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Abstract: This paper studies a continuous sampling plan to prevent entries of defective products for sale using 

theory of queues for bulk production and bulk sale systems. A machine produces random number of products at 

each production. Any product in a production lot may be good or defective. The sampling plan considered here 

to prevent defective products to go for sale has three inspection modes. Each lot of production is inspected in 

mode I and in modes II and III each lot is inspected with some probability c ≥ 0 and d > 0 respectively in order 

to avoid high cost of inspecting all the lots of products produced. Matrix methods are used to derive the stock 

level probabilities, the rate of entry of defectives, the expected defective products in the stock, the standard 

deviation and the coefficient of variation. Two models are treated. In one model, the maximum production size 

is greater than the maximum sale size and in the second model the maximum sale size is greater than the 

maximum production size.  Numerical cases are treated to illustrate the significance of the continuous sampling 
plan in reducing the entry rates of defectives. The expected defective products in the stock for sale and all the 

risk measures are listed and discussed.   

Keywords: Block Partitioned Methods, Continuous Sampling Plan, Expected Defective Products, Infinitesimal 

Generator, Rate of Entry of Defective Products. 

 

I. Introduction 
It has been very common that when products are manufactured by a machine in lots some products of 

the lots are found to be good and some are defective. Because of the cost involved in inspecting all the lots 

manufactured may be very high, various inspection policies are adopted to reduce this cost. Continuous 
Sampling Plan (CSP) is introduced to reduce the inspection cost to a manageable level.  This may filter the entry 

of defective lots to some extent but may not be in full. It is of interest to policy makers to know in the long run, 

the expected number of products and defective products in the stock when a CSP is adopted and the risk values 

for the same. The CSP to be followed must have relation with number of good products or defectives noticed. 

The CSP studied in this paper has three inspection modes and the modes change depending on good and 

defective items found. It is a combination and extension of the CSP mentioned in Dodge [1], Mytalas and 

Zazanis [2] and Bowker [3] introduced for single production system where CSP was considered to have two 

inspection modes only with non-zero probability in mode II which is a restriction.  Single production system 

with bulk sale has been studied by Sundar [4]. The risk involved in the CSP studied in this paper are presented 

and measured by finding the entry of defective rates, the expected defective products in the stock, the standard 

deviation and the coefficient of variation. Ken block [5] and James c. Cox and Vjollca Sadiraj [6] have 

discussed the coefficient of variation in detail. There are many measures of risk; one may refer Rockefeller [7]. 
The products produced form a queue for sale. The present paper examines the performance of the CSP in the 

case of a continuous time Markov chain model and presents results identifying Neuts [8] matrix structures.  

Numerical results for theory of queues one may refer to Bini, Latouche and Mein [9]. Matrix analytic methods 

have been treated by Latouche and Ramaswami [10] and M/M/1 bulk queues with varying rates have been 

studied by Rama Ganesan, Ramshankar and Ramanarayanan [11]. Fatigue models have been treated by Sundar 

[12] using matrix methods. Rama Ganesan and Ramanarayanan [13] have studied software issues and fixing the 

cause and Ramshankar and Ramanarayanan [14] have treated catrascopic models using matrix partition 

methods.  

This paper considers bulk production by a machine which produces good and defective products. The 

bulk productions of products are inspected for sale. The CSP considered here has three inspection modes. In 

inspection mode I, the CSP inspects every product in a bulk production until k consecutive bulk productions 
contain only good products without any defective in any of them. At this point the CSP changes its inspection 

mode to II of inspecting the next r bulk productions where every bulk is inspected with probability c ≥ 0 until 

the CSP finds a bulk with a defective product. When the CSP finds a bulk with a defective product in mode II, it 

changes its inspection mode to I. If the CSP finds no defective product in those r bulk productions in mode II, it 

changes its inspection mode to III where the CSP inspects a bulk with probability d > 0. If in inspection mode 
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III, the CSP finds a defective product, it changes its inspection mode to I and if no defective product is noticed 

by the CSP, it changes its inspection mode to II. The products found to be defective in the inspection modes I, II 

and III are rejected. The probabilistic inspection procedures considered by the CSP reduce the number of 
inspections considerably with a view to reduce the inspection cost. This paper treats a bulk production and bulk 

sale model with the above CSP. So far bulk production models adopting a CSP for preventing defectives have 

not been treated at any depth. The study here is organized in the following manner. In Section (2) the stock level 

probabilities are derived using matrix geometric approach when the CSP is adopted for the model in which the 

maximum bulk production size is greater than the maximum sale size. The performance measures and various 

stock level probabilities are presented in the stationary case. The expected stock level for sale and the various 

risk measures such as the expected defective stocks, the standard deviation, the rate of entry of defectives, the 

variance and the co-efficient of variation are obtained. In Section 3, the model in which the maximum bulk 

production size is less the maximum bulk sale size is studied. In section (4) numerical cases are treated for 

illustration.   

