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Abstract :  In  the study  of  Diophantine  equations  elliptic  curves  play a  vital  role  due  to  its application  

in  proof  of  famous  Fermat’s  Las t Theorem (FLT)  and  were  further developed  with  its  applications  in  

factoring and primality.  In this  paper  we  define elliptic curve E(K) over  the  field  K  and  describe  the  

arithmetic on  elliptic curve  and  give  the  group  law  with  respect  to  the  characteristic  of  K..  Due  to  its  

group  structure  and  its  analogue  nature  to  multiplicative  group  of  a  finite field , elliptic curves  find  their  

way  in  enormous applications  in  cryptography.  In  this  paper  we  also  describe  the  group  law  for  

elliptic  curve  over  a  finite ring  and  propose  a  public  key  encryption  with  elliptic  curve over  the  ring  

Zpq  for  p, q  are  primes.  

Keywords:   Elliptic Curve, Cryptosystem. 

 

I. Introduction 
A rational point is a point (x,y) in a plane with both co-ordinates rational and a line is a rational line if 

its coefficients are rational. A conic is rational if its equation given as ax
2

+bxy+cy
2

+dx+cy+f=0 with a,b,c,d,e,f 
are all rational numbers. It is noted that with existence of one rational point there is a method of evaluating all 

the rational points on the conic by establishing a one to one correspondence with rational points on a line. In the 

study of rational points on the rational cubics it is noted if the cubic is singular the the method of finding the 

rational points is based on that of conics. In the extensive research for rational points on rational cubics C, where 

the cubic is non singular we have the rational points by Mordell’s Theorem (1921). It is proved that C has 

rational points then all rational points form a group that is finitely generated. He proved this by using certain 

group laws. The cubic of the form y
2
+a

1
xy+a

3
y=x

3
+a

2
x
2
+a

4
x+a

6
 is called Weierstrass generalized equation 

and also is named as elliptic curve. These curves arise in the study of arc lengths of ellipses given in terms of 

elliptic functions. 

In the study of rational points on cubic curves it is preferred to study the projective curve version. Any 

rational solution (x,y) of f(x,y)=0 gives rise to an integral solution (X,Y,Z) of the corresponding homogenous 

polynomial F(X,Y,Z)=0 and any integer solution (X,Y,Z) with Z≠0 gives a rational solution (X/Z,Y/Z) of 

f(x,y)=0; and many different integer solutions may lead to same rational solution namely (X,Y,Z) and (tX,tY,tZ) 

lead to same rational solution (X/Z,Y/Z) and the solutions with Z=0,X≠0Y≠0 F(X,Y,Z)=0 are said to correspond 

to solutions “ at infinity" and as this gives a clear picture of all solutions of f(x,y)=0 it is preferred to study the 

projective curve version. 

Let K be a field then the projective space P
2

k
 is the set of all equivalence classes [(X,Y,Z)] for X,Y,Z∈K 

such that X,YorZ≠0 with the relation  (X,Y,Z)(X',Y',Z') iff (X',Y',Z')=(λX,λY,λZ) given as for λ∈K each 

equivalence class [(X,Y,Z)]∈P
2

k
 is called  a  point  and  for all  Z≠0  the  point  [(X,Y,Z)] = [X,Y,1]  called  

finite  points  and  the points [X,Y,0] are called points at infinity. Then for any set of zeros of f(x,y) a projective 

version is obtained by considering the homogeneous polynomial F(X,Y,Z) of degree n with Z
n

f(X/Z,Y/Z) = 

F(X,Y,Z); The set {[X,Y,Z] ∈ P
2

k
;  F(X,Y,Z) = 0} = [X,Y,1] ∪ [X,Y,0] is the projective version of the zeros of  

f(x,y). For the Weierstrass equation Y
2
 = X

3
+AX+B the projective version is the {[X,Y,1]; X,Y∈ K, Y

2
Z = 

X
3

+AXZ
2

+BZ
3
} ∪ {[X,Y,0]; Y

2
 Z=X

3
+AXZ

2
+BZ

3
} F(X,Y,0) = 0⇒X

3
 = 0⇒X=0. The point at infinity of the 

Weierstrass equation are given as [(0,Y,0)] = [(0,1,0)] denoting this as ∞ we have the set of all zeros of 

