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Abstract: Let 𝑋 be a real or complex Banach space and 𝑌 be a normed linear space. Suppose that 𝑓: 𝑋 → 𝑌 is 

a Frechet differentiable function and 𝐹: 𝑋 ⇉ 2𝑌  is a set-valued mapping with closed graph. Uniform 

convergence of Chord method for solving generalized equation 𝑦 ∈ 𝑓 𝑥 + 𝐹 𝑥 …… . (∗), where 𝑦 ∈ 𝑌 a 

parameter, is studied in the present paper.  More clearly, we obtain the uniform convergence  of the sequence 

generated by Chord method in the sense that it is stable under small variation of perturbation parameter 𝑦 

provided that the set-valued mapping 𝐹 is pseudo-Lipschitz at a given point (possibly at a given solution). 
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1. Introduction 
Let 𝑋 be a real or complex Banach space and 𝑌 be a normed linear space. We are concerned with the problem of 

finding the solution  𝑥∗ of parameterized perturbed generalized equation of the form 

  𝑦 ∈ 𝑓 𝑥 + 𝐹 𝑥 ,                                                                                (1.1)         

where 𝑦 ∈ 𝑌 is a parameter, 𝑓:𝑋 → 𝑌 is a single-valued function and 𝐹: 𝑋 ⇉ 2𝑌  is set-valued mapping with 
closed graph. 

The Generalized equation problems were introduced by S.M. Robinson [1, 2] as a general tool for 

describing, analyzing, and solving different problem in a unified manner. Typical examples are systems of 
inequalities, variational inequalities, linear and non-linear complementary problems, systems of nonlinear 

equations, equilibrium problems, etc.; see for example [1--3]. 

It is remark that when 𝐹 =  0 , (1.1) is an equation. When F is positive orthand in 𝑅𝑛 , (1.1) is a system 

of inequalities. When 𝐹 is the normal cone to a convex and closed set in 𝑋, (1.1) represents variational 

inequalities.  

Newton-type method can be considered to solve this generalized equation when the single-valued 

function involved in (1.1) is differentiable. Such an approach has been used in many contributions to this 

subject; see for example [4--6].  

To solve (1.1), Dontchev [4] introduced a Newton type method of the form 

   𝑦 ∈ 𝑓 𝑥𝑘 + 𝛻𝑓 𝑥𝑘  𝑥𝑘+1 − 𝑥𝑘 + 𝐹 𝑥𝑘+1 , 𝑘 = 0,1, . . .,                                                (1.2) 

where  𝛻𝑓 𝑥𝑘  is the Frechet derivative of 𝑓 at the point 𝑥𝑘  and obtained the stability of the method (1.2).  

A large number of iterative methods have been presented for solving (1.1). Pietrus [5] showed the stability of 

this method under mild conditions. Other achievements on this topic can be found in [6, 7]. 

 Marinov [8] associated the following method name as “Chord method” for solving the generalized equation 

(1.1):  

                  𝑦 ∈ 𝑓 𝑥𝑘 + 𝐴 𝑥𝑘+1 − 𝑥𝑘 + 𝐹 𝑥𝑘+1  ,                                                                                          (1.3) 

where 𝐴 ∈ 𝐿 𝑋, 𝑌 . It should be noted that when  𝐴 = 𝛻𝑓 𝑥𝑘 , the method (1.3) reduces to the well-known 

Newton-type method (1.2).  

In the present paper, we are intended to present a kind of convergence of the sequence generated by the 
Chord method defined by (1.3) which is uniform in the sense that the attraction region does not depend on small 

variations of the value of the parameter  𝑦 near  𝑦∗ and for such values of  𝑦 the method finds a solution 𝑥 of 

(1.1) whenever  𝐹 is pseudo-Lipschitz at (𝑥∗, 𝑦∗) and the Frechet derivative of 𝑓 is continuous.  We will prove 

the uniformity of the local convergence of the Chord method defined by (1.3) in two different ways. 

This work is organized as follows: In Section 2, we recall few preliminary results that will be used in 

the subsequent sections. In Section 3, we prove the existence and uniform convergence of the sequence 

generated by the Chord method defined by (1.3) for solving generalized equation (1.1). Finally in Section 4, we 

will give conclusion of the major results obtained in this study. 
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II. Notations And Preliminary Results 
Throughout this work we suppose that 𝑋 is a real or complex Banach space and 𝑌 is a normed linear space. All 

the norms are denoted by  ∙ . The closed ball centered at x with radius 𝑟 > 0 denoted by 𝐵𝑟(𝑥) and the set of 

linear operators denoted by 𝐿(𝑋, 𝑌). 

The following definition is taken from [7, 9]. 

Definition 2.1: Let 𝐹: 𝑋 ⇉ 2𝑌  be a set valued mapping. Then the Domain of  𝐹 is denoted by dom 𝐹, and is 
define by  

dom 𝐹 =  𝑥 ∈ 𝑋 ∶ 𝐹 𝑥 ≠ ∅ .   
The inverse of  𝐹 is denoted by 𝐹−1, and is defined by 

𝐹−1 𝑦 =  𝑥 ∈ 𝑋: 𝑦 ∈ 𝑓 𝑥  , 
and 

The Graph of  𝐹 is denoted by gph 𝐹, and is define by  

gph 𝐹 =   𝑥, 𝑦 ∈ 𝑋 × 𝑌 ∶ 𝑦 ∈ 𝐹 𝑥  . 
The following definition of distance from a point to a set and excess are taken from [7, 9]. 

