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Abstract: A large eddy simulation of a plane turbulent channel flow is performed by using the third order Low-

Storage Runge-Kutta method in time and second order Finite Difference formulation in space with staggered 

grid at a Reynolds number 590 based on the channel half width and wall shear velocity. The computation is 

performed in a domain where streamwise and spanwise directions are periodic with 32×64×32 grid points. 

Standard Smagorinsky model is used for subgrid scale modeling. Turbulence statistics of this simulation are 

compared with Direct Numerical Simulation (DNS) data. The behavior of the flow structures in the computed 

flow field have also been discussed. 
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I. Introduction 

Turbulent channel flow has been studied extensively to increase the understanding of the mechanics of 

wall-bounded turbulent flows. Its geometric simplicity is attractive for both experimental and theoretical 

investigations of complex turbulence interactions near a wall. As a result, a large number of experimental and 

computational studies of channel flow have been carried out [1-6]. 

During the past decades, Large Eddy Simulation (LES) has been demonstrated to be an useful research tool 

for understanding the physics of turbulence than DNS. With the development of the technique of numerical 

simulation, Large-Eddy Simulation has begun to be applied to industrial flows, such as flow in a turbomachine. 

LES is less expensive and can simulate very complex flow fields in turbulence. In LES method, large-scale 

motion is exactly calculated and the effects of subgrid-scale (SGS) motions on the evolution of large scales, 
which is expected to be universal is modeled. Discretization method is another issue to conduct LES in 

turbulence [5-8]. A literature review suggests that the numerical method widely used for spatial discretization in 

LES is the conventional finite difference method with structured grids [9-10]. 

Explicit Runge-Kutta methods are a popular choice for the time discretization of the Navier-Stokes 

equations. Compared with (explicit) multi-step methods, Runge-Kutta methods have in general better stability 

properties, do not have a start-up problem, and easily allow for adaptive time stepping, although they generally 

require the solution to a Poisson equation for the pressure at each stage of the Runge-Kutta method. The 

application of explicit Runge-Kutta methods to the incompressible Navier-Stokes equations is not straight 

forward because of the differential-algebraic nature of the equations. It is common practice to explicitly advance 

the velocity at each stage as if the discretized equations are a system of ordinary differential equations, and 

subsequently solve a Poisson equation for the pressure to make the velocity field divergence-free [11]. 
To simulate the turbulent channel flow it is necessary to do sufficiently long time integration in LES that 

need much wider computation region, applying a low storage scheme is significant to make sufficient utilization 

of computer resource. Low-storage Runge-Kutta schemes require minimum levels of memory locations during 

the time integration and efficiently comply with the modern large-scale scientific computing needs. A number of 

explicit low-storage Runge-Kutta schemes of third-order accuracy were derived by Williamson [12]. 

The aim of our present research is to perform LES of a plane turbulent channel flow. Spatial and temporal 

discretization has been done using the third order Low-Storage Runge-Kutta method and second order finite 

difference formulation respectively with staggered grid. The computational domain is δπ×δ2×δπ2 where the 

grid spacings in the streamwise and spanwise directions are uniform while the wall normal grid distribution is 

non-uniform with a hyperbolic-tangent type stretching function. Essential turbulence statistics of the flow field 

are computed and compared with DNS data of Moser et al. [2]. Contours of instantaneous streamwise velocity 

distribution at the centerline of the channel and streamwise shear velocity distribution at the immediate vicinity 

of the wall have also been discussed. Iso-surfaces of the second invariant (Q = 5) of velocity gradient tensor in 

the turbulent channel flow are visualized. 

 

II. Governing Equations 

The governing equations of LES for an incompressible plane channel flow are the filtered Navier-Stokes 

and continuity equations for constant density in Cartesian co-ordinates given as 
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where the index i = 1, 2, 3 refers to the x, y and z directions respectively. Here xu , yu , zu are streamwise, wall 

normal and spanwise filtered velocity respectively. p is the filtered pressure and eν is the total viscosity (equal 

to the sum of the molecular and SGS eddy viscosity, sνν  ). A schematic geometry of the plane turbulent 

channel flow and the co-ordinate system are shown in Fig. 1. The equations are non-dimensionalized by the 

channel half-width δ, and the wall shear velocity uτ. The Reynolds number is therefore written as Re = uτ.δ/ν. 