 

II. Model (A). Continuous Sampling Plan With Three Modes Where Maximum 

Production Size Greater Than Maximum Sale Size 
2.1Assumptions  

(i) At each production a machine produces χ products for sale. The time between two                                             

consecutive productions has exponential distribution with parameter λ. The number χ of products at each              

production has the probability given by P (χ= j) = αj  for 1 ≤ j ≤ M and  αj
M 
j=1 =1. Each product produced                                               

is good with probability p > 0 and is defective with probability q > 0 where p + q =1.                                                                                                                                                                                        

(ii) The productions are inspected for sale by a continuous sampling plan (CSP). The CSP considered here has 

three inspection modes. In mode I the CSP inspects every single product in a bulk production χ until k 
consecutive bulk productions with only good products are found. At this point, the CSP changes its inspection 

mode to II. Here it inspects a bulk with probability c ≥ 0 for the next r bulk productions until it finds a defective 

product. When the CSP finds a defective product, it changes its mode to I. When the CSP finds no defective 

product in the r bulk productions then it changes its mode to III where the CSP inspects a bulk production with 

probability d > 0. In mode III if the CSP finds a bulk with a defective product, it changes its mode to I and if the 

CSP finds no defective it changes its mode to II. The products found to be defective by the CSP in the bulk 

productions in the inspection modes I, II and III are rejected and the products which are not rejected are stocks 

for sale. 

(iii) The products are sold at sale epochs with the inter occurrence time between two consecutive sale epochs 

has exponential distribution with parameter µ. In a sale ψ products are sold at a time with probability                                           

P (ψ=i) =βi , for 1≤ i ≤ N where  βi
N
1   =1. When n products n < N are available, then i products are sold with                       

P (ψ=i) =βi , for 1≤ i ≤ n-1 and n products are sold with probability βi
N
n , as sales are only for available number 

n products.  

(iv)The maximum size of production M is greater than the maximum size of sale N. 

 

2.2Analysis 

For studying the above model, the state of the system of the continuous time Markov chain X (t) may 

be defined as follows X (t)={(n, m, j): for 0 ≤ n < ∞;  0 ≤ m ≤ M-1; 1 ≤ j ≤ k+r+1}                            (1)                                                                                                                                                                       

The first two co-ordinates are used to indicate the stock level of products for sale. If the stock level is r ≥ 0, then 
r is identified with (n, m) for r = n M + m where n and m are non negative integers with n ≥ 0 and 0 ≤ m ≤ M-1. 

The system X (t) is in the state (n, m, j) for 1 ≤ j ≤ k, n ≥ 0 and 0 ≤ m ≤ M-1, when n M + m products are 

available for sale, the CSP inspection mode is I and it has found no defective in (j-1) consecutive bulk 

productions. The system is in the state (n, m, k + i) for 1 ≤ i ≤ r, n ≥ 0, 0 ≤  j ≤ M-1, when  n M + m products 

are available for sale, the CSP inspection mode is II and the CSP has found no defective in (i-1) consecutive 

bulk productions in mode II. The system is in the state (n, m, k + r +1) when n M + m for n ≥ 0 and                          

0 ≤ m ≤ M-1 products are available for sale and the CSP inspection mode is III. The joint probability of a bulk 

production has size j and it has r good products =P (The bulk size χ = j, the number of good products in the bulk 

is r) = pj
r  = αj   

j
r
  pr qj−r for 0 ≤ r ≤ j and 1 ≤ j ≤ M. Then the probability of no defective product in a bulk of 

size χ is pχ =   pj
jM

j=1  = αj   p
jM

j=1  and the probability of at least one defective in a bulk of size χ is                                   

qχ =1-pχ = αj      j
r
  pr qj−rj−1

r=0
M
j=1 .                                                          (2)                                                                                        

The transition probability matrix governing transitions of the Markov chain describing the CSP is  
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P'=

 
 
 
 
 
 
 
 
 

qχ pχ 0 ⋯ 0 0 0 ⋯ 0 0

qχ 0 pχ ⋯ 0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
qχ 0 0 ⋯ 0 pχ 0 ⋯ 0 0

cqχ 0 0 ⋯ 0 0 γ ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
cqχ 0 0 ⋯ 0 0 0 ⋯ 0 γ

dqχ 0 0 ⋯ 0 δ 0 ⋯ 0 0 
 
 
 
 
 
 
 
 

                                                                               (3)                                                             

In (3), γ = 1- c qχ   and δ = 1 – d qχ  and in the above matrix (P′)k+r+1,k+1  =  δ ; (P′)i,1  =qχ , for 1 ≤ i ≤ k;                  

 (P′)i,1 = cqχ , for k +1 ≤ i ≤ k + r, and (Q′)k+r+1,1 = dqχ .   The components of the probability vector                                           

w = (w1 , w2 , w3 ,…wk+r+1)   satisfying the equations wP'=1 and we=1 is given by the following                                                                                                                                                                                                                        

 wk+r+1 = [γr pχ
k(1-γ)qχ] / [(1-γ)(1-pχ

k) (1-δγr)+qχ  pχ
k(1-γr+1)];    wi= (1/pχ)k−i−1[ 

1

γr
 − δ]  wk+r+1,                  

for 1 ≤ i ≤ k;     wi= [1/γk+r−i+1] wk+r+1, for k+1 ≤ i ≤ k + r.  (4) 
 The fraction of the bulk productions that are inspected by the CSP out of all bulk productions is then given by                                                                                                                                                                                

f=1- wk+i
r+1
i=1 +c wk+i

r
i=1 +dwk+r+1.  (5) 

The fraction of bulk productions that are not inspected by the CSP out of all bulk productions = 1-f.                                                                                                                                      

When the CSP inspects a bulk, the defective products in the bulk are removed and the number of defective in it 

is zero. When there is no CSP the expected number of defectives in a bulk is q E (χ).  So the expected number of 

defectives in a production when the CSP is adopted = q E (χ) (1-f). On division by E (χ), this gives the 

probability of a product is defective when CSP is adopted = q (1-f). The rate of entry of defective products when 

the CSP is adopted =   λ q E (χ) (1-f). (6) 

 The continuous time Markov chain describing the model has infinitesimal generator QA   of infinite 
order which can be presented in block partitioned form with each block of order M (k+r+1). It is given below.     