Weierstrass equation is given as {(X,Y) ∈ K×K; Y
2

 = X
3
+AX+B} ∪ {∞}. This set of zeros of the Weierstrass 

equation on a Field K is called the Elliptic curve over the Field K is denoted as E(K).                                                                                                                                                                             

i.e., E(K) = {(X,Y) ∈ K×K; Y
2

=X
3
+AX+B} ∪ {∞} 
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II. Elliptic Curve E(K) 
The generalized Weierstrass equation for an elliptic curve E is  

 y
2

+a
1
xy+a

3
y=x

3
+a

2
x
2
+a

4
x+a

6
. 

The discriminant of the curve is defined as  

 Δ=−b
2

2
b
8

−8b
3

4
−27b

2

6
+9b

2
b
4

b
6
,where b

2
=a

2

1
+4a

2
,b

4
=a

1
a
3
+2a

4
,b

6
=a

2

3
+4a

6
, 

  b
8
=a

2

1
a
6
+4a

2
a
6

−a
1
a
3
a
4
+a

2
a
2

3
−a

2

4
, 

  c
4
=b

2

2
−24b

4
,c

6
=−b

3

2
+36b

2
b

4
−216b

6
. 

The generalized Weierstrass equation for any field K with respect to characteristic of K≠2 can be expressed as 

Y
2

=X
3
+a

'

2
X

2
+a

'

4
X+a

'

6
 with Y=y+ 

a
1

x

2
+ 

a
3

2
 and some constants a

'

2
,a

'

4
,a

'

6
. If the characteristic K≠3 then it can be 

expressed as Y
2

=X
3
+AX+B with X=x+ 

a
'

2

3
. This equation is called the Weierstrass equation. Therefore for any 

field K with characteristic ≠2, 3 the elliptic curve E over K is denoted by E(K) and is given as  

 E(K)={(x,y)∈K×K;y
2
=x

3
+Ax+B}∪{∞},  

where ∞ is the point at infinity and A,B∈Ksuchthat4A
3

+27B
2
≠0.  

 

Adding points on E(K) over a field K of characteristic ≠ 2,3 : 

Let P
1

=(x
1

,y
1
),P

2
=(x

2
,y

2
)  be two points on elliptic curve E given by the equation y

2
=x

3
+Ax+B. Draw the 

line L through P
1
  and  P

2
. Then L intersects E in a third point P'

3
. Reflect P'

3
 across the x-axis to obtain P

3
. 

Now define P
1

+P
2

=P
3

. 

 

A Formula to compute P
1

+P
2

 in terms of the coordinates of P
1

 and P
2

:  

First assume that P
1
≠P

2
 and that neither point is ∞. Draw the line L through P

1
 and P

2
. Its slope is  

 m= 

y
2

−y
1

x
2

−x
1

. 

Suppose that x
1
≠x

2
. The equation of L is  

 y=m(x−x
1

)+y
1
. 

To find the intersection with E, substitute y to get  

 (m(x−x
1
)+y

1
)
2

=x
3

+Ax+B. 

This can be rearranged to the form  

 x
3

−m
2
x

2
+(−2m

2
x

1
−2my

1
+A)x−m

2
x

2

1
−y

2

1
−2mx

1
y
1

+B=0. 

We know that sum of the roots of the cubic equation is the coefficient of −x
2

. In our case, the two roots of the 

above cubic equation are x
1
 and  x

2
, we recover the third as x

3
=m

2
−(x

1
+x

2
) and y=m(x

3
−x

1
)+y

1
.  

Now, reflect across the x-axis to obtain the point P
3

=(x
3
,y

3
)=(x

3
,−y):  

                                                             x
3

 =m
2

−x
1

−x
2

, 

                                                             y
3

 =m(x
1
−x

3
)−y

1
. 

 

In the case that x
1

=x
2
 but y

1
≠y

2
, the line through P

1
 and P

2
 is a vertical line, which therefore intersects E in ∞. 

