
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 10, Issue 6 Ver. IV (Nov - Dec. 2014), PP 55-62 
www.iosrjournals.org  

www.iosrjournals.org                                                    55 | Page 

 

Maximum life span predictions using the Gompertz tumour 

Growth model 
 

M. Pitchaimani
1
 and G.Somasundara Ori

*2 

1,2 Ramanujan Institute for Advanced study in Mathematics, University of Madras, Chennai 600005, India. 

 

Abstract: Studies in the evolutionary biology of cancer research require good estimates of the intrinsic growth 

rate of the tumour coefficient. A Gompertzian model is a classical continuous model useful in describing 

population dynamics; in particular, it is a very efficient mathematical modelto describe tumour growth in 

humans and animals. The Gompertz survival model of a tumour growth is the interest of many investigators in 

experimental biology and the evolutionary biology of ageing. Standard parameter estimation techniques, such 

as regression and maximum likelihood analysis, require knowledge of actual lifespan for parameter estimation 

to be successful. In this paper we introduce an alternative algorithm for estimating this parameter. And we 

examine maximum life span predictions through the Gompertz tumour growth model for large number of 

tumour cells at particular time. 
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I. Introduction 
Attempts to extend an individual's life beyond the onset of tumours is nothing new; in fact, surgeries to 

remove tumours were described in a work by physician Aetius of Amida (593 A.D.) [4]. There is now a great 

body of work dedicated towards understanding the development and growth of tumours. 

As with most studies of population dynamics, mathematical modelling can provide great insight into 

the dynamics of tumour growth. The models that form the focus of this paper are tumour-level analyses (as 

opposed to cellular-level analyses) of avascular tumours. An avascular tumour is one that does not yet have 

blood vessels, and so the only method for the transportation of nutrients throughout the tumour is diffusion. As a 

result, at some point the cells in the centre of the tumour will not have enough nutrient to survive and will die 

off. 
Given that the event, or mutation, that initially triggered the tumour probably occurred several years 

earlier, it is natural to ask why the tumour was not detected sooner and why it suddenly started to grow rapidly. 

Eventually this avascular tumour will reach an equilibrium size (2 mm in diameter, [15]), at which the rates of 

cell proliferation and apoptosis, averaged over the tumour volume, balance. At this stage the tumour typically 

comprises an outer rim of proliferating cells, a central core of necrotic debris and an intermediate region of 

quiescent cells which are alive, but do not proliferate due to nutrient deprivation [36, 37]. 

Possible theoretical bases of Gompertz tumour growth model have been addressed in the literature 

from various points of view, and it remains to be a topic of investigation [2,9,13,14,20,21, 25-30, 39]. Most of 

the authors have attempted to derive the Gompertz model as an approximation (or a special case) of more 

general models, which are deemed to be based on accepted biological foundations. A somewhat similar 

approach is pursued in this paper: the Gompertz model is postulated (based on its empirical justification) and 
then the more general model is specified to yield the Gompertz model. 

Traditionally mathematical models describing solid tumour growth assume radial symmetry of the 

tumour and focus on its responses to various growth factors [8, 24, 26]. These models show excellent agreement 

with experimental results, reproducing the multi-layered structures that characterise solid tumours and 

multicellular spheroids. However, the deterministic Gompertz law of population growth has been widely used to 

describe in vivo tumour growth in experimental oncology [5, 6, 16, 33, 34, 38]. The Gompertz law models the 

cells growth by the equation 

 

G t = Ae−βt ,                                                                                                                        (1) 

where A; the intrinsic growth rate of the tumour, is a parameter related to the initial mitosis rate and β; the 

growth deceleration factor. The corresponding Gompertz growth function can be obtained by integrating the 

growth rate function equation(1) of the following form 

V∗ t = e
A
β
 1−e−βt 

                                                                                                                 2  
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where V∗ t =  
V(t)

V0
and  V t  is the clonogenic tumour volume at time t; V0  is the clonogen number at time  

t = 0:        A and  β (> 0) are the Gompertz growth parameters. From a biological point of view, a greater β 

value or a smaller A value indicates a greater antitumoural effect of the therapy [11]. 