Definition 2.2: Let 𝑋 be Banach space 𝐴 be subset of  𝑋. Then the distance from a point 𝑥 to a set 𝐴 is denoted 

by dist  𝑥, 𝐴 , and is define by 

dist (𝑥, 𝐴) = inf   𝑥 − 𝑎 ∶ 𝑎 ∈ 𝐴 . 
Definition 2.3: Let 𝑋 be Banach space and 𝐴, 𝐵 ⊆ 𝑋. The excess 𝑒 from the set 𝐴 to a set 𝐵 is given by 

𝑒 𝐵, 𝐴 = sup   𝑥 − 𝐴 ∶ 𝑥 ∈ 𝐵 . 
The following definition is taken from [9]. 

Definition 2.4: Let 𝐹: 𝑋 ⇉ 2𝑌  be a set-valued mapping. Then 𝐹 is said to be pseudo Lipschitz-around  𝑥0 , 𝑦0 ∈
gph 𝐹 with constant 𝑀 if there exist positive constants 𝛼, 𝛽 > 0 such that    

𝑒  𝐹 𝑥1 ∩ 𝐵𝛽  𝑦0 , 𝐹 𝑥2  ≤ 𝑀 𝑥1 − 𝑥2 , 

for every 𝑥1 , 𝑥2 ∈ 𝐵𝛼 𝑥0 . When 𝐹 is single-valued, this corresponds to the usual concept of Lipschitz 

continuity. 

The definition of Lipschitz continuity is equivalent to the definition of Aubin continuity, which is given below: 

A set-valued map 𝛤: 𝑌 ⇉ 2𝑋  is Aubin continuous at  𝑦0 , 𝑥0 ∈ gph 𝛤  with positive constants 𝛼, 𝛽 and 𝑀 if for 

every  𝑦1 , 𝑦2 ∈ 𝐵𝛽  𝑦0  and for every 𝑥1 ∈ 𝛤  𝑦1 ∩ 𝐵𝛼 𝑥0 , there exists an 𝑥2 ∈ 𝛤  𝑦2  such that                

 𝑥1 − 𝑥2 ≤ 𝑀 𝑦1 − 𝑦2 . 

The constant 𝑀 is called the modulus of Aubin continuity. 

The following definition of continuity is taken from the book [10]. 

Definition 2.5: A map 𝑓:𝛺 ⊆ 𝑋 → 𝑌  is said to be continuous at  𝑥 ∈ 𝛺  if for every 𝜀 > 0, there exist a 𝛿 > 0 

such that 
 𝑓 𝑥 − 𝑓 𝑥   < 𝜀,  for all 𝑥 ∈ 𝛺 for which  𝑥 − 𝑥  < 𝛿. 

Definition 2.6: A map 𝑓: 𝛺 ⊆ 𝑋 → 𝑌 is said to be Lipschitz continuous if there exists constant 𝑐 such that   

                             𝑓 𝑥 − 𝑓 𝑦  ≤ 𝑐 𝑥 − 𝑦 , for all 𝑥 and 𝑦 in the domain of  𝑓. 

The following definition of linear convergence is taken from the monogram [11]. 

Definition 2.7: Let  {𝑥𝑛} be a sequence which is converges to the number 𝑥 . Then the sequence {𝑥𝑛 } is said to 

be converges linearly to 𝑥 , if there exists a number  0 < 𝑐 < 1 such that 
 𝑥𝑛+1 − 𝑥  ≤ 𝑐 𝑥𝑛 − 𝑥  . 

The following Lemma is a version of fixed point theorem, which is taken from [7]. 

Lemma 2.1: Let 𝛷:𝑋 ⇉ 2𝑋  be a set valued mapping and let 𝜂0 ∈ 𝑋,  𝑟 > 0 and 0 < 𝜆 < 1 
 be such that 

                (a)  dist  𝜂0 ,𝛷 𝜂0  < 𝑟 1 − 𝜆  and 

                (b)  𝑒 𝛷 𝑥1 ∩ 𝐵𝑟 𝜂0 ,𝛷 𝑥2  ≤ 𝜆 𝑥1 − 𝑥2  , for all 𝑥1 , 𝑥1 ∈ 𝐵𝑟 𝜂0 . 
Then 𝛷 has a fixed point in 𝐵𝑟 𝜂0 , that is, there exists 𝑥 ∈ 𝐵𝑟 𝜂0  such that   𝑥 ∈ 𝛷 𝑥 . If 𝛷 is single-valued, 

then 𝑥 is the unique fixed point of 𝛷 in 𝐵𝑟 𝜂0 .   
 

III. Uniform Convergence Of Chord Method 
This section is devoted to study the stability of the Chord method for solving generalized equations 

(1.1) involving set-valued mapping and parameters. Let 𝑓:𝑋 →  𝑌 be a single-valued function which is Frechet 

differentiable on an open set in 𝑋 and  𝐹: 𝑋 ⇉ 2𝑌  be a set-valued mapping with closed graph. Let  𝑦  ∈ 𝐹 𝑥   and 

𝐹−1 be pseudo-Lipschitz around  𝑦  , 𝑥  .  Then through Theorem 2.1 in [12], we have that  𝑓 + 𝐹 −1 is pseudo-

Lipschitz around  𝑦 + 𝑓(𝑥  , 𝑥  ).  Let 𝑥 ∈ 𝑋 and define the mapping 𝑃𝑥 : 𝑋 ⇉ 2𝑌  by 