Reflecting ∞ across the x-axis yields the same point ∞. Therefore, in this case P
1

+P
2
=∞. 
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Doubling of a point: 
Now consider the case when P

1
=P

2
=(x

1
,y

1
). When the two points coincide, the line through them is a tangent 

line. Then take the line L to be the tangent line at the point P
1
. Implicit differentiation allows us to find the slope 

m of L:  

 2y 
dy

dx
=3x

2
+A,som= 

dy

dx
= 

3x
2

1
+A

2y
1

.  

If y
1

=0 then the line is vertical and then P
1
+P

2
=∞. 

Therefore, assume that y
1

≠0. The equation of  L  is    y=m(x−x
1

)+y
1

. 

We obtain the cubic equation  

 x
3

−m
2
x

2
+(−2m

2
x

1
−2my

1
+A)x−m

2
x

2

1
−y

2

1
−2mx

1
y
1

+B=0. 

This time, we know only one root, namely x
1
, but it is a double root since L is a tangent to E at P

1
. Therefore, 

Proceeding as before, we obtain  

                                                              x
3
=m

2
−2x

1
, 

                                                             y
3
=m(x

1
−x

3
)−y

1
. 

The addition defined is summarized as group law in the following. 

Group Law: 

Let E be an elliptic curve defined by y
2

=x
3
+Ax+B over the field K with characteristic not equal to 2 and 3. Let 

P
1

=(x
1

,y
1

) and P
2

=(x
2
,y

2
) be two points on E with P

1
,P

2
≠∞. Define P

1
+P

2
=P

3
=(x

3
,y

3
) accordingly as:  

1. If P
1

≠P
2
 with x

1
≠x

2
, then    x

3
=m

2
−x

1
−x

2
, 

                                             y
3
=m(x

1
−x

3
)−y

1
.  where m= 

y
2

−y
1

x
2

−x
1

.  

If P
1

≠P
2

 with x
1

=x
2
 but y

1
≠y

2
 then P

1
+P

2
=∞.  

2. If P
1

=P
2

 and y
1
≠0, then  x

3
=m

2
−2x

1
,  y

3
=m(x

1
−x

3
)−y

1
,where m= 

3x
2

1
+A

2y
1

. 

If  y
1

=0,  then P
1

+P
2

=∞. 

      3.   We define P+∞=P for all points P on E. i.e. ∞ is the identity on E. 

 

Example: 
Consider the elliptic curve E over real numbers and also take the points  P1= (x1; y1) = (2; 9)  and                        

 P2 = (x2; y2) = (3; 10) on it. The line passing through the points P
1

 and P
2

 is y=x+7, where m=1 and k=7. 

The third point P
3
 on L and E   is evaluated as follows: 

                                                                   x
3
=m

2
−x

1
−x

2
=−4,  

                                                              y=mx
3
+k=3. 

Then we have  P
1

+P
2

=(x
3
,y

3
)=(x

3
,−y)=(−4,−3) . 

In computing 2P
1
, we first calculate slope m, m= 

f
'
(x

1
)

2y
1

 = 
f
'
(2)

18
 = 

2

3
. 

Then substituting this value of m in the formula for x
3
 and y

3
, we have  

                                                       x
3
=m

2
−2x

1
= 

−32

9
, 

                                                       y
3
=m(x

1
−x

3
)−y

1
= 

−143

27
 

                                                     2P
1

=(x
3
,y

3
)= 



 

−32

9
, 

−143

27
. 
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Adding points on E(K) over a field K of characteristic 3 : 
 

If K is a field of characteristic 3, then an elliptic curve over K is the set of points satisfying the equation  

 y
2

=x
3
+Ax

2
+Bx+C,  

together with a point at infinity ∞.  

Let P
1

=(x
1

,y
1

),P
2
=(x

2
,y

2
)  be two points on elliptic curve E given by the equation y

2
=x

3
+Ax

2
+Bx+C. Draw 

the line L through P
1
 and  P

2
. Then L intersects E in a third point P'

3
. Reflect P'

3
 across the x-axis to obtain P

3
. 

