresponding SG.  

Finally, by Definition 2.4, the direction of an edge between two abutting vertices is ambiguous only when 

ti = tjfor all shocks in I and j. Due to the continuity of the radius function along the skeleton, the only 

possibility is that the two vertices share the point where they touch, in that case we have the contradiction that 

all shocks in i and j would lie in the same 3  and hence in a single vertex. The uniqueness of the shock graph 

follows.  

Hence the theorem. 

3.2 The shock graph Grammar 

The notion of entry-level categories for shape that is intimately connected to the topological structure of the 

shock graph. This structure is highly constrained because the events that govern the birth, combination and 

death of shock groups can be abstracted into a small number of rewrite rules as shown in Fig. 2.1. 

Lemma 3.3 

A vertex in the SG can have at most two 1 ’s as parents. If it has exactly two 1 ’s as parents, it must be a 2-shock 

or a 3 . 

Proof:  

Recall that a 1  is a curve segment of 1-shocks along which the radius function varies monotonically. 

Let a 1  of length L be parameterized by arc-length s, with sϵ (0,1], such that the radius function R(s) increases 

monotonically with s. For each s ϵ (0,1], there exists a continuous mapping from x(s) to its associated pair of bi-

tangent points p s , q s  , by which the two boundary segments associated with the interval (0, L] can be 

reconstructed, see Fig. 3.1(a).  

Let α(s) be the angle between the line segments p(s)x(s) and q(s)x(s), on the narrower side. Two conditions must 

hold, 

1) α(s) must be ≤ π for each s ϵ (0,1], since the radius function R(s)increases monotonically with s. 

2) No other shock can lie in the reconstructed (shaded) region in Fig. 3.1(a), because the grassfire can only 

traverse a point in the plane once. 

Now, because the radius function along the 1  increases with sand the radius function is continuous along the 
skeleton, x(0)cannot itself be, or abut, a 4-shock. Let us assume that x(0)abuts the first point (where the radius 

function is smallest) of a second (distinct) 1 . 

 The above two conditions must hold for the second 1 . Therefore, the only possibility is that α 0+ is identically 

πfor points infinitesimally close to x(0)on each 1 .Hence, there exists an ϵ > 0 such that the open disc of radius 

ϵcentered at x(0)is strictly contained in the union of the shaded regions reconstructed by x(0)and the two 1 ’s 

(see Fig. 3.1(a)). This implies that the first point of no other 1  can abut x(0). We note that by coloring a    2-

shock, as illustrated in Fig 3.1(b) (top). A second possibility is that x(0)abuts the endpoint of a 3 . By a similar 

argument as the one above, there can be at most one such 3 . In the event that the other end of the3 . Abutsthe 

first point (where the radius function is smallest) of a distinct 1 , the 3  is the child of these two 1 ’s.  
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Fig 3.1 

 

An illustration of shock patterns, with arrows drawn in the direction of increasing radius. 

(a) Geometry of a 1 .  

(b) Two 1 ’s flow outwards from a 2 or 3 . 

(c) An integer number of 1 ’s may flow into  4.  

(d) Two or more 1 ’s may flow into 1 .  

(e) An end-point of a 3 may have a single 1 flowing out of it, no shocks flowing into or out of it or an integer 

number of 1 ’s flowing into it. 

Theorem 3.4 
The rewrite rules of the SGG are sufficient to derive the shock graph SG of any 2-D shape shock graph. 

Proof: 

The strategy is to derive the rules by enumerating all legal parents and children for each vertex type. To 

determine the remaining local configurations it is now sufficient to enumerate all the possible children for each 

vertex type. A child corresponds to an abutting vertex, containing no shocks that formed after any of the shocks 

in the vertex under consideration (2.4 Definition).  We know that no 2, 3  or 4 can have a 2, 3  or 4 as a parent or 

as a child. If the vertex is of type 2, 3  or 4, only children of type 1  have to be considered. 

Children of a # : 

Since the SG is built in “reverse” time, any children of the # symbol will be the last shocks to form in the 

forward evolution. By coloring, an isolated point of annihilation is a 4, an annihilating curve segment is a 3 . 

These situations correspond to Rule 1 in Fig. 2.1, which states that any number of 3 ’s or 4’s can act as seeds for 
the shape. These are the only possible children. A ф cannot be a child since the interior of a Jordan curve is non-

empty and hence a null shape is disallowed. 

Children of a 𝟏 :  

A child of a 1  can have no shock whose time of formation is greater than that of any shock in the 1  (2.4 

Definition). Hence, by coloring a child cannot be a 4. It is possible for two or more distinct 1 ’s to be children, 

e.g., one could place two or more triangular wedges around the dashed circle in Fig. 3.1(d). This corresponds to 

Rule 4. By Lemma 3.3, a 2 must be a child of two distinct 1 ’s.This corresponds to Rule 5. Referring to the proof 

of Lemma 3.3, a 1  cannot have two or more 3 ’s as children. 

However, a single 3  could be a child, as in Fig. 3.1(e) (left). The other end of the 3 may or may not be the child 

of a distinct 1 . Thus, in contrast to Rule 5, we have two separate cases in Rule 6. Finally, when a 1  has no 

abutting shock with smaller radius, it has a8 as a child. This corresponds to Rule 10. 