                                                    𝑃𝑥 ∙ = 𝑓 𝑥 + 𝐴 ∙ −𝑥 + 𝐹 ∙ .  
Moreover, the following equivalence is obvious, for any  𝑧 ∈ 𝑋  and 𝑦 ∈ 𝑌, 

   𝑧 ∈ 𝑃𝑥
−1 𝑦 ⇔ 𝑦 ∈ 𝑓 𝑥 + 𝐴 𝑧 − 𝑥 + 𝐹(𝑧).                                                         (3.1) 
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In particular,  𝑥∗ ∈ 𝑃𝑥∗
−1 𝑦∗  for each  𝑥∗, 𝑦∗ ∈ gph 𝑓 + 𝐹 . Let 𝑎 > 0, 𝑏 > 0. Throughout the whole paper, 

we suppose that 𝐵𝑎 𝑥
∗ ⊆ 𝛺 ∩ dom 𝐹 and that  𝑥∗, 𝑦∗ ∈ gph 𝑃𝑥∗  , for every 𝑥∗, 𝑦∗ ∈ gph 𝑓 + 𝐹 . Then by 

Lemma 3.1 in [12], we have that the mapping 𝑃𝑥∗
−1 ∙  is pseudo-Lipschitz around  𝑦∗, 𝑥∗  with constant 𝑀, that 

is, 

 𝑒  𝑃𝑥∗
−1 𝑦1 ∩ 𝐵𝑎 𝑥

∗ , 𝑃𝑥∗
−1 𝑦2  ≤ 𝑀 𝑦1 − 𝑦2 , for any 𝑦1 , 𝑦2 ∈ 𝐵𝑏 𝑦

∗ .                                                      (3.2) 

Choose  𝐴 − 𝛻𝑓 𝑥∗  > 0 and set 

      𝑟 = min  𝑏 − 2𝑎 𝐴 − 𝛻𝑓 𝑥∗  ,
𝑎 1−𝑀 𝐴−𝛻𝑓 𝑥 ∗   

4𝑀
 .                                                                                      (3.3) 

Then    𝑟 > 0 ⟺  𝐴 − 𝛻𝑓 𝑥∗  < min  
𝑏

2𝑎
,

1

𝑀
 .                                                                                                (3.4) 

The following Lemma is useful for proving the existence of a sequence generated by the method (1.3). The 

proof is analogous to the proof of Rashid et al. [7]. 

 

Lemma 3.1 Suppose that 𝑃𝑥∗
−1 ∙  is pseudo-Lipschitz around  𝑦∗, 𝑥∗  with constant 𝑀. Let 𝑥 ∈ 𝐵𝑎

2
 𝑥∗  and let 

𝐴 ∈ 𝐿 𝑋, 𝑌  be such that 𝑀 𝛻𝑓 𝑥∗ − 𝐴 < 1. Suppose that 

Sup
𝑥∈𝐵𝑎

2
 𝑥∗ 

 𝛻𝑓 𝑥 − 𝛻𝑓 𝑥∗  ≤  𝐴 − 𝛻𝑓 𝑥∗  ≤ min  
𝑏

2𝑎
,

1

𝑀
 . 

Then 𝑃𝑥
−1 ∙  is pseudo-Lipschitz around  𝑦∗, 𝑥∗  with constant 

𝑀

1−𝑀 𝐴−𝛻𝑓 𝑥∗  
,  

that is, 𝑒  𝑃𝑥
−1 𝑦1 ∩ 𝐵𝑎

2
 𝑥∗ , 𝑃𝑥

−1 𝑦2  ≤
𝑀

1−𝑀 𝐴−𝛻𝑓 𝑥∗  
 𝑦1 − 𝑦2    for any 𝑦1, 𝑦2 ∈ 𝐵𝑟  𝑦

∗ . 

Proof: Let  𝑦1, 𝑦2 ∈ 𝐵𝑟  𝑦
∗  and 𝑥′ ∈ 𝑃𝑥

−1 𝑦1 ∩ 𝐵𝑎

2
 𝑥∗ .                                                                                 (3.5) 

We need to prove that there exists 𝑥′′ ∈ 𝑃𝑥
−1 𝑦2  such that 

 𝑥′ − 𝑥′′  ≤
𝑀

1 −𝑀 𝐴 − 𝛻𝑓 𝑥∗  
 𝑦1 − 𝑦2 . 

To finish this, we will verify that there exists a sequence  𝑥𝑘  ⊂ 𝐵𝑎 𝑥
∗  such that 

  𝑦2 ∈ 𝑓 𝑥 + 𝐴 𝑥𝑘−1 − 𝑥 + 𝛻𝑓 𝑥∗  𝑥𝑘 − 𝑥𝑘−1 + 𝐹 𝑥𝑘                                                 (3.6) 

and    𝑥𝑘 − 𝑥𝑘−1 ≤ 𝑀 𝑦1 − 𝑦2  𝑀 𝐴 − 𝛻𝑓 𝑥
∗   𝑘−2  for each 𝑘 = 2,3,4,…                                       (3.7) 

We prove by induction on 𝑘. Denote 

      𝑧𝑖 = 𝑦𝑖 − 𝑓 𝑥 − 𝐴 𝑥′ − 𝑥 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥′ − 𝑥∗  for each  𝑖 = 1,2.                                              (3.8)            