Now define P
1

+P
2

=P
3

. 

 

A Formula to compute P
1

+P
2

 in terms of the coordinates of P
1

 and P
2

:  

First assume that P
1
≠P

2
 and that neither point is ∞. Draw the line L through P

1
 and  P

2
. Its slope is  

 m= 

y
2

−y
1

x
2

−x
1

. 

Suppose that x
1
≠x

2
. Then equation of L is then  

 y=m(x−x
1

)+y
1
. 

To find the intersection with E, substitute y to get  

 (m(x−x
1
)+y

1
)
2

=x
3

+Ax
2

+Bx+C. 

This can be rearranged to the form  

 x
3

+(−m
2

+A)x
2
+(−2m

2
x

1
−2my

1
+B)x−m

2
x
2

1
−y

2

1
−2mx

1
y
1
+C=0. 

We know that sum of the roots of the cubic equation is the coefficient of −x
2

. In our case, the two roots of the 

above cubic equation are x
1
 and x

2
, then we can recover the third as x

3
=(m

2
−A)−(x

1
+x

2
) and y=m(x−x

1
)+y

1
.  

Now, reflect across the x-axis to obtain the point P
3

=(x
3
,y

3
):  

                                                           x
3
=m

2
−A−x

1
−x

2
, 

                                                                         y
3

=m(x
1
−x

3
)−y

1
. 

In the case that x
1

=x
2
 but y

1
≠y

2
, the line through P

1
 and P

2
 is a vertical line, which therefore intersects E in ∞. 

Reflecting ∞ across the x-axis yields the same point ∞. Therefore, in this case P
1

+P
2
=∞. 

 

Doubling of a point: 

Now consider the case when P
1
=P

2
=(x

1
,y

1
). When the two points coincide, the line through them is a tangent 

line. Then take the line L to be the tangent line at the point P
1
. Implicit differentiation allows us to find the slope 

m of L:  

 
2

2 1

1

3 2
2 3 2 ,    so  .

2

x Ax Bdy dy
y x Ax B m

dx dx y

 
      

If y
1

=0 then the line is vertical and then P
1
+P

2
=∞. 

Therefore, assume that y
1

≠0. The equation of  L  is  y=m(x−x
1
)+y

1
. 

We obtain the cubic equation  

 x
3

+(−m
2

+A)x
2
+(−2m

2
x

1
−2my

1
+B)x−m

2
x
2

1
−y

2

1
−2mx

1
y
1
+C=0. 

This time, we know only one root, namely x
1
, but it is a double root since L is a tangent to E at P

1
. Therefore, 

proceeding as before, we obtain  

                                                        x
3
=m

2
−A−2x

1
, 

                                                          y
3
=m(x

1
−x

3
)−y

1
. 
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Adding points on E(K) over a field K of characteristic 2 : 
For any P∈E(K), define P+∞=P and if Q is the negation of a point P i.e. P+Q=∞, note the x−coordinates in P,Q 

are equal and the line through P,Q is a vertical line, which intersects E in the point at infinity. We have 

Q=(x,y
1
) and   y

2
+(a

1
x+a

3
)y−(x

3
+a

2
x
2

+a
4

x+a
6
)=0 is a quadratic equation in y with roots y, y

1
 and  the 

sum of the roots (y,y
1
) of a  monic quadratic polynomial equals the negative of the coefficient of the linear 

term, we have y+y
1

=−(a
1
x+a

3
)  then   y

1
=−a

1
x−a

3
−y. 

Therefore F is the negation of a point P. 

When K is a field of characteristic 2, the elliptic curve over K is the set of points satisfying either 

y
2
+xy=x

3
+a

2
x

2
+a

6
 or y

2
+a

3
y=x

3
+a

4
x+a

6
 together with a point at infinity. 

Adding the points P
1

 and P
2

: 

To add two points P
1

 and P
2

, draw the line L through P
1
 and P

2
. It will intersect E in a third point P

'

3
=(x,y)  

and compute P
3
=−P

'

3
=(x,−a

1
x−a

3
−y) then   P

1
+P

2
=P

3
. 