 

 In LES, the velocity field ui is decomposed into a large scale component iu and a subgrid scale component 

iu by applying a spatial filtering operation. The resolved velocity component iu can be expressed as follows: 
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where  iii xxG  is a general filtering function which satisfies the following relation: 
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Since the continuity equation is linear, filtering does not change it significantly. However, it is important to note 

that jiji u.uu.u  , and the quantity on the left side of the inequality cannot be easily computed. So, a modeling 

approximation for the difference between the two sides of this inequality, 

jiji
s
ij u.uu.uτ                                                                                                                                                 (5) 

must be needed. s
ijτ is called the subgrid scale (SGS) Reynolds stress, which is in fact the large scale momentum 

flux caused by the action of the small or unresolved scales. The models used to approximate the SGS Reynolds 
stress are called subgrid scale (SGS) models. The most commonly used subgrid scale model is the Smagorinsky 

model. This model represents the SGS eddy viscosity according to  

( ) S.C=ν
2

Ss Δ .                                                                                                                                               (6) 

Here SC is the Smagorinsky constant whose value is taken to be 0.065 [4], ( ) 3/1
ΔΔΔ=Δ zy.x. is filter width 

and ijSijS2S  is the magnitude of strain rate, where
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. To reduce the near-wall eddy 

viscosity for the wall bounded flows the SGS eddy viscosity can be modified as: 
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y τ and A+ is a constant usually taken to be approximately 25 [13]. 
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Fig. 1: Schematic geometry of plane channel flow. 

 

III. Numerical Method 

The governing equations of LES are solved using the third order low-storage explicit Runge-Kutta method 

in time [14] and the second order finite difference formulation in space. The coupling between continuity 

equation and pressure fields is performed by the simplified marker-and-cell (SMAC) method [15]. Poisson 

equation is solved iteratively by a Preconditioned Incomplete Cholesky Decomposition Conjugated Gradient 

method. In the following subsections, staggered grid arrangement, discrete and interpolation operators are 
shortly introduced.  

 

III.I. Staggered grid arrangement       

 Staggered grids may be constructed by several methods. An example of a staggered grid system in a two-

dimensional plane is shown in Fig. 2. On the staggered grid, scalar variable pressure are stored at the nodes 

(intersection point of two lines) and velocities are defined at the middle of the two nodes. Horizontal (→) arrows 

indicate the locations for ux – velocities and vertical (↑) ones denote those for uy – velocities. The continuity is 

centered at pressure points. The momentum equation corresponding to each velocity component is centered at 

the respective velocity point [16]. The biggest advantage of the staggered arrangement is the strong coupling 

between the velocities and the pressure. 

 

 
Fig. 2: Staggered grid system. 

 
In this study, the grid spacings in the periodic directions are uniform. The wall normal grid is stretched by using 

a hyperbolic-tangent type stretching function [16] 
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where the stretching parameter, γ is taken to be 2.25. We use both uniform and stretched grids and maintain the 

order of accuracy is unaltered. 

 
III.II. Discrete Operators  

 There are a variety of discretization techniques available for developing discrete approximations to a set of 

governing partial differential equations such as Navier-Stokes equations. Let the finite difference operator with 
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stencil size 1 acting on a discrete variable φ  with respect to x for structural Cartesian meshes with uniform 

spacing be defined as  
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where the grid spacings ∆x are constant in x direction, and (i, j, k) denotes associated mesh indices in x, y and z 

directions. Subscript “1” indices the stencil size. Discrete operators in the y and z – directions are similarly 

defined. 

In addition to the discrete differencing operator we also define interpolation operators with stencil size 1 acting 

on a variable ux in the x – direction as 
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to the one-half left and right of the grid (i, j, k) in x – 

direction. The interpolation operator acting on the same variable xu in y and z – directions are similarly defined. 

Interpolation operators acting on the other variables ( yu and zu ) associated to the directions are defined 

similarly as above where (i, j, k) denotes associated mesh indices in x, y and z directions. 

 

IV. Computational Parameter and Grid Spacing 

The computational domain of the mesh is selected to be δπδ2δπ2 ×× in streamwise, wall normal and 

spanwise directions respectively. The computation has been performed using 32×64×32 computational grids and 

the possible Reynolds number, Reτ = 590 based on the channel half width, δ and wall shear velocity, uτ. The 

computation has been done with non-dimensional time increment, ∆t = 0.002, which maintained a CFL number, 
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. The computation is executed up to non-dimensional time, t = n. 