Note by (3.5) that  𝑥 − 𝑥′ ≤  𝑥 − 𝑥∗ +  𝑥∗ − 𝑥′ ≤ 𝑎. Following from (3.5) and using (3.3) with the 

relation 𝑟 ≤ 𝑏 − 2𝑎 𝐴 − 𝛻𝑓 𝑥∗  , we have that 

 𝑧𝑖 − 𝑦∗ ≤  𝑦𝑖 − 𝑦
∗ +  𝑓 𝑥 − 𝑓 𝑥∗ − 𝛻𝑓 𝑥∗  𝑥 − 𝑥∗  +   𝐴 − 𝛻𝑓 𝑥∗   𝑥 − 𝑥′    

                    ≤ 𝑟 +   𝛻𝑓 𝑥∗ + 𝑡 𝑥 − 𝑥∗  − 𝛻𝑓 𝑥∗  𝑥 − 𝑥∗ 𝑑𝑡 

1

0

+   𝐴 − 𝛻𝑓 𝑥∗   𝑥 − 𝑥′   

                  ≤ 𝑟 +  𝐴 − 𝛻𝑓 𝑥∗   𝑥 − 𝑥∗ +  𝐴 − 𝛻𝑓 𝑥∗   𝑥 − 𝑥′  

                  = 𝑟 +  𝐴 − 𝛻𝑓 𝑥∗    𝑥 − 𝑥∗ +  𝑥 − 𝑥′   

                    ≤ 𝑟 +  𝐴 − 𝛻𝑓 𝑥∗   
𝑎

2
+ 𝑎 ≤ 𝑏. 

So we get 𝑧𝑖 ∈ 𝐵𝑏 𝑦
∗  for each 𝑖 = 1,2. Setting 𝑥1 = 𝑥′ . Then 𝑥1 ∈ 𝑃𝑥

−1 𝑦1  by (3.5), and it comes from (3.1) 

that  𝑦1 ∈ 𝑓 𝑥 + 𝐴 𝑥1 − 𝑥 + 𝐹 𝑥1 , which can be written as  

𝑦1 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥1 − 𝑥
∗ ∈ 𝑓 𝑥 + 𝐴 𝑥1 − 𝑥 + 𝐹 𝑥1 + 𝑓 𝑥∗ +  𝛻𝑓 𝑥∗  𝑥1 − 𝑥

∗ .                               
By the definition of 𝑧1 in (3.8), we obtain that 

𝑧1 ∈ 𝑓 𝑥
∗ + 𝛻𝑓 𝑥∗  𝑥1 − 𝑥 + 𝐹 𝑥1 . 

Hence 𝑥1 ∈ 𝑃𝑥∗
−1 𝑧1  by (3.1), and then 𝑥1 ∈ 𝑃𝑥∗

−1 𝑧1 ∩ 𝐵𝑟𝑥∗ 𝑥
∗  by (3.5). Noting that  𝑧1 , 𝑧2 ∈ 𝐵𝑏 𝑦

∗ , and 

from (3.2) we claim that their exists 𝑥2 ∈ 𝑃𝑥∗
−1 𝑧2  such that 

   𝑥2 − 𝑥1 ≤ 𝑀 𝑧1 − 𝑧2 = 𝑀 𝑦1 − 𝑦2 .                                                            (3.9) 

Setting 𝑥1 = 𝑥′ . By the definition of 𝑧2 in (3.8), we have that 

𝑥2 ∈ 𝑃𝑥∗
−1 𝑧2 = 𝑃𝑥 ∗

−1 𝑦2 − 𝑓 𝑥 − 𝐴 𝑥1 − 𝑥 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥1 − 𝑥
∗  , which, together with (3.1), implies 

that 

         𝑦2 ∈ 𝑓 𝑥 + 𝐴 𝑥1 − 𝑥 + 𝛻𝑓 𝑥∗  𝑥2 − 𝑥1 + 𝐹 𝑥2 .                                                                           (3.10) 

Therefore (3.10) and (3.9) shows respectively that (3.6) and (3.7) are true for the constructed points 𝑥1 , 𝑥2. We 

assume that 𝑥1 , 𝑥2 , 𝑥3 , … . , 𝑥𝑛  are constructed such that (3.6) and (3.7) are true for 𝑘 = 2,3,… . , 𝑛. We need to 

construct 𝑥𝑛+1 such that (3.6) and (3.7) are also true for 𝑘 = 𝑛 + 1. For this purpose, we can write 

𝑧𝑖
𝑛 = 𝑦2 − 𝑓 𝑥 − 𝐴 𝑥𝑛+𝑖−1 − 𝑥 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥𝑛+𝑖−1 − 𝑥∗ , for each 𝑖 = 0,1.   

Then, by the inductive assumption, we have that 
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                                   𝑧0
𝑛 − 𝑧1

𝑛 =   𝐴 − 𝛻𝑓 𝑥∗   𝑥𝑛 − 𝑥𝑛−1   

                                                     ≤  𝐴 − 𝛻𝑓 𝑥∗   𝑥𝑛 − 𝑥𝑛−1  

                                                       ≤  𝑦1 − 𝑦2  𝑀 𝐴 − 𝛻𝑓 𝑥
∗   𝑛−1.                                                            (3.11) 

Since  𝑥1 − 𝑥
∗ ≤

𝑎

2
  and  𝑦1 − 𝑦2 ≤ 2𝑟   by (3.5), it follows from (3.7) that   

 𝑥𝑛 − 𝑥∗ ≤  𝑥𝑘 − 𝑥𝑘−1 +  𝑥1 − 𝑥
∗ 

𝑛

𝑘=2

 

                                                           ≤ 2𝑀𝑟   𝑀 𝐴 − 𝛻𝑓 𝑥∗   𝑘−2 +
𝑎

2

𝑛

𝑘=2

 

                                                           ≤
2𝑀𝑟 

1 − 𝑀 𝐴 − 𝛻𝑓 𝑥∗  
+
𝑎

2
. 