Doubling of a point: 

The formula for doubling a point P=(x
0
,y

0
) in characteristic 2 : 

(I) the equation y
2

+xy=x
3
+a

2
x
2
+a

6
 can be expressed as y

2
+xy+x

3
+a

2
x
2
+a

6
=0 and implicit differentiation 

yields xy
'
+(y+x

2
)=0, therefore the slope of the line L through P=(x

0
,y

0
) is m= 

y
0

+x
2

0

x
0

 and the line is 

y=m(x−x
0

)+y
0

=mx+b for some b. If (x
1
,y

1
) is the intersection of L and E, we have  

 (mx+b)
2
+x(mx+b)+x

3
+a

2
x
2
+a

6
=x

3
+(m

2
+m+a

2
)x

2
+(1+2m)bx+b

2
+a

6
=0 

and as the sum of the roots x
0

+x
0

+x
1
=m

2
+m+a

2
, 

 x
1

=m
2
+m+a

2
= 

y
2

0
+x

4

0
+x

0
y

0
+x

3

0
+a

2
x
2

0

x
2

0

= 

x
4

0
+a

6

x
2

0

 

 y
1

=m(x
1

−x
0
)+y

0
 

The required point 2P=(x
2
,y

2
)=−(x

1
,y

1
)= 











 

x
4

0
+a

6

x
2

0

, x
1

+y
1

. 

(II)  Next the equation  y
2

+a
3
y=x

3
+a

4
x+a

6
 can be rewrite as y

2
+a

3
y+x

3
+a

4
x+a

6
=0. and implicit 

differentiation yields a
3
y

'
+(a

4
+x

2
)=0, therefore the slope of the line L through P=(x

0
,y

0
) is m= 

a
4

+x
2

0

a
3

 and the 

line is y=m(x−x
0
)+y

0
=mx+b for some b if (x

1
,y

1
) is the intersection of L and E,  

we have ,  (mx+b)
2

+a
3

(mx+b)+x
3
+a

4
x+a

6
=x

3
+m

2
x
2

+(a
4
+2mb+a

3
m)x+b

2
a
3

b+a
6

=0. 

and as sum of the roots x
0

+x
0
+x

1
=m

2
,   x

1
=m

2
= 

x
4

0
+a

2

4

a
2

3

, 

                                                                 y
1

=m(x
1
−x

0
)+y

0
. 

The required point 2P=(x
2
,y

2
)=−(x

1
,y

1
)= 











 

x
4

0
+a

2

4

a
2

3

,a
3
+y

1
. 
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III. Elliptic curves over Rings 
A finite collection (a

i
)
i∈I

 of elements of a ring R is said to be primitive if it generates R as an R- ideal i.e., there 

exists bi  R; for all i∈I such that 
i∈I

 b
i
a
i
=1. observe that for R=Z and Z

n
 primitive means the gcd(a

1
,a

2
,…)=1 

and gcd(n, a1, a2,…) = 1 respectively. To define elliptic curve E on R in normal form and addition law for E. 

We consider R to be a ring satisfying the following  

(i) b∈R
*

  

(ii) For all positive integers n,m and every n×m matrix (a
ij

) over R such that {a
11

,a
12

,…,a
nn

}  is positive 

and all the 2×2 determinants vanish i.e., 








 

a
ij

a
il

a
kj

a
kl

=0 for all 1≤i<k≤n„1≤j<l≤m, there exists an R- linear 

combination of rows of (a
ij

) that is primitive as element in R
m

. 