QA=

 
 
 
 
 
 
B1 A0 0 0 . . . ⋯
A2 A1 A0 0 . . . ⋯
0 A2 A1 A0 0 . . ⋯
0 0 A2 A1 A0 0 . ⋯
0 0 0 A2 A1 A0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱  

 
 
 
 
 

  (7) 

                                                                                                                                             

In (7) the states of the matrix are listed lexicographically as  0, 1, 2, 3, …n, … Here the state vectors are given as 

follows. n = ((n,0,1),(n,0,2)…(n,0,k+r+1),(n,1,1),(n,1,2)…(n,1,k+r+1),(n,2,1),(n,2,2)…(n,2,k+r+1),…,                        

(n,M-1,1), (n,M-1,2)…(n,M-1, k+r+1) for 0 ≤ n < ∞.  The matrices B1and A1 have negative diagonal elements, 

they are of order M (k+r+1) and their off diagonal elements are non- negative. The matrices A0 , andA2 have 

nonnegative elements and are of order M (k+r+1) and they are given below. Let the survivor probability of bulk 

size production be P (χ > j) =Pj  =1- αi
 j
i=1 , and P0 = 1  for 1 ≤ j ≤ M -1.  (8) 

Let the survivor probability of bulk size sale be P (ψ > j) = Qj  =1- βi
 j
i=1 , and Q0 = 1  for 1 ≤ j ≤ N -1.    (9)  

The blocks of component block matrices of QA are listed below.                                    

  A0 =

 
 
 
 
 
 
 
 
ΛM 0 ⋯ 0 0 0
ΛM−1 ΛM ⋯ 0 0 0
ΛM−2 ΛM−1 ⋯ 0 0 0
ΛM−3 ΛM−2 ⋱ 0 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
Λ3 Λ4 ⋯ ΛM 0 0
Λ2 Λ3 ⋯ ΛM−1 ΛM 0
Λ1 Λ2 ⋯ ΛM−2 ΛM−1 ΛM 

 
 
 
 
 
 
 

(10)    

                                                                                                            

ΛM =

 
 
 
 
 
 
 
 
 
 
0 λpM

M 0 ⋯ 0 0 ⋯ 0

0 0 λpM
M ⋯ 0 0 ⋯ 0

0 0 0 ⋯ 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ λpM

M 0 ⋯ 0

0 0 0 ⋯ 0 λγM ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 0 ⋯ λγM

0 0 0 ⋯ λδM 0 ⋯ 0  
 
 
 
 
 
 
 
 
 

(11)                                                                                                       

Λj =

 
 
 
 
 
 
 
 
 
 λΛj ,1 λpj

j
0 ⋯ 0 0 ⋯ 0

λΛj ,1 0 λpj

j
⋯ 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

λΛj ,1 0 0 ⋯ λpj

j
0 ⋯ 0

cλΛj,1 0 0 ⋯ 0 λγj ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
cλΛj,1 0 0 ⋯ 0 0 ⋯ λγj

dλΛj,1 0 0 ⋯ λδj 0 ⋯ 0  
 
 
 
 
 
 
 
 
 

               (12)               

                  

A2 =

 
 
 
 
 
 
 
 
0 ⋯ 0 UN UN−1 ⋯ U2 U1

0 ⋯ 0 0 UN ⋯ U3 U2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ UN UN−1

0 ⋯ 0 0 0 ⋯ 0 UN

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

                                 (13)         

                

The component matrices of (10) are given by (11) and (12) which are matrices of order k+r+1. The 

symbols of (11), (12) and (13) are as follows. In (11), γM  =  (1 − c) pM
rM−1

r=0 + pM
M =  (1-c)αM  +cαM pM  and 

δM = (1 − d) pM
rM−1

r=0   + pM
M = (1-d)αM +dαM pM . In (12),  γj = (1 − c) pj

rj−1
r=0 + pj

j
= (1-c)αj  +cαjp

j;                   
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 δj = (1 − d) pj
rj−1

r=0   + pj
j
 = (1-d)αj+dαjp

j;  pj
j
= αjp

j  and  Λj,1 =  pi+1
jM−1

i=j  =   αi   i
j
  pjqi−j  M

i=j+1                        

for 1 ≤ j ≤ M-1. In (13),  Uj  = μβjI is a matrix of order k+r+1 for 1 ≤ j ≤ N. 

A1 =

 
 
 
 
 
 
 
 
 
 
 
𝒬1
′ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1 ΛM−N ⋯ ΛM−2 ΛM−1

U1 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2 ΛM−N−1 ⋯ ΛM−3 ΛM−2

U2 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3 ΛM−N−2 ⋯ ΛM−4 ΛM−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
UN UN−1 UN−2 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1

0 UN UN−1 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2

0 0 UN ⋯ U2 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ UN UN−1 UN−2 ⋯ 𝒬1

′ Λ1

0 0 0 ⋯ 0 UN UN−1 ⋯ U1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

  (14)                                          

The matrix 𝒬1
′ is given below where Λ0,1 =  pi+1

0M−1
i=0   = αr  qrM

r=1 . 