From (3.3), we see  𝑟 ≤
𝑎 1−𝑀 𝐴−𝛻𝑓 𝑥∗   

4𝑀
 , and so     𝑥𝑛 − 𝑥

∗ ≤ 𝑎.                                            (3.12) 

Accordingly,    𝑥𝑛 − 𝑥 ≤  𝑥𝑛 − 𝑥∗ +  𝑥∗ − 𝑥 ≤
3𝑎

2
.                                                                                (3.13) 

Furthermore, using (3.5) and (3.13), one has, for each 𝑖 = 0,1, that        

                   𝑧𝑖
𝑛 − 𝑦∗ ≤  𝑦2 − 𝑦

∗ +  𝑓 𝑥 − 𝑓 𝑥∗ − 𝛻𝑓 𝑥∗  𝑥 − 𝑥∗   

                                                                           +  𝐴 − 𝛻𝑓 𝑥∗  𝑥 − 𝑥𝑛+𝑖−1        

                                    ≤ 𝑟 +  𝐴 − 𝛻𝑓 𝑥∗   𝑥 − 𝑥∗ +  𝐴 − 𝛻𝑓 𝑥∗   𝑥 − 𝑥𝑛+𝑖−1  

                                    = 𝑟 +  𝐴 − 𝛻𝑓 𝑥∗    𝑥 − 𝑥∗ +   𝑥 − 𝑥𝑛+𝑖−1    

                                     ≤ 𝑟 +  𝐴 − 𝛻𝑓 𝑥∗   
𝑎

2
+

3𝑎

2
  

                                      = 𝑟 + 2 𝐴 − 𝛻𝑓 𝑥∗  𝑎. 

By the assumption of  𝑟  in (3.3), we have that 𝑧𝑖
𝑛 ∈ 𝐵𝑏 𝑦

∗  for each 𝑖 = 0,1. Since assumption (3.6) holds for 

𝑘 = 𝑛 we have  

𝑦2 ∈ 𝑓 𝑥 + 𝐴 𝑥𝑛−1 − 𝑥 + 𝛻𝑓 𝑥∗  𝑥𝑛 − 𝑥𝑛−1 + 𝐹 𝑥𝑛  , which can be written as  

𝑦2 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥𝑛−1 − 𝑥∗ ∈ 𝑓 𝑥 + 𝐴 𝑥𝑛−1 − 𝑥 + 𝛻𝑓 𝑥∗  𝑥𝑛 − 𝑥𝑛−1  
                                                                        +𝐹 𝑥𝑛 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥𝑛−1 − 𝑥∗ , 
that is, 𝑧0

𝑛 ∈ 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥𝑛 − 𝑥
∗ + 𝐹 𝑥𝑛   by the assumption of 𝑧0

𝑛 . This, jointly with (3.1) and (3.12), 

gives 𝑥𝑛 ∈ 𝑃𝑥∗
−1 𝑧0

𝑛  ∩ 𝐵𝑎 𝑥
∗ . Utilize (3.2) again, their exists an element 𝑥𝑛+1 ∈ 𝑃𝑥∗

−1 𝑧1
𝑛   such that 

     𝑥𝑛+1 − 𝑥𝑛 ≤ 𝑀 𝑧0
𝑛 − 𝑧1

𝑛 ≤ 𝑀 𝑦1 − 𝑦2  𝑀 𝐴 − 𝛻𝑓 𝑥∗   𝑛−1,                                                         (3.14) 

where the last inequality holds by (3.11). By the assumption of 𝑧1
𝑛 , we get 

 𝑥𝑛+1 ∈ 𝑃𝑥∗
−1 𝑧1

𝑛  = 𝑃𝑥∗
−1 𝑦2 − 𝑓 𝑥 − 𝐴 𝑥𝑛 − 𝑥 + 𝑓 𝑥∗ + 𝛻𝑓 𝑥∗  𝑥𝑛 − 𝑥

∗  , which, together with (3.1), 

implies that 

                                   𝑦2 ∈ 𝑓 𝑥 + 𝐴 𝑥𝑛 − 𝑥 + 𝛻𝑓 𝑥∗  𝑥𝑛+1 − 𝑥𝑛  + 𝐹 𝑥𝑛+1 . 
This, together with (3.14), finishes the induction step, and proves the existence of sequence  𝑥𝑘   satisfying (3.6) 

and (3.7). Since 𝑀 𝐴 − 𝑓 𝑥∗  < 1, we see from (3.7) that,  𝑥𝑘   is a Cauchy sequence, and hence it is 

convergent. Let 𝑥′′ =   𝑥𝑘𝑘→∞
𝐿𝑖𝑚 . Then, taking limit in (3.6) and noting that 𝐹 has closed graph, we get 𝑦2 ∈

𝑓 𝑥 + 𝐴 𝑥′′ − 𝑥 + 𝐹 𝑥′′   and so 𝑥′′ ∈ 𝑃𝑥
−1 𝑦2 . 

Furthermore,           𝑥′ − 𝑥′′  ≤ lim𝑛→∞ sup  𝑥𝑘 − 𝑥𝑘−1 
𝑛
𝑘=2  

                                                 ≤ lim𝑛→∞   𝑀 𝐴 − 𝛻𝑓 𝑥∗   𝑘−2𝑀 𝑦1 − 𝑦2 
𝑛
𝑘=2  

                                                 =
𝑀

1−𝑀 𝐴−𝛻𝑓 𝑥∗  
 𝑦1 − 𝑦2 . 