 

By setting V∗ t =  
V(t)

V0
       we obtain the approximation 

tm = −
1

β
ln  1 −

β

A
ln V∗ tm                                                                                                                            (𝟑) 

We assume that V tm maximum volume of tumour cells (where tm  is the time at which the tumour contains a 
cell number which is one less than its maximum i.e., one cell less to death, and which approximates the 

maximum lifespan of tumour cells   t∗m ) 

 

V t∗m = V0e
A
β

(1−e−βt∗m )
                                                                                                             (4) 

 
Equation (3) gives 

 

𝐥𝐧 𝐕∗ 𝐭  =
A

β
 1 − e−βt , 

 

Or  

 
A

β
=

ln(V∗(t))

(1 − e−βt )
,                                                                                                                                                            (𝟓) 

Where V∗ t = V(t) V0  

The cumulative intrinsic volume growth rate Vc of the Gompertz model of equation (2), is defined       Vc =

 V∗ t dt
∞

0
Substitute the value of V∗ t from the equation (2) in the above equation and apply a little algebra we 

get the following equation 

−β =
1

Vc

e
−

A
β  

e−z

z

∞

−
A
β

dz                                                                                                 (6)

 

Where z = −
A

β
e−βt .  Clearly, the above integral (6), exists ∀ β ∈ R. 

 

Consider the initial volume of size V0 at t = 0. From the equation (1) the volume at which the growth 

rate of initial volume V0 has increasing or, equivalently, it tends to a V t∗m  is the time at which volume 

approximates the maximum number of tumour cells, is called a critical time,tk : 

The remaining tumour cells from an original volume size V t , surviving at this critical time is called 

critical volume Vk  and the corresponding Gompertz parameter in equation (1), is called critical Gompertz 

parameter βk . 

The Gompertz model presents a doubling time (Volume Rate Doubling time (VRD)) which depends 

only on β. Comparisons of volume data of solid tumours in tumour growth model are aided by calculation of the 
VRD, because VRD changes in the same direction as lifespan of tumour cells. 

The VRD changes with time Solving equation (2) for VRD gives 

VRD = −
1

β
ln  1 −

β

A
ln 2                                                                                                                           (𝟕) 

Benjamin Gompertz (1825) [17] proposed that the growth of tumour volume increased exponentially 

with time for all tumours. Various subsequent researchers, especially in biology and  gerontology, have viewed 

Gompertz observation as a law that describes the process of senescence in almost all type of tumours at any time 
after the onset of growth. As a rough approximation at initial growth, Gompertz exponential formula does 

capture the rise in growth in a great variety of tumours. 

Until recently, it was impossible to determine whether this exponential rise continued for long period 

of time. For some tumours, the scattered data available suggested that growth rate decelerated at a long period of 

time, but questions about data reliability precluded strong conclusions. For other tumours, virtually nothing was 

known about growth rate at a very long period of time because the tumour cell growth studied had been too 

small to permit dependable estimates of growth at time that only a small fraction of the starting cohort reached. 

It is well known that among most of the tumours, growth rate of volumes are generally lowest at 

initially and the accelerate at a constant rate during the major phase of middle lifespan. 

When examined from initial onwards, at least up through the average lifespan. However, extensive 

deviations from the Gompertz model were recently documented, in which growth rate accelerations slow 
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markedly by the average lifespan. After some time (critical time), the growth rate appears to cease increasing 

and may even decrease at these extremely long time. Decreasing growth rate at a long period of time can be 

predicted by the Gompertz law. In extreme time, growth rates may level off or even decline, after this stage how 
much the tumour volume can grow and when this biologically existing tumour will disintegrate, that time is the 

maximum lifespan of the tumour. We are going to estimate this maximum lifespan of the tumour t∗m . 
We wish to point out that our approach is not restricted to tumour growth only. The Gompertz model 

have been almost universally used to describe the growth of organisms, tissues and populations of single cell 

organisms. Additionally the biological assumptions and mathematical generality of the Gompertz model are 

sufficient to warrant its application to growth in general. The plan of this paper is as follows. In section 2 we 

find the behaviour of solid tumour growth Gompertz parameter and define critical volume Vk, critical growth 

time tk. Section 3 define the most important parameter maximum life span time t∗m .  In section 4 we had 

discussion and conclusion. 

 

II. Estimating the upper limits of longevity 
Generally growth rates of the tumours in animals are low at initial time and then accelerate to a 

constant rate during the major phase of its life time. In equation (6) we estimated the Gompertz growth rate 

parameter β and also we derived the equation for VRD to calculate how fast the initial volume will reach the 

maximum volume. 

Before proceeding to find maximum lifespan we need to know the behaviour of the parameter and its 

sensitiveness with respect to volume, cumulative volume and time. This will give the results when the value of 

parameter β increases/decreases accordingly the value of t∗m   increases /decreases and estimate the value of 
critical Gompertz parameter. 