 

  𝒬1
′  =

 
 
 
 
 
 
 
 
 
λΛ0,1 − (λ + μ) 0 ⋯ 0 ⋯ 0

λΛ0,1 −(λ + μ) ⋯ 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋮
λΛ0,1 0 ⋯ 0 ⋯ 0

cλΛ0,1 0 ⋯ −(λ + μ) ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
cλΛ0,1 0 ⋯ 0 ⋯ 0

dλΛ0,1 0 ⋯ 0 ⋯ −(λ + μ) 
 
 
 
 
 
 
 
 

  (15)                   

B1 =  

 
 
 
 
 
 
 
 
 
 
 
𝒬1
′ + U Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1 ΛM−N ⋯ ΛM−2 ΛM−1

U 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2 ΛM−N−1 ⋯ ΛM−3 ΛM−2

V1 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3 ΛM−N−2 ⋯ ΛM−4 ΛM−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
VN−1 UN−1 UN−2 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1

0 UN UN−1 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−N−3 ΛM−N−2

0 0 UN ⋯ U2 U1 𝒬1
′ ⋯ ΛM−N−4 ΛM−N−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ UN UN−1 UN−2 ⋯ 𝒬1

′ Λ1

0 0 0 ⋯ 0 UN UN−1 ⋯ U1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

      (16)  

Here  Vj   = μ QjI   for 1 ≤ j ≤ N-1 and U= μ I. They are matrices of order k+r+1. The basic generator 𝒬A
′′   which 

is concerned with only the bulk production, bulk sale and the CSP, is a matrix of order N(k+r+1) given below in 

(19) where   𝒬A
′′ =A0 +  A1 + A2                                                                                                                         (17) 

Its probability vector  w’ gives,  w′𝒬A
′′  =0 and w 'e = 1                                                                                                           (18)                                                                                                                                                                                             

𝒬A
′′ =

 
 
 
 
 
 
 
 
 
 
 
 
 

𝒬1
′ + ΛM Λ1 ⋯ ΛM−N−2 ΛM−N−1 ΛM−N + UN ⋯ ΛM−2 + U2 ΛM−1 + U1

ΛM−1 + U1 𝒬1
′ + ΛM ⋯ ΛM−N−3 ΛM−N−2 ΛM−N−1 ⋯ ΛM−3 + U3 ΛM−2 + U2

ΛM−2 + U2 ΛM−1 + U1 ⋯ ΛM−N−4 ΛM−N−3 ΛM−N−2 ⋯ ΛM−4 + U3 ΛM−3 + U3

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
ΛM−N+2 + UN−2 . ⋯ . . . ⋯ ΛM−N + UN ΛM−N+1 + UN−1

ΛM−N+1 + UN−1 . ⋯ . . . . ΛM−N−1 ΛM−N + UN

ΛM−N + UN . ⋯ 𝒬1
′ + ΛM Λ1 Λ2 ⋯ ΛM−N−2 ΛM−N−1

ΛM−N−1 ΛM−N + UN ⋯ ΛM−1 + U1 𝒬1
′ + ΛM Λ1 ⋯ ΛM−N−3 ΛM−N−2

ΛM−N−2 ΛM−N−1 ⋯ ΛM−2 + U2 ΛM−1 + U1 𝒬1
′ + ΛM ⋯ ΛM−N−4 ΛM−N−3

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
Λ2 Λ3 ⋯ ΛM−N + UN ΛM−N+1 + UN−1 ΛM−N+2 + UN−2 ⋯ 𝒬1

′ + ΛM Λ1

Λ1 Λ2 ⋯ ΛM−N−1 ΛM−N + UN ΛM−N+1 + UN−1 ⋯ ΛM−1 + U1 𝒬1
′ + ΛM  

 
 
 
 
 
 
 
 
 
 
 
 

   (19)                                                                                                                                                                                                    

 

It is well known that a square matrix in which each row (after the first) has the elements of the previous 

row shifted cyclically one place right, is called a circulant matrix. It is very interesting to note that the matrix                                                                               

𝒬A
′′   = A0 +  A1 + A2 is a block circulant matrix where each block matrix is rotated one block to the right 

relative to the preceding block partition. The first block row is W = (𝒬1
′ + ΛM , Λ1, Λ2 , 

…ΛM−N−2 ,  ΛM−N−1,  ΛM−N + UN , … ΛM−2 + U2,  ΛM−1 + U1). This gives as the sum of the blocks                    
 𝒬1

′ + ΛM +  Λ1+ Λ2  +…. . +ΛM−N−2 +  ΛM−N−1  +ΛM−N + UN +… …+ΛM−2 + U2 +  ΛM−1 + U1 =𝒬′1=                 

λ (P′ − I) where P’ is given by (3). So the stationary probability vector of  𝒬′1 is w. This gives w 𝒬′1 =0 and 

w 𝒬1
′ + ΛM + w Λi

M−N−1
i=1 + w  (ΛM−i + Ui)

N
i=1  = 0 which implies (w, w… w, w). W = 0 = (w, w… w, w) W’ 

where W’ is the transpose of block-row vector W.  Since all blocks, in any block-row are seen somewhere in 

each and every column block due to block circulant structure,  the above equation shows the left eigen vector of 

the matrix  𝒬A
′′  is (w, w…w). Using (18)  w′ =  

w

M
,

w

M
,

w

M
, … ,

w

M
 .                                                                      (20) 

The stability condition for the CSP adopted production and sale system to have a stationary distribution 

as per Neuts [8] is the inequality   w ′A0e < w ′A2  e.  