∆t, where n is the number of time step. With the computational domain, the grid spacings in the streamwise and 

spanwise directions are 116x ≈Δ + and 58z ≈Δ +  wall units respectively. In the wall normal direction 

( )1+≤≤1 y  the minimum grid spacing is 2≈Δ +y  wall unit which exist at the immediate vicinity of the wall 

and maximum grid spacing is 42≈Δ +y wall unit which exist at the centerline of the channel. The first mesh 

point away from the wall is at 885.0≈+y wall unit. The superscript „+‟ indicates a non-dimensional quantity 

scaled by the wall variables; e.g. /νuyy τ=+ , whereν is the kinematic viscosity and ( )1/2
wτ /ρτu = is the wall 

shear velocity.  

 

V. Boundary Conditions 

We consider fully developed incompressible viscous flow and make use of periodic boundary conditions in 

the streamwise and spanwise directions. For the staggered grid arrangement we set up additional nodes 

surrounding the physical boundary. The calculations are performed at internal nodes only. The wall boundary 

condition is no-slip. Just outside the solution domain the values of the velocity components are equated to the 

values of the nearest node just inside the solution domain [17]. The pressure boundary condition is periodic in 

the streamwise and spanwise directions. But in the wall normal direction the values of p , just outside the 

solution domain, are determined by assuming a zero gradient [18]. 

 

VI. Temporal Schemes for LES in Plane Turbulent Channel Flow 

Since the three components of the velocity vector, u in the momentum equations are coupled with the 

pressure, p through the continuity equation, these equations for the four variables ( )puuu zyx ,,,  have to be 

solved at the same time. The temporal discretization used in our LES code for simulating the plane turbulent 

channel flow is the third order low storage explicit Runge-Kutta scheme which is applied for the nonlinear 

convection and the viscous terms. This scheme requires only two levels of memory locations during the time 

integration. Such a scheme reads the following sub-steps: 
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where Fi (i = x, y, z) are the convective and viscous terms and iu (i = x, y, z) are the velocity components. n is 

the level of time. The superscripts 1, 2, 3 on the variables represent the sub-step number. First equation of every 

sub-step is the momentum equation. Second equation is the Poisson equation for pressure. After the Poisson 

equation have been solved, pressure potential, ψ is found. The pressure potential is then used to calculate the 

pressure, p and velocity components from third and fourth equations respectively of every sub-step. Final 

solutions ( )puuu zyx ,,,  for every level of time are found from sub-step 3. Boundary conditions are assigned at 

every sub-step k. The values of αk, βk and γk are shown below: 
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VII. Results and Discussions 

 
VII.I. Turbulence Statistics 

In this section we discuss some statistics of the computed flow field in 3D turbulent channel flow. The 

computed results are compared with the DNS data obtained by Moser et al. [2]. Simulations are initialized with 

a random solenoidal velocity field and integrated ahead in time with finite viscosity.   
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The profile of the mean velocity non-dimensioned by the wall-shear velocity corresponding to the lower 

half of the channel is shown in Fig. 3, which is defined as  

τ

+ =
u

u
u

x

x                                                                                                                                                            (10)   

The collapse of the mean velocity profile corresponding to the lower half of the channel is shown in this figure. 

Numerous experiments have shown that the near-wall region can be largely subdivided into three layers: viscous 

sub-layer ( 5y  ), buffer layer ( 30y5   ) and logarithmic inertial layer ( 30y  ) [13]. From Fig.3 it can 

be observed that within the viscous sub-layer the DNS and LES mean velocity profiles are almost collapsed, but 

here after in the buffer layer the LES profiles are seen to be under predicted. Finally, in the logarithmic inertial 

layer the LES profiles over predict the DNS profile.  

Fig. 4(a, b, c) show the DNS and LES profiles of root mean square (r.m.s.) of velocity components 

normalized by the wall shear velocity defined as 
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The profiles of streamwise root mean square velocity are displayed in Fig. 4(a). This figure reveals that in 

the viscous sub-layer the DNS and LES profiles are almost collapsed. After that the LES profiles are seen to be 

over predicted. Note that the peak value of the LES profile is about 3.8 which occurs at 20y  . Beyond 

20y   the trend of this profile is always decreasing until the end of the range. Although there exists a 

noticeable difference in the near wall region ( 200-10y ≈+ ), away from the wall the computed profiles show a 

good agreement with the DNS profile obtained by Moser et al. [2]. The profiles of wall normal and spanwise 

root mean square velocity fields are shown in Fig. 4(b) and Fig. 4(c) respectively. In these figures the computed 

profiles of wall normal and spanwise root mean square velocity fields are seen to be under predicted in the 

whole calculation domain. 