 

2.1 Behaviour of solid tumour growth Gompertz parameter 

Tofind the critical points of β we consider the partials of  β with respect to V∗ t ,   Vc  and tm 

in equation (7). These are given by 

 

 

∂β

∂V∗ t 
=

 A −  
1
Vc
  /V∗ t lnV∗ t 

1 +  
e−βtm

 e−βtm − 1 
 tm  A −  

1
Vc
  

                                                                             8  

∂β

∂Vc

=
−β/Vc

1 +  
e−βtm

 e−βtm − 1 
 tm  A −  

1
Vc
  

                                                                             (9) 

 And 

 
∂β

∂tm
=

−β 
e−βtm

 e−βtm −1 
 /  

1

V c
 −A 

1+ 
e−βtm

 e−βtm −1 
 tm  A− 

1

V c
  

                                                                                                                       (10) 

Here, βtm≥1 and [A≤(1/Vc)] is positive, since  

 
1

Vc

 ≤ A 

 Therefore, for βtm   ≥1 the value of 

1 +  
e−βtm

 e−βtm −1 
 tm  A −  

1

Vc
    is positive. 

This will give the result 
∂β

∂V∗ t 
≥ 0,

∂β

∂Vc
≤ 0 and

∂β

∂tm
≤ 0. 

It shows that the value of parameter β is increases when value of V *(t) is increases, β is decrease when the 

value of Vc increase and also β is decrease when the value of tm increases. If we send  V∗ t  𝐭𝐨 ∞ 

in (8),(9) and (10) get that 

𝐥𝐢𝐦
V∗ t →∞

∂β

∂V∗ t 
= 0, lim

V∗ t →∞

∂β

∂Vc

= 0 and lim
V∗ t →∞

∂β

∂tm

= 0. 

Also we obtain, 
∂β

∂V∗ t 
= 0 ⇔   A =

1

Vc

, ∀ V∗ t ,  

∂β

∂Vc

= 0 ⇔  β = 0, 
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∂β

∂tm

= 0 ⇔ A =
1

Vc

  or  β = 0 or  β =  −∞. 

Upon substitution A =
1

Vc
      in (4), we get 

tm

V∗ t lnV∗ t 
=

βtm

 1 − e−βt 
                                                     (11) 

from (11) it follows that, 

tm

V∗ t lnV∗ t 
 
< 1 if β < 0
= 1 if β = 0
> 1 if β > 0

                                               (12) 

The point  
tm

Vc lnV∗ t 
= 1at which  β changes sign is said to be the critical point βk. 

From [35], Collins and his co-workers [7] were able to show that for a series of 206 children with Wilms' 

tumour that risk of recurrence agreed well with theoretical prediction by the method of Boag [10] and also the 
growth rate function approaches a constant with predictions on the basis of exponential growth at larger time [1, 

3, 12, 18, 19, 22, 31, 32]. 

 

To determine the critical Gompertz parameter, βk, first we use the identity 
tm

Vc lnV∗ t 
= 1to obtain critical values 

of β; namely critical volume, Vk and critical time tk. Since the partials of β with respect to V∗ t ,
1

Vc
 and tm  

become zero at 
tm

Vc lnV∗ t 
= 1. 

 Note that the condition 
tm

Vc lnV∗ t 
= 1 is necessary to have a constant growth rate function. Finally we obtain the 

asymptotic solution of (7), for the critical values, Vk and tk. Now we shall prove the existence of critical volume 

and critical time. 

 

2.2 Critical volume Vk 

For a given V∗ t ,
1

Vc
 and tmwith 

tm

Vc lnV∗ t 
> 1 there exists a critical volume Vk and is given by 

e
tm
V c .  Indeed, since lnV∗ t <

tm

Vc
 we can take lnV∗ t =

tm

Vc
, or  Vk = e

tm
V c  . For instance,(see TableI in [31] when 

(Mouse Krebs)) A = 5:25, tm = 15; 20 and 25, we find that Vk = 927ₓ106 6; 949ₓ106  and 952 ₓ 106 , 

respectively. Note that Vk is increases as tm. Thus the remaining volume (critical volume) approximates 949 ₓ 
106 to 952 ₓ 106 cells. Since the volume reaches its maximum size, the above said tm can be treated as critical 

time tk. From this we obtained tk = Vc ln [Vk]. To study the tumor growth rate of the remaining critical volume 

we need to consider critical Gompertz parameter βk because 
tm

Vc lnV∗ t 
= 1  when V∗ t = Vk . Thus, we conclude 

that when 
tm

Vc lnV∗ t 
> 1, tk = tm and Vk = e

tm
V c  . Clearly , when 

tm

Vc lnV∗ t 
> 1, both tk and tm are same. 