This means w’ 𝐴0  e = 
1

M
w ′  nΛn

M
n=1  e < w ′A2 e = 

1

M
 w′( nUn)eN

n=1  = 
1

M
 w ′ .  μE ψ , μE ψ ,… . , μE ψ   

The inequality reduces to w’ (    M
n=1 nΛn )e < μE(ψ ).                                                                                     (21) 
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The left side of inequality (21) may be simplified as follows. Let Λn  = λ Λ′n . It may be noted that  Λ′ne for1 ≤ n 

≤ M, is the probability that the CSP allows n products of a bulk production of size χ to join the stocks for sale in 
various testing states 1 to k of mode I, in various testing states  k+1 to k + r of mode II and the testing  state 

k+r+1 of mode III. It is a column vector of type (k + r +1) x 1 of probabilities of n of products joining the stock 

for sale by adopting the CSP in a bulk production. The column vector   nΛ′n
M
n=1 e  is the expected number of 

products cleared by the CSP for sale in the modes I, II and III with regard to the interim states 1 to k, k+1 to k + 

r and k + r + 1 respectively. It is the column vector of type   (k + r+1) x 1 and  it equals E(χ)(p, p,…p, p + q(1-c), 

p + q(1-c),…,p + q(1-c), p + q(1-d) )’ where p appears in the first k rows as all products are tested, p + q(1-c) 
appears in the next r rows since with probability 1-c defectives also enter the stocks for sale along with good 

products and in the last row the probability c changes to d. So the stability condition for the CSP to have a 

stationary distribution as proved by Neuts [8] using (21) is   

 λ E (χ) [p + q (1- c) wk+i
r
i=1  + q (1-d)wk+r+1] < µ E (ψ). (22)  

Let π (n, m, j), for 0≤ n < ∞,  0 ≤ m ≤ M-1, for 1 ≤ j ≤ k+r+1 be the stationary probability of the states in (1) 

and πn  be the vector of type 1xM(k+r+1) be the stationary probability vector as defined                                                           

for the states of the matrix (7) for n ≥ 0 when the inequality (22) is satisfied.                                                                                                                   

Then stationary probability vector 𝜋 = (π0 , π1 , π3 , …… ) satisfies the equations        𝜋QA =0 and 𝜋e=1        (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

From (23), it can be seen that π0B1 + π1A2=0  and πn−1A0+πnA1+πn+1A2=0, for n ≥ 1 (24)                                                                                                             

Introducing the rate matrix R as the minimal non-negative solution of

it can be proved using Neuts [8] that the stationary probability vector πn  satisfies πn = π0 R
n  for n ≥ 1 (26)                                                                                                                                                                                                                                                                

Using (24) and (26), π0 satisfies  π0  [B1 + RA2] =0        (27) 

The vector  π0 can be calculated up to multiplicative constant by (27). From (23) and (26)                                

π0   I − R −1e =1.            (28)

 Replacing the first column of the matrix multiplier of   π0 in equation (27) by the column vector 

multiplier of π0 in (28), a matrix which is invertible may be obtained. The first row of the inverse of that same 

matrix is π0 and this gives along with (26) all the stationary probabilities of the system.  The matrix R given in 

(25) is computed by substitutions in the recurrence relation starting with R 0 = 0;                                             

R(n + 1) =  −A0A1
−1 –R2(n)A2A1

−1 , n ≥ 0        (29) 

The iteration may be terminated to get a solution of R at an approximate level where   R n + 1 − R(n )   < ε                                                                                                                                                                                                

 

2.3. Performance Measures                                                                                                                                       
(1) The probability of the stock level (S = s), P(S = s), can be seen as follows. Let n ≥ 0 and m for 0 ≤ m ≤ M-1 

be non-negative integers such that s = n M + m. Then using (21) (22) and (23) it is noted that   P (S=s) 

= πk+r+1
i=1  

 n, m, i,  , where s = n M + m  and P (Stock level is 0) = P (S=0) =  πk+r+1
i=1 (0, 0, i).                                  

(2) The expected stock level E(S) can be calculated as follows. E(S) =    π n, m, j k+r+1
j=1   Mn + m M−1 

m=0
∞
n=0  

= πn
∞
n=0 . (Mn… Mn, Mn+1… Mn+1, Mn+2…Mn+2… Mn+M-1… Mn+M-1) where in the multiplier vector 

Mn appears k+r+1 times, Mn+1 appears k+r+1 times and so on and finally Mn+M-1appears k+r+1 times.                                                                                                               

So E(S)=M nπn
∞
n=0 e+π0( I − R)−1ξ. Here M(k+r+1)x1 column vector                                                                    

ξ =  0, …0,1,… ,1,2,… ,2, … , M − 1, … , M − 1 ′ .  This gives E (S) =    π0( I − R)−1ξ + Mπ0(I − R )−2Re  (30) 
The expected number of defectives in the stock when CSP is adopted using (6) is E(Def) = q(1-f

(3) Variance of stock level can be seen using VAR (S) = E (S2) – E(S)2 . Let η be column vector 

η=[0, . .0, 12 , …12  22 , . . 22 , …  M − 1)2 , … (M − 1)2 ′  of type M(k+r+1) x 1. Then it can be seen that the second 

moment, E(S2) =     π n, m, j k+r+1
j=1 [MM−1

m=0 n + m∞
n=0 ]2=M2  n n − 1 πn

∞
n=1 e +  nπn

∞
n=0 e +

 πnη
∞
n=0  + 2M n πn

∞
n=0 ξ. 