Now let the group G=R
*

 act on R
3
 by the action given as for any u∈G,(x,y,z)∈R*,u*(x,y,z)=(ux,uy,uz) and for 

any P = (x; y; z)   R
3

 denote the orbit G
P

 as (x:y:z), then the set  

          P 2(R) = Set of orbits GP of G underR
3
 

                       ={(x:y:z);(x,y,z)∈R
3
}  

is called the projective plane over R. Now we define the elliptic curve E over R by a homogeneous equation 

E(R)=y
2

z=x
3
+axz

2
+bz

3
 with a, b ∈R such that 4a

3
+27b

2∈R
*
 and the points on E(R) as 

E(R)={(x:y:z)∈P
2
(R);y

2
z=x

3
+axz

2
+bz

}
. Note that as the condition (ii) is asserted in [8] by a method with an 

efficient algorithm when R is a finite ring, we define the group law in E(R) for R finite. To add two points 

P
1

=(x
1

:y
1

:z
1

) and P
2
=(x

2
:y

2
:z

2
) on E(R), consider the polynomial expansions (q

1
:r

1
:s

1
),(q

2
:r

2
:s

2
)  in 

x
1
,y

1
,z

1
,x

2
,y

2
,z

2
,a which can be obtained by repeating the arguments as for the group laws of elliptic curves 

over fields using the two options for the slope m of the line through P
1

 and P
2

 for P
1

≠−P
2
 given as  

                                     1 2

1 2

y y
m

x x





 or 

2 2

1 1 2 2

1 2

x x x x a
m

y y

  



 

and for the points P
1
=∞=P

2
 i.e., (q

3
,r

3
,s

3
) in the neighborhood (0,0) we obtain a formula that is meaningful as 

given in [8]. Using the nine polynomial expressions , 1,2,3i i iq rs i   we consider the matrix A= 









 

q
1
r
1
s
1

q
2

r
2

s
2

q
3
r
3

s
3

 now 

note this a primitive matrix. For if A generates an ideal I≠R then we have I⊆M, M maximal ideal and for P
1

,P
2
, 

one of the three formulas is meaningful for P
1
+P

2
 but for P

1
m, P

2
m  none of the formulas are meaningful for 

P
1

+P
2

m in the field R/M. 

Further note all the 2×2 determinants of the matrix are zero of the three formulas is meaningful for any P
1

,P
2
. 

Hence the hypotheses (ii) is satisfied for the matrix A therefore there exists an R-linear combination of rows 

(q
0
,r

0
,s

0
)∈R

3
 that is primitive. Now we define the sum of P

1
 and P

2
 on E(R) as P

1
+P

2
, where 

P
1

+P
2

=(q
0

:r
0
:s

0
). There group laws allow us to work with elliptic curves over rings, the following corollary 

simplifies the working with elliptic curve over the ring R=E(Z
n

).  

Corollary: 
Let n

1
 and n

2
 be odd integers with gcd (n

1
,n

2
)=1. Let E be an elliptic curve defined over Z

n1n2
. Then there is a 

group isomorphism such that,   E(Z
n1n2

)≃E(Z
n1

)⊕E(Z
n2

).[14] 

In the next section we construct a cryptosystem exploiting this isomorphism in particular for R=Z
pq

, where p,q 

are primes. The evaluation of all points on E(Z
pq

) depends on points of E(Z
p
) and E(Z

q
) which are obtained 

using the less complicated group laws on elliptic curves over the fields.  
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IV. Cryptosystem based on arithmetic of Elliptic curve 
Let E be an elliptic curve over the finite field F

q
 and let P and Q be points in  E(F

q
). The problem of 

finding an integer n such that Q = nP is called Elliptic Curve Discrete Logarithm Problem (ECDLP). In this 

section we describe a cryptosystem using ECDLP which is based on arithmetic of elliptic curves over a ring 

R=Z
pq

 for p, q distinct primes via the arithmetic on E(Z
p
) and E(Z

q
).  

In the following cryptosystem Sender and Receiver generate a common key basing on discrete log of elliptic 
curves modulo n and then start the communication. 

 

Generating the common key:  

• Sender chooses random primes p,q and selects an elliptic curve, E=E(Z
pq

)=X
3

+AX+B modulo pq and   

   a point T=(T
p
,T

q
) on E where T

p
∈E(Z

p
), T

q
∈E(Z

q
), also chooses an integer r then makes (E,T,rT) public.  

• Receiver chooses an integer s and makes (E,T,sT) public then Sender and Receiver agree upon rsT as 

secret key.  