 

2.3 Critical growth time tk 

On the contrary, when 
tm

Vc lnV∗ t 
< 1  it is trivial to find the critical volume. As tm < Vc ln [Vk]  we can take tk = 

Vc ln [Vk]. For instance,(see Table I in [31] when (Rat R39 Sarcoma,R3a7))   A = 1.28, tm = 42.44 days and 

V∗ t =241 cm3, we find that tk = 28.4854 . Thus we conclude that when          
tm

Vc lnV∗ t 
< 1  , tk = Vc ln [Vk], 

Vk = e
tm
V c   and tk ≠ tm .Clearly , when  

tm

Vc lnV∗ t 
< 1 , tk < tm. Thus, in general, for any given  

1

Vc
, tm and V∗ t , 

we get tk ≤ tm . 

In the above subsections we checked the existence of critical Gompertz parameters Vk and tk. After the 

critical time the growth rate of tumour will starts diminish and will have more inuence on the growth of the 

tumour. So we needs to know the how much time the volume of tumour can exist and expand biologically as 
well as theoretically. This paper main aim to _nd that biological existence of tumour and that maximum lifespan 

time t∗m . 
 

III. Maximal Life Span Time 𝐭𝐦 
If the critical volume Vk  is not arrived at tm , then the value of tm can be taken as critical life Span tk . 

Thus, the actual tm  the time at which the critical volume has reached maximum lifespan is to be determined. 

First, for given 
1

Vc
, tm  and V(t) with 

tm

Vc lnV∗ t 
= 1; the only solution of  equation(5) and (6) is  A =

1

Vc
, and β =
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0; that is mortality rate remains  constant. Then next, for a given 
1

Vc
, tm  and V(t)with 

tm

Vc ln V∗ t 
< 1 ; we get β > 0 

from (12). Thus, the growth rate becomes  

G t =  

1

Vc

, if V t = Vk

Akeβt , if V t > Vk

  

 

where Ak  the initial growth rate at critical age tk , is given by (see equation (5)) 

 
Ak

β
=

ln(V∗(t))

(1 − e−βt )
,                                                                                                                                                                               (𝟏𝟑) 

 

To determine the tm  consider the value of Vc =  V∗ t dt
∞

0
. We have 

 

      Vc =  e
A
β

(1−e−βt )
dt +

tk

0

 e
Ak
β

(1−e−βt )
dt

 t∗m

tk

≡ Iβ + I−β                                          (14) 

where Iβand I−β  denote the first and second integral respectively on the right hand side of equation 

(14).  We note that I−β   is the mean life length of Vk from tk . To find the mean life length,we rewrite the 

equation(14) thus 

I−β =   Vc − Iβ =  e

ln (V∗(t))

(1−e−βasy tk )
(1−e−βa sy t )

dt
∞

tk

                                                                 (15) 

here we have substituted asymptotic solution of (6) into Iβ  and it is given by (M.Pitchaimani and 

somasundara ori) 

βasy =

 
 
 

 
 −

1

tm

ln  1 − e
 

tm
Vc

 C  
tm
Vc

−1  
 lnV∗ t 

 
tm
Vc

  
tm
Vc

−1  
         if 

tk

Vc lnV∗ t 
< 1

−
1

tm

ln  1 −
C ln V∗ t  − ln V∗ t  − 1

ln ln V∗ t   + C
 ,                       if  

tk

Vc lnV∗ t 
= 1

 
 
 

 
 

 

 

 

where C = 0:577215, Euler's constant. 

A simple substitution in the integral (15) gives 

I−β =
−1

βasy

e

ln  V∗ t  

 1−e−βasy tk  
 

e−z

z

∞

ln V∗ t  

 1−e−βasy tk  
e−βasy   Vc ln  V∗ t  

dz                                                        

 

≤ 
−1

βasy

e

ln  V∗ t  

 1−e−βasy tk  
 

 1 − e−βasy tk 

ln V∗ t  e−βasy   Vc ln  V∗ t  
 e

− ln V∗ t  

 1−e−βasy tk  
e
−βasy   Vc ln  V∗ t  

                  

Now using the fact that tk < Vc ln V(t) when β > 0, we obtain 

 

I−β ≤ 
1

βasy

 
 1 − e−βasy tk 

ln V∗ t  
                                                                                               (16)          