This gives E (S2)=M2[π0(I − R)−32R2  e + π0(I − R)−2Re]+π0(I − R)−1η + 2M π0(I − R)−2Rξ                 (31) 
(4)The rate of entry of defective products when the CSP is adopted is   λ q E (χ) (1-f) as seen in (6) where f is 

given by (5). The rate of entry of defective products  at various states   n  is given by  λ q E(χ) πnη   where η is a 

column vector of type M(k+r+1) x 1 and η= (ζ, ζ,…ζ)’ with ζ = (0,…0,(1-c), (1-c),…(1-c), (1-d) ) is vector of 

type 1 x (k+r+1) in which 0 appears k times,1-c appears r times and 1-d appears once. The rate of entry when 

the stock level is s =M n + m is  π(n, m)ζ   where   π(n, m) = (π(n,m,1), π(n,m,2)…π(n,m,k+r+1).  

 

III. Model (B). Continuous Sampling Plan with Three Modes where Maximum 

Production Size Less than Maximum Sale Size 
In this Model (B) the dual of Model (A), namely the case, M < N is treated. (When M =N both models 

are applicable and one can use any one of them). In Model (B) the assumption (iv) of Model (A) is alone 

replaced.   

3.1Assumption.                                                                                                                                                                            
(iv)The maximum size of production M is less than the maximum size of sale N.                                                                           
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3.2Analysis 

Since this model is dual, the analysis is similar to that of Model (A). The differences are noted below. 

The state space of the chain X (t) = {(n, m, j): for 0 ≤ m ≤ N-1 for 1 ≤ j ≤ k+r+1 and 0 ≤ n < ∞}.      (32)                                                                                                                                                                
The system X (t) is in the state (n, m, j) for 1 ≤ j ≤ k, n ≥ 0 and 0 ≤ m ≤ N-1, when n N + m products are 

available for sale, the CSP inspection mode is I and it has found no defective in (j-1) consecutive bulk 

productions. The system is in the state (n, m, k + i) for 1 ≤ i ≤ r, n ≥ 0, 0 ≤  j ≤ N-1, when  n N + m products are 

available for sale, the CSP inspection mode is II and the CSP has found no defective in (i-1) consecutive bulk 

productions in mode II. The system is in the state (n, m, k + r +1) when n N + m products are available for sale 

for n ≥ 0 and 0 ≤ m ≤ N-1 and the CSP inspection mode is III. The infinitesimal generator QB  of the model has 

the same block partitioned structure given in (7) for Model (A) but the inner matrices are of different orders and 

elements. 

   QB=

 
 
 
 
 
 
B′

1 A′
0 0 0 . . . ⋯

A′
2 A′

1 A′
0 0 . . . ⋯

0 A′
2 A′

1 A′
0 0 . . ⋯

0 0 A′
2 A′

1 A′
0 0 . ⋯

0 0 0 A′
2 A′

1 A′
0 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 
 
 
 
 
 

                                                                                                              (33)                                                                                                                                                            

 

In (33) the states of the matrices are listed lexicographically as  0, 1, 2, 3,… . n, ….Here the state vectors 

are given as follows. n = ((n, 0, 1),…(n, 0, k+r+1),(n, 1, 1),…(n, 1, k+r+1),(n, 2, 1),…(n, 2, k+r+1),…(n, N-1, 

1),…(n, N-1, k+r+1)), for 0 ≤ n < ∞. The matrices, B′1,  A′0  , A′1  and A′2 are all of order N (k+r+1). The matrices  

B′1  and A′1 have negative diagonal elements and their off diagonal elements are non- negative. The matrices 

A′0  and A′2 have nonnegative elements. They are all given below.  

Letting Λj , for 1 ≤ j ≤ M  and   Uj , Vj   for 1 ≤ j ≤ N, as in (12), (13), (16), U as in (16) and letting 𝒬1
′ as in 

(15) the partitioning matrices are defined as follows 

 

A′
0 =

 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0
ΛM 0 ⋯ 0 0 0 ⋯ 0
ΛM−1 ΛM ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
Λ2 Λ3 ⋯ ΛM 0 0 ⋯ 0
Λ1 Λ2 ⋯ ΛM−1 ΛM 0 ⋯ 0 

 
 
 
 
 
 
 

(34)                                                                                         A′2 = 

 
 
 
 
 
 
 
 
UN UN−1 UN−2 ⋯ U3 U2 U1

0 UN UN−1 ⋯ U4 U3 U2

0 0 UN ⋯ U5 U4 U3

0 0 0 ⋱ U6 U5 U4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ UN UN−1 UN−2

0 0 0 ⋯ 0 UN UN−1

0 0 0 ⋯ 0 0 UN  
 
 
 
 
 
 
 

 (35) 

 

A′1 =

 
 
 
 
 
 
 
 
 
 
 

𝒬1
′ Λ1 Λ2 ⋯ ΛM 0 0 ⋯ 0 0

U1 𝒬1
′ Λ1 ⋯ ΛM−1 ΛM 0 ⋯ 0 0

U2 U1 𝒬1
′ ⋯ ΛM−2 ΛM−1 ΛM ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
UN−M−1 UN−M−2 UN−M−3 ⋯ 𝒬1