 

Encryption: 

Sender represents the message, M fixes a random points G
q
∈E(Z

q
), G

p
∈E(Z

p
) and encrypts M as 

C=M+r(G
q

−sT), D=M+r(G
p
−sT) where M=(M

p
,M

q
), M

p
∈E(Z

p
), M

q
∈E(Z

q
)  and G

q
=(∞,G

q
) , G

p
=(G

p
,∞) 

Then  

 C =M+r(G
q

−sT) 

  =(M
p
,M

q
)+r((∞,G

q
)−s(T

p
,T

q
))  

  =(M
p
−rsT

p
, M

q
+rG

q
−rsT

q
) 

  =(C
p

,C
q
) 

 D =M+r(G
p

−sT) 

  =(M
p
,M

q
)+r((G

p
,∞)−s(T

p
,T

q
)) 

  =(M
p
+rG

p
−rsT

p
, M

q
−rsT

q
) 

  =(D
p

,D
q

) 

then C,D are made public. 

 

Decryption: 

Receiver decrypts the message M by computing C+rsT, D+rsT as  
 C+rsT =(C

p
,C

q
)+(rsT

p
,rsT

q
) 

  =(C
p

+rsT
p

, C
q

+rsT
q

) 

  =(M
p
,M

q
+rG

q
) 

 D+rsT =(D
p

,D
q

)+(rsT
p

,rsT
q

) 

  =(D
p

+rsT
p

, D
q

+rsT
q
) 

  =(M
p
+rG

p
,M

q
) 

 

Here C+rsT modulo p = M
p

, D+rsT modulo q = M
q

 and retrieve the message M∈E(Z
pq

) by using Chinese 

Reminder Theorem. 

 

Example: Let p=13, q=11 and Suppose Sender and Receiver agree upon an elliptic curve E:Y
2

=X
3
+X+1 over 

Z
pq

=Z
143

 

To count the Points on E(Z
143

) we make a list of the possible values of X, then of the square roots Y of 

X
3

+X+1 modulo 13 and modulo 11. The following tables represent the points on E(Z
13

), E(Z
11

) respectively. 
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X 
X

3
+X+1 

Y Points 

0 1 1,12 (0,1),(0,12) 

1 3 4,9 (1,4),(1,9) 

2 11 - - 

3 5 - - 

4 4 2,11 (4,2),(4,11) 

5 1 1,12 (5,1),(5,12) 

6 2 - - 

7 0 0 (7,0) 

8 1 1,12 (8,1),(8,12) 

9 11 - - 

10 10 6,7 (10,6),(10,7) 

11 4 2,11 (11,2),(11,11) 

12 12 5,8 (12,5),(12,8) 

  The points on E(Z
13

) are {(0,1),(0,12),(1,4),(1,9),(4,2),(4,11),(5,1),(5,12),(7,0),(8,1),(8,12),(10,6), 

   (10,7),(11,2),(11,11),(12,5),(12,8),∞} and  #E(Z
13

)=18 

 
X 

X
3

+X+1 
Y Points 

0 1 1,10 (0,1)(0,10) 

1 3 5,6 (1,5),(1,6) 

2 11 0 (2,0) 

3 9 3,8 (3,3),(3,8) 

4 3 5,6 (4,5),(4,6) 

5 10 - - 

6 3 5,6 (6,5),(6,6) 

7 10 - - 

8 4 2,9 (8,2),(8,9) 

9 2 - - 

10 10 - - 

  The points on E(Z
11

) are {(0,1),(0,10),(1,5),(1,6),(2,0),(3,3),(3,8),(4,5),(4,6),(6,5),(6,6),(8,2),(8,9),∞}  

   and  #E(Z
11

)=14. 

 

Generating the common key:  

 

• Sender chooses random primes say 13, 11 and selects an elliptic curve,  E = E(Z143) = X3 + X + 1 and 

   a point T = (T13, T11) = ((4, 2), (1, 6)) on  E where (4, 2)   E(Z13),  (1, 6)   E(Z11), also chooses an integer 

    r = 4 then makes (E, T, rT ) = (E(Z143), ((4, 2), (1, 6)), 4((4, 2), (1, 6))) public. 