On the other hand, 

I−β =  e
ln V∗ t  

(1−e−βt )

(1−e−βt∗m dt
 t∗m

tk

≥  
V(t∗m )

V0

dt ≥ Vk  t
∗

m − tk                                        (17)
 t∗m

tk

 

Combining (16) and (17) we get, 

Vk  t
∗

m − tk ≤
1

βasy

 
 1 − e−βasy tk 

ln V∗ t  
  

which implies 

t∗m ≤ tk +
1

Vkβasy

 
 1 − e−βasy tk 

ln V∗ t  
  

Now we shall estimate Ak  and β using t∗m . From (13) we get 
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Ak =
β ln(V∗(t))

(1 − e−βt∗m )
=   

βt∗m

(1 − e−βt∗m )
    

ln(V∗(t))

t∗m

   ≥      
ln(V∗(t))

t∗m

                                                                          (18)    

 

Thus the initial growth rate should be at least 
ln (V∗(t))

t∗m
  for V∗ t > Vk  . We also know that 

1

Vc
  cannot exceed 

the initial growth rate A, when β > 0. Hence for any β, we have 
1

Vc

≤ A ≤
ε

Vc

,                                  ε =
Vc ln(V∗(t))

t∗m

> 1. 

To estimate β from (11) we get 
tk

Vc ln V∗ t  
=

βtk

 1 − e−βtk  
≤ eβtk  

On the other hand 
tk

Vc ln  V∗ t  
≥

tm

Vc ln  Vk  
 for V∗ t < Vk  . Thus we have 

tm

Vc ln  Vk  
≥ eβtk  

which gives 

β ≤
1

tk

ln  
t∗m

tk

                                                                                                 (19) 

Because 
1

Vc ln Vk
=

1

tk
. 

 

Remark-1: Using equation (19) we easily calculate the value of t∗m , by substituting the values of critical 

growth time tk  and corresponding growth rate β. 
Remark-2: The estimated maximum lifespan of tumour will exist theoretically and biologically. 

Remark-3: We use the value of the maximum lifespan in experimental, clinical data or tumour therapy 

at particular time. 

 

IV. Discussion And Conclusion 

Many of the problems in our understanding of the overall growth of tumours arise out of 

ignorance of the basic characteristics of the proliferating cell population, despite the fact that techniques 

of investigation of cell population kinetics have been developing rapidly over the past few decades. The 
application of these techniques to experimental tumours has been shown to be feasible and data are now 

available on a variety of tumour types. The problem of measuring cell production rate in a tumour is 

essentially the same as in normal tissues. The slow tumour growth could be the result of a long cell cycle 

time. As regards cell proliferation in all types of tumours, the experimental difficulties are very great. 

However, in the light of a detailed knowledge of the situation in experimental tumours it is possible to 

plan simple investigation. 

Most of the information about tumour growth rates comes from studies performed long ago and 

not known clearly the maximum volume size of individual tumours and groups of tumours.The 

expectation that tumour growth under ideal conditions would prove to be exponential until it terminates 

with the exhaustion of the host has not been borne out in many careful studies of the growth of a wide 

variety of tumours. The specific growth rate of tumours is usually not constant even for a short time, but 

decreases steadily. So, the present study we have shown that tumour growth is well described by a 
Gompertz function, according to which the times required to double the tumour volume (VRD)increase 

according to an exponential function. The Gompertzian model is a classical continuous model useful in 

describing population dynamics; in particular, it is a very efficient mathematical model to describe 

tumour growth in humans and animals. Especially in experimental oncology, the Gompertzian model is 

most widely used to describe in vivo tumour growth. Qualitatively, this model gives exponential growth 

at early time periods which then saturates at later time periods (decelerating growth). 

Sensitivity analysis can be used to determine the functional relationship between tumour size or 

growth rate and the constituent rates (e.g., fecundity, survival, growth, maturation, recruitment, 

movement), and to project changes in tumour growth rate and size as vital rates change. This will give 

the result  

It shows that the value of parameter 
∂β

∂V∗ t 
≥ 0,

∂β

∂Vc
≤ 0 and

∂β

∂tm
≤ 0. 

Β is increases when value of V∗ t  is increases, β is decrease when the value of Vc  increase and 

also β is decrease when the value of tm  increases. The parameter β will be more sensitive towards the 

cumulative volume Vc  and maximum lifespan tm. In the behaviour of β, it does not change often or 

accordingly the change of volume of tumour, since the ratio between initial mitosis rate A and growth 

deceleration factor β is constant. The disruption of cell cycle or alterations of normal cells properties will 
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leads to the formation of an initial tumour, from that we get A and this is not depends on neither the 

number of cells to be formed nor make changes in the tumour growth. 