′ Λ1 Λ2 ⋯ ΛM−1 ΛM

UN−M UN−M−1 UN−M−2 ⋯ U1 𝒬1
′ Λ1 ⋯ ΛM−2 ΛM−1

UN−M+1 UN−M UN−M−1 ⋯ U2 U1 𝒬1
′ ⋯ ΛM−3 ΛM−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
UN−2 UN−3 UN−4 ⋯ UN−M−2 UN−M−3 UN−M−2 ⋯ 𝒬1

′ Λ1

UN−1 UN−2 UN−3 ⋯ UN−M−1 UN−M−2 UN−M−1 ⋯ U1 𝒬1
′  

 
 
 
 
 
 
 
 
 
 

   (36)                                                                                                                                                                      

 

 𝐵′1 =

 
 
 
 
 
 
 
 
 
 
 
𝒬′1 + 𝑈 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

𝑈 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

𝑉1 𝑈1 𝒬1
′ ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−𝑀−2 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝒬1

′ 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝑉𝑁−𝑀−1 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝒬1
′ 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝑉𝑁−𝑀 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 𝒬1
′ ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑉𝑁−3 𝑈𝑁−3 𝑈𝑁−4 ⋯ 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 𝑈𝑁−𝑀−2 ⋯ 𝒬1

′ 𝛬1

𝑉𝑁−2 𝑈𝑁−2 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−1 ⋯ 𝑈1 𝒬1
′  
 
 
 
 
 
 
 
 
 
 

                                                                   (37) 

𝒬𝐵
′′ =   

 
 
 
 
 
 
 
 
 
 

𝒬1
′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1

𝑈1 𝒬1
′ + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2` 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀 ⋯ 𝑈3 𝑈2

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮ ⋮ ⋮⋮⋮ ⋮ ⋮
𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝒬1

′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1

𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝒬1
′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1 ⋯ 𝛬𝑀−1 + 𝑈𝑁−𝑀+1 𝛬𝑀 + 𝑈𝑁−𝑀

𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 ⋯ 𝑈2 𝑈1 𝒬1
′ + 𝑈𝑁 ⋯ 𝛬𝑀−2 + 𝑈𝑁−𝑀+2 𝛬𝑀−1 + 𝑈𝑁−𝑀+1

⋮ ⋮ ⋮⋮⋮ ⋮ ⋮  ⋮ ⋮⋮⋮ ⋮ ⋮
𝛬2 + 𝑈𝑁−2 𝛬3 + 𝑈𝑁−3 ⋯ 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 𝑈𝑁−𝑀−3 ⋯ 𝒬1

′ + 𝑈𝑁 𝛬1 + 𝑈𝑁−1

𝛬1 + 𝑈𝑁−1 𝛬2 + 𝑈𝑁−2 ⋯ 𝛬𝑀 + 𝑈𝑁−𝑀 𝑈𝑁−𝑀−1 𝑈𝑁−𝑀−2 ⋯ 𝑈1 𝒬1
′ + 𝑈𝑁  

 
 
 
 
 
 
 
 
 

(38)             
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The basic generator which is concerned with only production, sale and the CSP is 𝒬𝐵
′′ =  𝐴′0 +  𝐴′1 +

𝐴′2. This is also block circulant. Using similar arguments given for Model (A) it can be seen that its probability 

vector is  
𝑤

𝑁
,
𝑤

𝑁
,
𝑤

𝑁
, … ,

𝑤

𝑁
  and the stability condition remains the same.  

Following the arguments given for Model (A), one can find the stationary probability vector for Model (B) also 

in matrix geometric form. All performance measures given in section 2.3 including the expectation and the 

variance for Model (B) have the same form as given in Model (A) except M is replaced by N. 

 

IV. Numerical Cases 

Six numerical cases two each for three models namely (i) M=4, N=4 (ii) M=4, N-3 and (iii) M=3, N=4 
are treated using the analysis given for models (A) and (B) where M and N are the maximum production and 

sale sizes respectively. The bulk production requirement of k number of consecutive productions without 

defective for mode I is k= 3 and in mode II r=4 bulk productions are tested with probability c =.5 and in mode 

III the probability of testing a bulk is d =.8. The probability p of a product is good .8 and the defective 

probability q=.2.  

For the three cases (i), (ii) and (iii) above, two different values for the production and sale parameters 

(λ, μ) are fixed as  (λ=2, μ=3) and (λ=2.5, μ=3).For the cases (i) and (ii) the bulk production size probabilities 

are  𝛼1= .5, 𝛼2= .2, 𝛼3=.2  𝛼4=.1 and for case (iii) they are  𝛼1= .5, 𝛼2= .3, 𝛼3=.2  𝛼4=0. For the cases (i) and 

(iii) the bulk sale size probabilities are 𝛽1= .4, 𝛽2= .2, 𝛽3=.2, 𝛽4=.2 and for case (ii) they are 𝛽1= .4, 𝛽2= .4, 

𝛽3=.2, 𝛽4 =0. As same CSP is adopted for the six cases the fraction of the bulk productions that are inspected 
out of all bulk productions is seen as   f= 0.795440162.  