This completes the proof of the lemma. 

 

3.1 Uniformity of Linear Convergence of First Kind 

This section is devoted to study the uniformity of linear convergence of the Chord method defined by (1.3). 

Theorem 3.1 Let 𝑥∗ be a solution of (1.1) for 𝑦 = 0. Suppose that 𝑃𝑥∗
−1 ∙  is pseudo-Lipschitz around  0, 𝑥∗  

with constants 𝑎, 𝑏 and 𝑀. Let 𝑥 ∈ 𝐵𝑎

2
 𝑥∗  and 𝐴 ∈ 𝐿 𝑋, 𝑌 .  Suppose that 𝛻𝑓 is continuous on 𝐵𝑎

2
 𝑥∗  with 

constant  𝐴 − 𝛻𝑓 𝑥∗   such that 3𝑀′ 𝐴 − 𝛻𝑓 𝑥∗  < 1 , i.e,  

sup
𝑥∈𝐵𝑎

2
 𝑥∗ 

 𝛻𝑓 𝑥 − 𝛻𝑓 𝑥∗  ≤  𝐴 − 𝛻𝑓 𝑥∗  ≤ min 
𝑏

2𝑎
,

1

𝑀
 . 

Then there exists positive constants 𝜎 and 𝑐 such that for every 𝑦 ∈ 𝐵𝑏 0  and for every 𝑥0 ∈ 𝐵𝜎 𝑥
∗  there 

exists a sequence  𝑥𝑘   generated by (1.3) with initial point 𝑥0, which is convergent to a solution 𝑥 of (1.1) for 𝑦, 

i.e. 
 𝑥𝑘+1 − 𝑥 ≤ 𝑐 𝑥𝑘 − 𝑥 . 
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Proof: Since  𝑃𝑥
−1 ∙  is pseudo-Lipschitz around  0. 𝑥∗  with constant 𝑀. Then there exist positive constants 𝑎 

and 𝑏 such that  

𝑒  𝑃𝑥∗
−1 𝑦1 ∩ 𝐵𝑎 𝑥

∗ , 𝑃𝑥∗
−1 𝑦2  ≤ 𝑀 𝑦1 − 𝑦2 , for each 𝑦1 , 𝑦2 ∈ 𝐵𝑏 0 . 

Let 𝑥0 ∈ 𝐵𝜎 𝑥
∗ , 𝑦 ∈ 𝐵𝑏 0  and 𝑟  be defined in (3.3).  Put 𝛼 =

𝑎

2
, 𝛽 = 𝑟   and 𝑀′ =

𝑀

1−𝑀 𝐴−𝛻𝑓 𝑥∗  
  are the 

constants in Lemma 3.1.  Then we have that 

𝑒 𝑃𝑥
−1 𝑦1 ∩ 𝐵𝛼 𝑥

∗ , 𝑃𝑥
−1 𝑦2  ≤ 𝑀 𝑦1 − 𝑦2 , for each 𝑦1 , 𝑦2 ∈ 𝐵𝛽  0 . 

Now, we have by Lemma 3.1, for 𝑀 𝐴 − 𝛻𝑓 𝑥∗  < 1, that 

𝑀′ 𝐴 − 𝛻𝑓 𝑥∗  =
𝑀 𝐴 − 𝛻𝑓 𝑥∗  

1 − 𝑀 𝐴 − 𝛻𝑓 𝑥∗  
< 1. 

Choose 𝜎 > 0 be such that  

𝜎 ≤ min 𝛼,
𝛼−𝑀 ′ 𝑏 1+3𝑀 ′  𝐴−𝛻𝑓 𝑥∗   

𝑀 ′  5+6𝑀′  𝐴−𝛻𝑓 𝑥∗    𝐴−𝛻𝑓 𝑥∗  +2
,

 𝛽−𝑏 −3𝑀 ′ 𝑏 𝐴−𝛻𝑓 𝑥∗  

6𝑀 ′  𝐴−𝛻𝑓 𝑥∗  2+3 𝐴−𝛻𝑓 𝑥∗  
, 1  .                                               (3.15) 

Since 𝑥0 ∈ 𝐵𝜎 𝑥
∗ , then  𝑥∗ ∈ 𝑃𝑥0

−1 −𝑓 𝑥∗ + 𝑓 𝑥0 + 𝐴 𝑥∗ − 𝑥0  ∩ 𝐵𝛼 𝑥
∗  and  

  𝑓 𝑥∗ − 𝑓 𝑥0 − 𝐴 𝑥∗ − 𝑥0   

≤  𝑓 𝑥0 − 𝑓 𝑥∗ − 𝛻𝑓 𝑥∗  𝑥0 − 𝑥
∗  +  𝐴 − 𝛻𝑓 𝑥∗   𝑥∗ − 𝑥0  

≤    𝛻𝑓 𝑥∗ + 𝑡 𝑥0 − 𝑥∗  − 𝛻𝑓 𝑥∗   𝑥0 − 𝑥∗  𝑑𝑡 +  𝐴 − 𝛻𝑓 𝑥∗   𝑥∗ − 𝑥0 

1

0

 

≤  𝐴 − 𝛻𝑓 𝑥∗   𝑥0 − 𝑥∗ +  𝐴 − 𝛻𝑓 𝑥∗   𝑥0 − 𝑥
∗  

 = 2 𝐴 − 𝛻𝑓 𝑥∗   𝑥0 − 𝑥
∗  

  ≤ 2𝜎 𝐴 − 𝛻𝑓 𝑥∗  ≤ 𝛽. 

