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Abstract: The study of optimization is getting broader with every passing day. Optimization is basically the art 

of getting the best results under a given set of circumstances. A very simple but important class of optimization 

problems is the unconstrained problems. Several techniques have been developed to handle unconstrained 

problems, one of which is the conjugate gradient method (CGM), which is iterative in nature. In this work, we 

applied the nonlinear CGM to solve unconstrained problems using inexact line search techniques. We employed 

the well-known Armijo line search criterion and its modified form. 

Keywords:Line search, conjugate gradient method, unconstrained problems, step length. 

 

I. Introduction 
A class of methods available to solve optimization problems is the descent methods. This method 

which involves the evaluation of the gradient of the objective function, are available to solve unconstrained 

minimization problems.This gradient method called the Conjugate Gradient Method (CGM) was proposed 

initially as many believed, in 1952 by Hestenes and Stiefel [6] for solving problems of linear algebra. Based on 

the concept of conjugacy, several CGMs have been developed by different researchers. 

The conjugate gradient method (CGM) is used to solve the problem  
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with an iterative scheme: 
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 + kd
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wherek is the step size and d
(k)

 is the direction of decent.  

In order to obtain ankfor the iterative scheme indicated by (2) above, researchers have resorted to 

different methods. One of such methods is to find such an * which minimizes f (x
(k)

  +  kd
(k)

). 

i.e., 

*  = argmin f (x
(k)

  +  kd
(k)

) 

This closed form of obtaining * is known as exact line search.  

Another method known as an inexact line search finds an approximate value of k numerically. This is 

achieved by employing various criteria which satisfy the descent property 

    
)( k

g
T
d

(k)
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II. Descent Methods for Unconstrained Optimization 
In addition to function evaluation, the descent techniques require the evaluation of first and possibly 

higher order derivatives of the objective function. Due to this additional information regarding the objective 

function, these methods, also known as gradient methods, are generally more efficient than the direct search 

methods. 

The gradient of a function, as defined by Rao [10], is the collection of partial derivative of a function 

with respect to each of its n variables. It is denoted by f  i.e., 
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If there is a movement along the gradient direction from any point in n-dimensional space, the function 

value increases at the fastest rate. Thus, the gradient direction is called the direction of steepest ascent.   

Since the gradient vector (4) represents the direction of steepest ascent, the negative of (4) denotes the 

direction of steepest descent. Thus, any method which makes use of the gradient vector can be expected to yield 

the minimum point faster than the one which does not make use of the gradient method.  

 

III. Conjugate Gradient Method 
The convergence rate of the steepest descent method described above can be greatly improved by 

modifying it into a conjugate gradient method (CGM). The CGM is a particular case of the conjugate direction 

method (CDM). One of the remarkable properties of CDM is its ability to generate, in a very economical 

fashion, a set of vectors d
(i)

 , i = 1, 2, …,n having a property known as conjugacy, when applied to a quadratic 

functional. Therefore an n-dimensional quadratic function can be minimized in at most n-steps given n mutually 

conjugate directions. 

The procedure used in the development of the CGM is analogous to the Gram-Schmidt 

orthogonalization procedure. The procedure sets up each new search direction as a linear combination of the 

previous search directions and the newly determined gradient. 
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) and i–1 is a scalar known as the parameter of the method. 

 

3.1Properties of Conjugate Gradient Method     

The conjugate gradient method is a conjugate direction method with a very special property: in 

generating its set of conjugate vectors, it can compute a new vector 
)1( k

d  by using only the previous vector 

)1( k

d  of the conjugate set; 
)1( k

d  is automatically conjugate to these vectors. 

 Now, for a simple case of a quadratic objective function, the first search direction from the initial point 

x
(0)

 is in the direction of steepest descent; that is  
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Where 0 is the step length given by  
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In a closed form, this can be show to give 
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       (6) 

The general expression for eqn. (6) i.e 
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can be shown as follows: 

Let d
(k)

’s be linearly independent, then we can write  
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for certain d
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’s. Here x* is the solution of Hx = b 

By multiplying the above by H and taking the scalar product with d
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Using the iterative scheme  
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In the next stage, 
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d  is taken as a linear combination of 
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g  and 
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 The coefficients k, k = 0, 1, 2… known as conjugate gradient parameters are chosen in a such a way 

that 
)1( k

d  and d
(k)

 are conjugate with respect to H. By premultiplyng (7) by d
(k)T

H  and imposing the condition  
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 The above discussion completely describes the stages involved in the conjugate gradient algorithm for 

quadratic functional which we now outline below. 

 

IV. Conjugate Gradient Algorithm for Nonquadratic Functions 

In the previous sections, we have shown that the conjugate gradient algorithm is a conjugate direction 

method, and therefore minimizes a positive definite quadratic function on n variable in n steps. The conjugate 

gradient algorithm for a quadratic function can be extended to general nonlinear functions by interpreting f( x ) = 

x
2

1 T+
H x   + x

T
b  + c as a second-order Taylor series approximation of the objective function. Near the 

solution such functions behave approximately as quadratics, as suggested by the Taylor series expansion. For 

quadratic, the Hessian matrix, H, is constant. However, for a general nonlinear function the Hessian is a matrix 

that has to be reevaluated at each iteration of the algorithm. This can be computationally very expensive. Hence, 

an efficient implementation of the conjugate gradient algorithm that eliminates the Hessian evaluation at each 

step is desirable. 