The pairs of expected size of production and expected size of sale (E (χ), E (ψ)) for the three cases are 

respectively obtained as (1.9, 2.2), (1.9, 1.8) and (1.7, 2.2). Table1 presents the results obtained for various 

measures for Model (A) and Model (B) for the six numerical cases. Fifteen iterations are performed for finding 

the rate matrix R and the norm values are presented in row S.No.15. Various individual probability levels when 

stock levels are 0,1,2,3 and above 3 are presented in S.Nos. 1,2,3,4 and 5. The block level probabilities for 

blocks 0,1,2,3 and above 3 are listed in S.Nos. 6,7,8,9 and 10. The rate of entry of defective products (REDP) is 

λ q E (χ) if CSP is not adopted for the six cases are presented as S.No. 23. The REDP when the CSP is adopted 

is presented in S.No. 22 and its value calculated using iterated R matrix is presented in S.No. 21which shows 

substantial reduction in the rate of entry of defectives for sale. The expected stock level and expected defective 
products in the stocks are given in S.No 11 and S.No.24.  

The ratios E (Def) / E(S) are .04 approximately and less than the defective probability q= .2. This ratio 

along with [S.nos.12, 14, 21, 22,24], standard deviations , Coefficient of variation, estimated Rate of Entry of 

Defective Products by rate matrix R, the REDP of the CSP and the E(Defectives) indicate the risk involved in 

adopting the CSP is very much less. Figure (1) presents various probabilities for stock levels and block levels. 

Figure (2) gives the rates of Entries of defectives for different situations and E (Defectives). The reduction in the 

rate of entry of defective products when all the products are allowed for sale without CSP is substantial as seen 

inFigure2. 

 

Table.1 Results Obtained for the Six Numerical Cases 
S.No (λ,μ) (M,N) (2,3) (4, 4) (2.5, 3) (4, 4) (2, 3) (4, 3) (2.5,3) (4,3) (2,3) (3,4) (2.5,3) (3,4) 

1 P(S=0) 0.40595741 0.29680114 0.34062481 0.21109948 0.4431943 0.34172495 

2 P(S=1) 0.13394278 0.11597578 0.12634731 0.0937049 0.14805564 0.13508528 

3 P(S=2) 0.10499984 0.09796881 0.10361331 0.08373954 0.12076333 0.11827768 

4 P(S=3) 0.09005805 0.08932819 0.09109751 0.07922874 0.09088518 0.09660198 

5 P(S>3) 0.26504192 0.39992608 0.33831706 0.53222735 0.19710154 0.3083101 

6 π0e 0.73495808 0.60007392 0.66168294 0.46777265 0.80289846 0.6916899 

7 π1e 0.180997 0.21913781 0.20607769 0.22459328 0.15017406 0.19979037 

8 π2e 0.05718609 0.09871757 0.08028139 0.12941185 0.03577678 0.07034883 

9 π3e 0.01827105 0.04480441 0.03153684 0.07495951 0.00850012 0.02474195 

10 P(Block>3) 0.00858778 0.03726629 0.02042115 0.10326271 0.00265058 0.01342896 

11 E(S) 2.47107994 4.00419884 3.23953339 6.25960994 1.90790959 2.92867633 

12 ζ(S) 3.2192414 4.63622292 3.92559153 6.71303546 2.58199365 3.53345006 

13 VAR(S) 10.3635152 21.494563 15.4102688 45.064845 6.66669121 12.4852694 

14 CV 1.302767 1.1578403 1.121177684 1.0724367 1.35331027 1.20650071 

15 NORM 4.1086E-07 1.24840E-05 6.62810E-06 1.34820E-04 3.69450E-08 1.8304E-06 

16 REDP block 0 0.10910589 0.10958904 0.09723651 0.08397256 0.11523945 0.12192548 

17 REDP block 1 0.03128588 0.04581699 0.03504945 0.04588092 0.02622781 0.04201566 

18 REDP block 2 0.01023695 0.02120566 0.01404483 0.02699571 0.00651131 0.01527112 

19 REDP block 3 0.00328854 0.00965989 0.00553833 0.01567411 0.00155052 0.00538023 

20 Sum REDP>3 0.00154778 0.0080412 0.00358919 0.02160175 0.00048392 0.00292165 

21 Total REDP 0.15546503 0.19431277 0.1554583 0.19412506 0.15001301 0.18751413 

22 REDP for CSP 0.15546548 0.19433185 0.15546548 0.19433185 0.15001304 0.1875163 
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23 Non CSP REDP 0.76 0.95 0.76 0.95 0.68 0.85 

24 E(Def) 0.10109674 0.16381965 0.13253568 0.25609296 0.0841798 0.12921754 

  

 
Figure.1.Various Probabilities for Six Numerical Cases for Individuals and Bulks 

 

 
Figure.2.Rate of Entries of defectives for different situations and E (Defectives) 

 

V. Conclusion 
In this paper a continuous sampling plan (CSP) has been studied in preventing the entry of defective 

products into stocks for sale in bulk production and bulk sale system. The CSP considered here has three modes. 

In mode I every product in a bulk production is inspected until k consecutive good bulk productions are found. 

At this point the CSP changes its inspection mode to II of inspecting the next r bulk productions where every 
bulk is inspected with probability c until a defective product appears. When a defective one appears, the CSP 

changes its mode to I and if no defective product is noticed in those r bulk productions, the CSP changes to 

mode III where the bulk production is inspected with probability d. In mode III, if a defective is found, the CSP 

changes to I and if no defective is found then it changes to mode II. In the above continuous sampling plan, the 

probabilistic inspection procedures reduce the number of inspections considerably with a view to reduce the 

inspection cost. Giving different values for production rates, sale rates, bulk production and bulk sale sizes six 

numerical cases are treated.   The rate of entry of defective products is reduced by the continuous sampling plan. 

All the risks measures involved in the CSP are obtained. For future studies models with catastrophic sale may 

produce further interesting results. 
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