Children of a 2: 

If a 2 has a 1  as a child, its time of formation must be greater than that of all shocks in the 1  (2.4 Definition). 
However, this would violate the coloring in Fig. 3.1(b). Therefore, the only possible child is8, corresponding to 

Rule 9. 

Children of a 𝟑 :  

In contrast to a 1 , which can only have children at the end point where the radius function is smallest (2.4 

Definition), a 3  can have children at either end point. It is possible for several 1 ’s to be children, e.g., one could 
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place one or more triangular wedges around the dashed circle in Fig. 3.1(e) (right). However, by the same 

argument as in the proof of Lemma 3.3, children can only be present at an end point that does not have a 1  as a 

parent. Hence, we have two cases in Rule 3, if one end point of a 3  has a parent 1 , an integer number of 1 ’s can 

be children at the other end point, if neither end point has a parent 1 , an integer number of1 ’s can be children at 

each end point. Finally, when the 3  has no abutting shock with smaller radius at either end point, as in Fig. 

3.1(e), it has a8 as a child. This corresponds to Rule 8. 

Children of a 4:  

By the coloring, 4 correspond to a medial axis point where the radius function achieves a strict local maximum. 

It may have an integer number of 1 ’s as children, examples of which appear in Fig. 3.1(c). This corresponds to 

Rule 2. When it has no abutting 1 ’s, as in the case of a perfect circle, it has 8 as a child. This corresponds to 

Rule 7.The above enumeration of all legal local vertex configurations in the SG shows that its structure is highly 

constrained. In particular, since a rewrite rule exists in Fig. 2.1, for each legal parent/child of each vertex type. 

Hence the theorem. 

3.6 Shock graph to Shock trees 

In this section we present a reduction that takes a DAG representing a shock graph to a unique vertex labeled 

rooted tree, whose size is polynomially bounded by the size of the original shock graph. To begin, let G = (V, E) 

be a DAG representing a shock graph on n vertices. A loop L is a subgraph of G formed by the intersection of 
two directed paths. More formally, L originates at a vertex b, follows two paths P1 and P2and ends at the vertex 

t. We denote b as the base of L, tthe tip of LandP1 and P2 the wings of L. Referring to the protrusion and birth 

rewrite rules (rules 1, 2, 3 and 4) in Fig 2.1, the base of L can be a vertex whose type is drawn from the set 

 #, 4, 3 , 1  . The wingsP1and P2, are directed paths consisting of a sequence of vertices whose types are drawn 

from the set  4, 3 , 1   (rules 1,2,3,4and 6). Finally, the tip of L can be a vertex of type either 2 or 3  (rules 5 and 

6). 
Assume that the tip t of L is a vertex of type 2. Then by rule 9, L will be terminated at a vertex labeled 8. Next, 

if t is a vertex of type 3 , then P1 and P2  represent two directed sequences of shocks that enter at opposite ends of 

t. In this case, t cannot satisfy rule 3and must be the root of a single node subgraph having label 8 (rule 8), 

therefore conclude that the tips of all loops are adjacent to nodes having type 8in G and that each such tip 
participates in exactly one loop.  

In our reduction, for each such tip node t we will maintain duplicate copies t1 and t2and redefine L to be the 

union of b and two new disjoint paths. P1
′ = P1 ∪  t1 ∪  ф and P2

′ = P2 ∪  t2 ∪  ф . It is easy to see, by 

induction on the number of tips in G, that such a reduction is  

unique and produces a directed or equivalently a rooted tree. Further, since G has only O(n) tips, each of which 

is duplicated atmost once, there is an O(n) increase in size of the graph. To perform the reduction, we need only 

check the in-degree of any 3 ’s and 2’s and duplicate them if necessary. The complete reduction is therefore a 

linear time process in terms of the number of vertices in G. The matcher will maintain two copies of every 3  

with at least one 1  child on each side (rule 3), each with its respective children. As correspondences are found, a 

match of one such 3  will force a match of its copy. 

3.7 Theorem 

For the sum of the first k eigen values of a symmetric matrix A, the following semidefinite programming 

characterization holds. 

λ1 A + ⋯ + λk A = max A. U such that trace U = k 

0 ≤ U ≤ I, 
or, in a dual setting 

λ1 A + ⋯ + λk A = min kz + trace V such that zI + V ≥ A, V ≥ 0 

Proof: 
Before applying the above theorem, let us first convert our shock trees to adjacency matrices. Given a bounded 

degree, rooted tree G = (V, E) with  V = n and  E = m, define the adjacency matrix A of G to be a n ×n 

symmetric, {0, 1} matrix with its (i, j)th entry Ai,jequal to 1 if  i, j ∈ E and 0 otherwise. For each vertex v ∈ G, 

let δ v be the degree of v and let δ G be the maximum degree over all vertices in G. 