Now from Lemma 3.1, there exists 𝑥1 ∈ 𝑃𝑥0
−1 𝑦 , i.e.  𝑦 ∈ 𝑓 𝑥0 + 𝐴 𝑥1 − 𝑥0 + 𝐹 𝑥1 ,  

such that   𝑥1 − 𝑥
∗ ≤ 𝑀′ 𝑦 + 𝑓 𝑥∗ − 𝑓 𝑥0 − 𝐴 𝑥∗ − 𝑥0   

                                  ≤ 𝑀′  𝑦 +  𝑓 𝑥0 − 𝑓 𝑥
∗ − 𝛻𝑓 𝑥∗  𝑥0 − 𝑥∗    

                                                              +𝑀′ 𝐴 − 𝛻𝑓 𝑥∗   𝑥∗ − 𝑥0  

                                    ≤ 𝑀′  𝑦 +  𝐴 − 𝛻𝑓 𝑥∗   𝑥∗ − 𝑥0 +  𝐴 − 𝛻𝑓 𝑥∗   𝑥∗ − 𝑥0   
                                   ≤ 𝑀′  𝑦 + 2𝜎 𝐴 − 𝛻𝑓 𝑥∗    
                                 ≤ 𝑀′𝑏 + 2𝑀′𝜎 𝐴 − 𝛻𝑓 𝑥∗  ≤ 𝛼. 

Then  we have that        𝑥1 − 𝑥0 ≤  𝑥1 − 𝑥
∗ +  𝑥∗ − 𝑥0             

                              ≤ 𝑀′𝑏 + 2𝑀′𝜎 𝐴 − 𝛻𝑓 𝑥∗  + 𝜎 

                             = 𝑀′𝑏 + (2𝑀′ 𝐴 − 𝛻𝑓 𝑥∗  + 1)𝜎. 

Note that       𝑥1 ∈ 𝑃𝑥1
−1 𝑦 + 𝑓 𝑥1 − 𝑓 𝑥0 − 𝐴 𝑥1 − 𝑥0  ∩ 𝐵𝛼 𝑥

∗ ,  and 

 𝑦 + 𝑓 𝑥1 − 𝑓 𝑥0 − 𝐴 𝑥1 − 𝑥0   

≤  𝑦 +  𝑓 𝑥1 − 𝑓 𝑥0 − 𝛻𝑓 𝑥0  𝑥1 − 𝑥0  +   𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥1 − 𝑥0  

≤  𝑦 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥1 − 𝑥0 +   𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥1 − 𝑥0  

≤  𝑦 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥1 − 𝑥0  

                                     +  𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥1 − 𝑥0  

≤ 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑥1 − 𝑥0  

≤ 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑀′𝑏 + (2𝑀′ 𝐴 − 𝛻𝑓 𝑥∗  + 1)𝜎 ≤ 𝛽, where the last inequality holds by third relation 

in (3.15). Then, from Lemma 3.1 there exists 𝑥2 ∈ 𝑃𝑥1
−1 𝑦  i.e. 𝑦 ∈ 𝑓 𝑥1 + 𝐴 𝑥2 − 𝑥1 + 𝐹 𝑥2  

such that     𝑥2 − 𝑥1 ≤ 𝑀′ 𝑓 𝑥1 − 𝑓 𝑥0 − 𝐴 𝑥1 − 𝑥0   

                                    ≤ 𝑀′( 𝑓 𝑥1 − 𝑓 𝑥0 − 𝛻𝑓 𝑥0  𝑥1 − 𝑥0  ) 

                                               +𝑀′  𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥1 − 𝑥0  

                                    ≤ 𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥1 − 𝑥0  

                                              +𝑀′  𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥1 − 𝑥0  

                                     = 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥1 − 𝑥0 . 

Furthermore, we have that 

  𝑥2 − 𝑥
∗ ≤  𝑥2 − 𝑥1 +  𝑥1 − 𝑥0 +  𝑥0 − 𝑥∗  

                   ≤  1 + 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴   𝑥1 − 𝑥0 +  𝑥0 − 𝑥
∗  

                   ≤  1 + 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴   𝑀′𝑏 +  2𝑀′ 𝐴 − 𝛻𝑓 𝑥∗  + 1 𝜎 + 𝜎 

                   ≤ 𝑀′𝑏 1 + 3𝑀′ 𝐴 − 𝛻𝑓 𝑥∗   +  𝑀′ 5 + 6𝑀′ 𝐴 − 𝛻𝑓 𝑥∗    𝐴 − 𝛻𝑓 𝑥∗  + 2 𝜎 ≤ 𝛼.     (3.16) 

Proceeding by induction, suppose that there exists integer 𝑛 ≥ 2 and points 𝑥2 , 𝑥3 , 𝑥4 , … , 𝑥𝑛  are obtained by the 

Chord method defined by (1.3), we get, 𝑥𝑘 ∈ 𝑃𝑥𝑘−1
 𝑦 , i.e. 𝑦 ∈ 𝑓 𝑥𝑘−1 + 𝐴 𝑥𝑘 − 𝑥𝑘−1 + 𝐹 𝑥𝑘 , such that  

 𝑥𝑘 − 𝑥𝑘−1 ≤  3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑘−1 𝑥1 − 𝑥0 , 𝑘 = 2,3,4,…… , 𝑛. 
Then, repeating the argument in (3.16) we obtain that 𝑥𝑛 ∈ 𝐵𝛼 𝑥