 

• Receiver chooses an integer s = 11, (E, T, sT ) = (E(Z143), ((4, 2), (1, 6)), 11((4, 2), (1, 6))) makes public.  

   Then Sender and Receiver agree upon  rsT = 44((4, 2), (1, 6)) as secret key. 

 

Encryption: 
Sender represents the message as a point M = (114, 137)   E(Z143) , fixes random points such as,   

G11 = (3, 8)   E(Z11), G13 = (1, 4)   E(Z13) and encrypts  M  as  C= M + r(G11 − sT ), D = M + r(G13 − sT ) 

where M =((10, 7), (4, 5)), (10, 7)   E(Z13); (4, 5)   E(Z11) and take G11 = (∞, G11), G13 = (G13, ∞)  note that 

G11,G13   E(Z143) and we have, 

 

                                                   C = M  +  r(G11 − sT ) 

                                                       = ((10; 7), (4; 5)) + 4((∞, (3, 8)) − 11((4, 2), (1, 6))) 

                                                      = ((10, 7) − 44(4, 2), (4, 5) + 4(3, 8) − 44(1, 6)) 

                                                      = ((10, 7) + (11, 11), (4, 5) + (0, 10) + (6, 5)) 

                                                      = ((8, 1) + (4, 6)) 

                                                      = (C13, C11) 

 
                                                   D  = M  +  r(G13 − sT ) 

                                                       = ((10, 7), (4, 5)) + 4(((1, 4), ∞) − 11((4, 2), (1, 6))) 

                                                       = ((10, 7) + 4(1, 4) − 44(4, 2), (4, 5) − 44(1, 6)) 

                                                       = ((10, 7) + (4, 2), (4, 5) + (6, 5)) 

                                                       = ((8, 12), (1, 6))   

                                                       = (D13, D11) 

      then C, D are made public. 
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Decryption: 
Receiver decrypts the message M by computing C+rsT, D+rsT as  

 C+rsT = ((8,1),(4,6))+(44(4,2),44(1,6)) 

  = ((8,1)+44(4,2), (4,6)+44(1,6)) 

  = ((8,1)+(11,2), (4,6)+(6,6)) 

  = ((10,7), (1,5)) 

 

 D+rsT = ((8,12),(1,6))+(44(4,2),44(1,6)) 

  = ((8,12)+44(4,2), (1,6)+44(1,6)) 

  = ((8,12)+(11,2), (1,6)+(6,6)) 

  = ((8,1), (4,5)) 

Here C+rsT modulo 13  = M
13

=(10,7) and     D+rsT  modulo  11 = M
11

=(4,5) . 

By using Chinese Remainder Theorem, solving the following congruences : 

 

x  ≡   10   mod  13 

x ≡    4     mod   11 

and 

 

y  ≡   7   mod   13 

y  ≡   5   mod  11 

 

 The  receiver retrieves the  message  M  =  ( , )x y   =  (114,137)   E(Z143) 

 

V. Conclusion 
In the construction of  Elgamal  public  key  encryption  with  Elliptic  curves  E  over a  finite  field  

qF   a message M ( )qE F  is encrypted as C = M+kB  with  B = sP  for (P, sP)  the  public key of  the  receiver 

and  (P, kP)  the public key of  the sender.  The  receiver  decrypt  M  as (C−s(kP)) = M + ksP – skP = M.  In 

this context the receiver has to use  different   random  secret  key  k  each time  a  message  M  is sent to 

receiver as in the case when M is sales announcement  that is public a day later the  Eavesdropper deduces  new 

message  M ' as  M' =  M−C−C' ; where as in the  Elgamal  like  cryptosystem developed  in  this  paper  with  
elliptic curve over  Z

n
  for  n = pq, same public (P, kP)  key  be  used  by  the  sender  for  all  the  further 

communications  also. This construction exploits the  isomorphism E(Zpq) = E(Zp)  E(Zq)  and  enables  us age  
of  this  Elgamal  like  cryptosystem  for  a  wider usage.  The  security  is same  as  Elgamal  to the  discretelog  

problem  for  the  group ( )qE F . 
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