For every vertex u ∈ G, we define )(u to be a vector in Rδ G −1, obtained through the following procedure,For 

any child v of u in G, construct the adjacency matrix Av of the induced subtree rooted at v and for Av, compute 

the quantity λv = λ1 Av + ⋯ + λk Aδ v −1  Av . Construct )(u as the vector formed by  λv1
… . λvδ u 

  for 

which λv1
≥ ⋯ ≥ λvδ u 

. 

3.8 Algorithm for matching two Shock trees 
The algorithm recursively finds matches between vertices, starting at the root of the shock tree and proceeds 

down through the subtrees in a depth-first fashion. The notion of a match between vertices incorporates two key 
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terms, first is a measure of the topological similarity of the subtrees rooted at the vertices, while the second is a 

measure of the similarity between the shock geometry encoded at each node. 

Procedure isomorphism(G,H) 

ф G, H ← ∅ 

d ← max  δ G , δ H   

for u ∈ VG compute )(u ϵRd−1 

for v ∈ VH  compute )(v ϵRd−1 

call match(root(G), root(H)) 

return(cost(ф(G,H)) 

end 

procedure match(u,v) 

do 

{ 

          Let Gu ← rooted subtree of G at u 

          Let Hv ← rooted subtree of H at v 

compute VGu
 ×  VHv

  

weight matrix   Gu , Hv  
M ← max cardinality, minimum weight 

bipartite matching in G VGH
, VHV

  

with weights from   Gu , Hv  
(u′ ,v′ )← minimum weight pair in M 

ф G, H ← ф G, H ∪ { (u′ , v′)} 

call match(u′ , v′ )    

           Gu ← Gu −  x x ∈ VGH
and x, w ∈ ф G, H   

           Hv ← Hv −  y y ∈ VHv
and w, y ∈ ф G, H   

}        while (Gu ≠ ∅andHv ≠ ∅) 

 In terms of algorithmic complexity, observe that during the depth-first construction of the matching 

chains, each vertex in G or H will be matched atmost once in the forward procedure. Once a vertex is mapped, it 

will never participate in another mapping again. The total time complexity of constructing the matching chains 

is therefore bounded by O n2 nloglogn , for n = max n1, n2 . Moreover, the construction of the )(v

vectors will take O n nL time, implying that the overall complexity of the algorithm 

is max O n2 nloglogn , O n2 nL  . 

3.9 Example 

To illustrate the matching algorithm, we consider the two shock trees shown in Fig 3.2 (top), each of which 

describes a different view of a brush. The underlying shocks, along with the final computed correspondences 

between nodes, are depicted in Fig 3.2 (bottom). The sequence of steps in finding this best correspondence 
(minimum-weight maximum cardinality matching) between the two shock trees is shown in Fig 3.3.Briefly each 

step in the sequence are described. 

Steps 1–4: 

The algorithm finds the minimum weight matching between the two shock trees, seeking to find the two 

subtrees which are maximally similar in terms of their topological structure and the geometry of their root nodes 

(shocks). In this example, the two subtrees rooted at 1-007 and 1-005 (denoted by bold circles in Fig 3.3) are 

selected as most similar. In step 2, this pair is added to the set of final correspondences (denoted by short-dashed 

circles) and the algorithm is recursively applied to the subtrees of 1-007 and 1-005. In this manner, the 

correspondences (3-001,3-002) and (1-003,1-001) are added to the set of final correspondences. 

Steps 5–6: 

After descending to the bottom of the subtrees rooted at (1-007,1-005), control is returned to (1-007,1-005) and 
these two subtrees are removed from the original shock graphs. From the resulting shock subtrees, we repeat the 

process of finding the best corresponding subtrees. In step 5, the subtree pair (1-006,1-004) is selected and 

added to the final correspondences in step 6. 

Steps 7–12: 

After removing the subgraphs originating at (1- 006,1-004), a new pair (3-002,3-001) is selected in step 7 and 

added to the final correspondences in step 8. After removing this newpair, the process is applied to the 

remaining shock forests in step 9, resulting in the selection of the pair (1-004,1-002). This pair is added to the 

final correspondences in step 10. In step 11, the pair (1-005,1-003) is selected and added to the final 
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correspondences in step 12. The algorithm terminates by leaving the nodes 1-001 and 1-002 as unmatched 

vertices (denoted by long-dashed circles) in the shock tree corresponding to leftmost object in Fig 3.2 (bottom). 

 

 
Fig 3.2 

Top: The shock trees derived for two different views of a brush. 

Bottom: The correspondences between nodes in the shocktrees computed by the matching algorithm. 
 

 
Fig 3.3 

Step-by-step execution of the matching algorithm applied to the shock trees in Fig. 3.3. The roots of subtrees 
selected as most similarare denoted by bold circles. These are subsequently added to the set of final 

correspondences (short-dashed circles). Unmatched nodes aredenoted by long-dashed circles. 
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IV. Conclusion 
This paper deals with a generic description of object shape, based on the singularities of a curve 

evolution equation derived from the object’s boundary, can be organized into a graph representation and how 

this graph can be matched into an object database. The rules of the shock graph grammar, conversion of shock 

graph to unique rooted shock tree and algorithm for finding best set of corresponding nodes between two shock 

trees in polynomial time have been discussed. 
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