 Fig. 5 presents the profile of non-dimensional Reynolds stress, 
2
τ

'
y

'
x

u

uu
corresponding to the channel half 

width. In a fully developed channel flow this profile is a straight line when the flow reaches an equilibrium state. 

The computed results clearly indicate that this is the case. It can be observed that at the near wall region 

( 100-0y+ ≈ ) the LES profile under predicts the DNS profile. After that ( 53>+y ), there is hardly noticeable 

discrepancy between the DNS and LES profiles. Note that the peak in this profile occurs at 60y  , which is 

well within the region for which the Reynolds number, 590τRe .  
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Fig. 3. Mean velocity profile in wall units. 
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            Fig. 4. Root mean square velocity profiles in wall units. 
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                                                       Fig. 5. Reynolds stress profile in wall units. 
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VII.II. Flow Structures 

We have calculated streamwise velocity ( xu ) distribution at the centerline of the channel and streamwise 

shear velocity ( xu ) distribution at the immediate vicinity of the wall at non-dimensional time, t = 140.00. 

Using these computed data different contour plots of the flow field have been shown. Contour of instantaneous 

streamwise velocity distribution at the centerline of the channel in x-z plane is shown in Fig. 6. The value of xu  

ranged between 19.5 and 23.5 in the contour plot. The highest value of xu appears at red regions and lowest 

value at blue regions in this plot. The higher values of xu appear more densely around the centerline of the 

channel. 

Streamwise Shear Velocity ( xu ) can be calculated using (14). 




x
x

τ
u                                                                                                                                                           (14) 

where, xu = stream wise shear velocity 

  ρ    = density of the fluid 

  τx    = stream wise shear stress. 

Contour of instantaneous (at t = 140.00) streamwise shear velocity ( xu ) distribution at the immediate vicinity 

of the wall of this channel in x-z plane is shown in Fig. 7. The value of xu ranged between 0.7 and 2 in this 

contour plot. The blue streaky structures in the plot represent regions of low shear velocity and the highest value 

of xu is indicated by a red color. The higher values of streamwise shear velocity appear more densely in 

between the centerline and the wall of this channel. 
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                                     Fig. 6. Contour of streamwise velocity profile in x-z plane. 
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Fig. 7. Contour of streamwise shear velocity profile in x-z plane. 

 

 Fig. 8 represents the visualization of vortical structures in the turbulent channel flow by iso-surfaces of the 

second invariant Q of velocity gradient tensor, which is defined as  
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are respectively the strain-rate and rotation tensors, that is, the symmetric and asymmetric part of the velocity 

gradient tensor: ijij
j

i
ij SΩ

x

u
A 




 .The visualized region is the whole calculation domain. The level of the 

iso-surface is selected to be Q = 5. For this value of Q the vortical structures are significant and are randomly 

distributed over the turbulent flow field. The vortices generated in between near the wall and near the centerline 

of the channel are more intense than the ones generated around the centerline of the channel. 

 

 
 

Fig. 8. Iso-surfaces of the second invariant (Q = 5) in the channel flow. 

 

VIII. Conclusion 

Large eddy simulation in three dimensional plane turbulent channel flow at a low Reynolds number 

with 32×64×32 grid points have been successfully performed by using third order low-storage Runge-Kutta 

method in time and second order finite difference formulation in space. With this Reynolds number the essential 
turbulence scales have been resolved. The statistical properties show reasonable agreement with the DNS data 

of reference. Instantaneous streamwise velocity distribution at the centerline of the channel and streamwise 

shear velocity distribution at the immediate vicinity of the channel flow have also been measured in the contour 

plot. Visualization of the second invariant (Q = 5) in the turbulent channel flow show that the flow field contains 

lots of coherent tube-like structures which are randomly distributed over the turbulent flow field, and the 

intensity of the coherent structures is high in between near the wall and the centerline of the channel.  
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