To derive the nonlinear conjugate gradient method, there are generally two changes to the conjugate 

gradient algorithm: it becomes more complicated to compute the step length α, and there are several different 

choices for k , the conjugate gradient parameter  

Because  
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the close-form or the exact formula for k in the CG algorithm can be replaced by a numerical line 

search procedure. The idea is as in the CG for quadratic function whereby a value of k that minimizes f(x
(k)

 + 
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) is found by ensuring that the gradient is orthogonal to the search direction. Since we are dealing with 

nonquadratic function f, and k is determined from a one-dimensional optimization that minimizes f(x
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 + 
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), we can do this numerically using line search techniques. The only consideration will then be how the line 

search method with d
(k)

 can be applied to the minimization of nonquadratic functions. In the CGA for quadratic 

function, there are several equivalent expressions for the value of k. In nonquadratic CG, these different 

expressions are no longer equivalent.  

Since it is possible to eliminate H from (11), the resulting algorithms now only depend on function and 

gradient values at each iteration.By interpreting (5) as the second-order Taylor series approximation of the non-

quadratic objective function with H the approximation of the Hessian and k determined from H, we proceed as 

follows: 
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With several researchers working extensively on the modification of eqn (13), several formula for k 

has emerged corresponding to different CGMs. Andrei [1] has identified as many as forty (40) CGMs and yet 

the number of CGMs available now is on the increase. The most recent of the CGMs is that of Bamigbola et al. 

[2]. 

The following are few of the k s available in literature. 

1. Hestenes – Stiefel (1952): 
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2. Polak-Ribiere-Polyak (1969): 

k

T
k

k

Tk

PRP

k

gg

yg

)(

)1(

β



 [8, 9] 

3. Fletcher-Reeves (1964):   
)()(

)1()1(

β
k

T
k

kTk

FR

k

gg

gg


  [4] 

4. Dai-Yuan (2000):  

k

T
k

kTk

DY

k

yg

gg

)(

)1()1(

β



 [3] 

5. Liu-Storey (1992):   
)()(

)1(

β
k

T
k

k

Tk

LS

k

dg

yg


 [7] 
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The corresponding methods for the above ks are here denoted respectively as HS, PRP, FR, DY, LS, CD and 

BAN. 

 

V. Armijo Line Search Criterion 

Among the simplest line search algorithms is Armijo’s method. This method finds a step size α  that 

satisfies a condition of sufficient decrease of the objective function and implicitly a condition of sufficient 

displacement from the current point x
(k)

. 

 This Armijo’s condition is given as  

   () <(0) + (0) 

 In many cases it may be necessary to impose stronger conditions on the step size .  

5.1Armijo Line Search     

Step 1: Choose (0, ½);  set = 1 and  = 0.5 
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5.2Modified Armijo Line Search  

Our modification of the above Armijo line search algorithm is what follows. The basic ideal was to 

specify an interval for the rate, , at which the step size, , reduces. 

Step 1: Choose (0, ½ )(0, 1) set  = 1 

Step 2: While f (
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T )( k

d , take  =  for some    

(1, 2) = (0.1, 0.5) i.e., is chosen a new randomly from the open set (0.1, 0.5). 

Step 3: Terminate with k  =, set 
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VI. Computational Details 
The computational experiments carried out in this research incorporated the inexact Algorithms in 

section 5 into the nonlinear CGM Algorithm discussed above. Our aim is to perform experiments that aid in 

measuring the effectiveness of two of theCGMs i.e., the Fletcher-Reeves and Polak-Ribiere-Polyakand the 

inexact algorithms in the last section. To achieve this, ten (10) nonlinear unconstrained optimization test 

functions by Andrei [1] were used for computational illustrations. These functions range from polynomial 

functions to nonpolynomial objective functions. Our computational instrument was a Matlab Code designed for 

the purpose of this research. 
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VII. Results 
The tables below present the outcome of the computational experiments on the test functions. The 

following notations were used; f*  –  optimal value of the objective function,  ||g*||  – the norm of the gradient of 

f*, n –  dimension, CE – computational example, Exec – program execution time, and Iter – number of 

iterations. 