Also observed that to have a unique independent parameter A; it is necessary that  
1

Vc
≤ A . This data is not dependent on the value of V∗ t , so it is not affected by any large 

number of solid tumour cells. So we calculate the unique β by Gompertz tumour growth model, even the 

specific volume data of solid tumour cells were not given. Hence, we can estimate the growth 

deceleration parameter using the equation (6), in the absence of specific volume data of large number 

solid tumour cells at particular time, also the value of A can be calculated through the unique value of β. 

An exact mathematical description of our model of tumour cell proliferation is given by a 

Gompertz model with the assumption that there is no upper bound on  maximum lifespan. Hence, we 

made use of Gompertzian growth with an infinite time  t ∈ (0,∞)  ]. Clearly, this is not correct. But we 

do not know what is the maximum lifespan? and we do know that at least one must exist. Observe that 

individual cell lifespans may vary, but they are bounded by the value of t∗m . 

 The biological impact of such a restriction is discussed in Liu and Witten [23]. Given the 

assumption of a maximal lifespan t∗m ,  we must adjust our Gompertz tumour growth model to take this 

into account. 

An asymptotic solution is useful in the study of qualitative behaviour of solution. The 

asymptotic solution of the basic equation(6) for a large V∗ t  is given, when 
tk

Vc ln  V∗ t  
< 1 and 

tk

Vc ln  V∗ t  
=

1. 
We can estimate the value of critical time tk , critical volume Vk  by the method is given in [31] 

then substitute in equation (19) to get the maximum lifespan t∗m .  This is useful when do the experiments 

and clinical study or test. Also it may apply in the theoretical predictions for the tumour therapy and 

treatments. The value of β is a continuous function in the variables 
1

Vc
; tm  and V∗ t  from initial growth 

time to critical growth time. We calculated the maximum life span (t∗m) from our obtained equation (19). 

From table-I,we observe that our derivation is better for all tumour maximum life span t∗m .  In table-I we 

compared the values of tm  , tk  and t∗m . All the critical time values are less than the maximum life span 

t∗m . 

In table -I the Rat tumour of type Walker( W26b1) and Walker (W12a7) the time of death tm  are 

more than the t∗m , since these two tumour volume of cells are very small and its theoretical upper limit is 

very high. The remaining data fit well with other experimental data. The large volume of tumour cells 

are fit well with the asymptotic solution and other characteristics of Gompertz tumour growth model. 

The basic data and other calculations of parameters are available in [2] and [31]. 

The purpose of this discussion is to estimate the maximum lifespan of Gompertz tumour growth 

parameter at particular time. Such a method is necessary when attempting to estimate the growth rate in a 

Gompertz tumour growth model, and its maximum lifespan.  

From these analyses, we believe that our model and methods will provide a useful approach to 
prediction of experimental and clinical tumour growth. 

 

Table-I Analysis of theoretical Gompertz functions in terms of tm  , tk  and t∗m  which depends on the tumour 

cell number at any time. 
S.No tumour type  β  tm  /days  tk  / days  t∗m  /days 

 Mouse:     

1.  Krebs  0.411  - 10.4429  763.54 

2.  Ehrlich  0.009  - 331.1687  6523.36 

3  6C3HED,high dose  0.012  425.9917  170.2028  1312.15 

4 6C3HED,low dose  0.0116  567.3520  141.5309  730.899 

5 EO771  0.063  79.4302  32.9247  262.035 

6 Osteosarcomas  0.159  38.9177  18.2688  333.60 

 Rat:     

7 Walker,W26b1  0.0218  341.2281  42.3284  106.51 

8 Walker,W12a7  0.0205  342.2281  51.0880  145.60 

9 Walker,W10a6  0.039  59.1180  36.7349  153.91 

10 Walker,W10b4  0.003  - 79.8275  101.43 

11  R39Sarcoma,R3a7  0.124  42.4407  28.4854  974.17 

12 7R39Sarcoma,R4c4  0.078  - 32.2799  400.33 

13 R39Sarcoma,a7R3  0.063   - 62.7635  3273.04 

14 Flexne-Jobling  0.049-  - 43.9302  378.11 

 . Rabbit:     

15 Brown-Pearce  0.0169  45.7709  28.9986  47.6088 

The source of data for each species is given in [2, 31]. 
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