 

 

Table 1: Numerical Result using Armijo Line Search 
CE FR PRP 

Iter f * ||g*|| Exec Iter f * ||g*|| Exec 

Extended Rosenbrock Funtion 107 8.86e –15 3.5e – 0.7  1.19 174 1.79e –13 9.0e – 07  3.73 

520 3.07e– 13  7.9e – 07 11.58 178 4.14e– 15  5.9e – 07 6.48 

Diagonal 4 Function 30 1.43e – 16  3.5e – 07  0.46 37 2.35e – 16  4.0e – 07  0.92 

27 4.00e – 16  5.6e – 07  0.72 37 4.71e – 16  5.6e – 07  1.43 

Extended Himmelblau 
Function 

34 3.9e– 15  7.2e – 07  0.86 34 3.5e– 15  6.2e – 07  0.73 

36 1.3e – 15  3.4e – 07  1.38 34 7.0e  – 15  8.8e – 07  1.28 

Extended Beale Function 102 1.8e  – 13 5.5e – 07  3.30 221 8.5e  – 15 9.0e – 07  16.37 

178 3.5e  – 14  5.8e – 07 12.09 220 3.7e  – 13  7.6e – 07 33.40 

Modified Extended Beale 

Function 

195 1.5e02 8.0e – 07  8.76 234 1.5e02 1.2e – 06  13.52 

806 3.1e02 1.4e – 06  79.81 240 3.1e02 1.4e – 06  26.53 

Extended Block Diagonal BD1 
Function 

93 2.8e – 09  4.6e – 07  1.64 3 6.1e – 60  3.1e – 45  0.29 

71 1.2e – 12  8.4e – 08  2.78 3 1.2e – 59  4.4e – 45  0.55 

Generalized Tridiagonal 1 

Function 

189 6.4e –02 3.8e – 01  3.52 36 6.1e –15 2.2e – 07  1.21 

97 5.2e– 14  6.8e – 07 2.65 36 9.7e– 17  2.8e – 08 2.37 

Generalized White Holst 

Function 

82 4.0e00  5.5e – 07  1.78 113 4.0e00  6.2e – 07  3.63 

82 4.0e00  5.5e – 07  3.49 113 4.0e00  6.2e – 07  7.98 

Extended Tridiagonal 1 
Function 

481 5.0e03 3.4e – 05  10.37 563 5.0e03 7.9e – 07 11.29 

162 1.0e04  1.3e – 05 6.76 626 1.0e04 1.2e – 06  33.44 

Extended Freudenstein and 

Roth Function 

211 1.2e05 8.4e – 06  5.76 453 2.2e  – 10 5.8e – 05 22.93 

181 2.4e05  2.2e – 05 9.98 274 2.2e  – 06  6.5e – 03  30.69 

 

Table 2:Numerical Results Using Modified Armijo Line Search. 
CE FR PRP 

 Iter ƒ * ║g*║ Exec Iter ƒ* ║g*║ Exec 

Extended Rosenbrock Funtion 107 8.7e-15 3.5e-7 1.25 174 1.8e-13 9.0e-7 3.74 

520 3.1e-13 7.9e-7 11.59 178 4.1e-15 5.9e-7 6.94 

Diagonal 4 Function 25 1.2e-15 9.7e-7 0.56 37 2.3e-16 4.0e-7 0.90 

27 4.0e-16 5.6e-7 0.88 37 4.7e-16 5.6e-7 1.59 

Extended Himmelblau Function 53 6.0e-15 5.7e-7 0.83 34 3.5e-15 6.2e-7 0.81 

53 1.2e-14 8.2e-7 1.48 34 7.0e-15 8.8e-7 1.25 

Extended Beale Function 102 1.8e-13 5.5e-7 3.37 221 8.4e-15 9.0e-7 16.38 

178 3.5e-14 5.8e-7 11.98 220 3.7e-13 7.6e-7 33.86 

Modified Extended Beale Function 195 1.5e02 8.0e-7 4.80 234 1.5e02 1.2e-6 6.85 

909 3.1e02 2.8e-7 50.88 240 3.1e02 1.4e-6 13.63 

Extended Block Diagonal BD1 
Function 

93 2.8e-9 1.6e-7 1.00 3 6.1e-60 3.1e-45 0.32 

71 1.2e-12 8.4e-8 1.48 3 1.2e-59 4.4e-45 0.42 

Generalized Tridiagonal 1 Function 189 6.4e-02 3.8e-1 1.85 36 6.1e-15 2.2e-7 0.78 

97 5.2e-14 6.8e-7 1.55 36 9.7e-17 2.8e-8 1.25 

Generalized White Holst Function 82 4.0e00 5.5e-7 1.04 113 4.0e00 6.2e-7 2.00 

82 4.0e00 5.5e-7 1.99 113 4.0e00 6.2e-7 4.15 

Extended Tridiagonal 1 Function 481 5.0e03 3.4e-5 5.35 563 5.0e03 7.9e-7 5.65 

162 1.0e04 1.3e-5 2.96 626 1.0e04 1.2e-6 12.99 

Extended Freudenstein and Roth 

Function 

211 1.2e05 8.4e-6 3.17 591 4.2e-14 8.11e-7 14.69 

181 2.4e05 2.2e-5 5.00 514 1.2e-14 8.4e-7 26.43 

 

VIII. Discussion of Result 
From the above tables, it is clear that our modification of the Armijo line search criterion is still very 

much in place. At a specified tolerance level of ║g*║ = 1.0e-6, thoughwe obtained identical results but the rate 

of convergence was moderately improved in the modified algorithm.  

 

IX. Conclusion 
We conclude by affirming that the modified algorithm in this work was effective in the computational treatment 

of unconstrained optimization problems. 
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