∗ . Moreover, we have that 

   𝑦 + 𝑓 𝑥𝑛  − 𝑓 𝑥𝑛−1 − 𝐴 𝑥𝑛 − 𝑥𝑛−1   
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≤  𝑦 +  𝑓 𝑥𝑛  − 𝑓 𝑥𝑛−1 − 𝛻𝑓 𝑥𝑛−1  𝑥𝑛 − 𝑥𝑛−1   

+  𝛻𝑓 𝑥𝑛−1 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥𝑛 − 𝑥𝑛−1  

≤ 𝑏 +  𝑓 𝑥𝑛  − 𝑓 𝑥𝑛−1 − 𝛻𝑓 𝑥𝑛−1  𝑥𝑛 − 𝑥𝑛−1  +   𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥𝑛 − 𝑥𝑛−1  

≤ 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥𝑛 − 𝑥𝑛−1 + 2 𝛻𝑓 𝑥∗ − 𝐴  𝑥𝑛 − 𝑥𝑛−1  

= 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑥𝑛 − 𝑥𝑛−1  

≤ 𝑏 +  3 𝛻𝑓 𝑥∗ − 𝐴  𝑛 𝑥1 − 𝑥0  

≤ 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑥1 − 𝑥0 ≤ 𝛽. 

Then from  𝑥𝑛 ∈ 𝑃𝑥𝑛
−1 𝑦 + 𝑓 𝑥𝑛  − 𝑓 𝑥𝑛−1 − 𝐴 𝑥𝑛 − 𝑥𝑛−1  ∩ 𝐵𝛼 𝑥

∗ , and from Lemma 3.1,  we conclude 

that there exists a chord iterate  

   𝑥𝑛+1 ∈ 𝑃𝑥𝑛
−1 𝑦 ,                                                                               (3.17) 

 satisfying   𝑥𝑛+1 − 𝑥𝑛 ≤ 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥𝑛 − 𝑥𝑛−1 .                                                                         (3.18)      

                                         ≤  3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑛 𝑥1 − 𝑥0 .                                            

This completes the induction step. Hence, there exists a sequence  𝑥𝑛   which is Cauchy sequence, and passing 

to the limit in (3.17), we obtain that  𝑥𝑛   is geometrically convergent to solution 𝑥 ∈ 𝑃𝑥
−1 𝑦 . Put  𝑐 >

3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴 . Now, if we pass to the limit in (3.18), we obtain that  𝑥𝑛+1 − 𝑥 ≤ 𝑐 𝑥𝑛 − 𝑥 . This 

completes the proof of theorem. 

 

3.2 Uniformity of Linear Convergence of Second Kind   

This section provides the uniformity of linear convergence of the Chord method defined by (1.3) in different 

way.                                                                                                              

Theorem 3.2 Let 𝑥∗ be a solution of (1.1) for 𝑦 = 0. Suppose that 𝑃𝑥∗
−1 ∙  is pseudo-Lipschitz around  0, 𝑥∗  

with constants 𝑎, 𝑏 and 𝑀. Let 𝑥 ∈ 𝐵𝑎

4
 𝑥∗  and  𝐴 ∈ 𝐿 𝑋, 𝑌  . Suppose that 𝛻𝑓 is continuous on 𝐵𝑎

4
 𝑥∗  with 

constant  𝐴 − 𝛻𝑓 𝑥∗   such that 3𝑀′ 𝐴 − 𝛻𝑓 𝑥∗  < 1, i.e. 

sup
𝑥∈𝐵𝑎

4
 𝑥∗ 

 𝛻𝑓 𝑥 − 𝛻𝑓 𝑥∗  ≤  𝐴 − 𝛻𝑓 𝑥∗  ≤ min 
𝑏

2𝑎
,

1

𝑀
 . 

Then there exists positive constants 𝜎 and 𝛾 such that for every 𝑦 ∈ 𝐵𝑏 0  and for every 𝑥0 ∈ 𝐵𝜎 𝑥
∗  there 

exists a sequence  𝑥𝑘   generated by (1.3) with initial point 𝑥0 , which is convergent to a solution 𝑥 of (1.1) for 

𝑦, i.e. 
 𝑥𝑘+1 − 𝑥 ≤ 𝛾 𝑥𝑘 − 𝑥 . 

Proof: Since 𝑃𝑥
−1 ∙  is pseudo-Lipschitz around  0, 𝑥∗  with constant 𝑀. Then there exist positive constants 

𝑎 and 𝑏 such that  

𝑒  𝑃𝑥∗
−1 𝑦1 ∩ 𝐵𝑎 𝑥

∗ , 𝑃𝑥∗
−1 𝑦2  ≤ 𝑀 𝑦1 − 𝑦2 , for each 𝑦1 , 𝑦2 ∈ 𝐵𝑏 0 . 

Let 𝑥0 ∈ 𝐵𝜎 𝑥
∗ , 𝑦 ∈ 𝐵𝑏 0  and 𝑟 be defined in (4.4).  Put 𝛼 =

𝑎

2
, 𝛽 = 𝑟   and 𝑀′ =

𝑀

1−𝑀 𝐴−𝛻𝑓 𝑥∗  
  are the 

constants in Lemma 3.1. Then 

𝑒  𝑃𝑥
−1 𝑦1 ∩ 𝐵𝛼

2
 𝑥∗ , 𝑃𝑥

−1 𝑦2  ≤ 𝑀 𝑦1 − 𝑦2 , for each 𝑦1, 𝑦2 ∈ 𝐵𝛽  0 .  

To prove this theorem, we use Lemma 3.1. Set 

          𝜎 ≤ min 
𝛼

2
,
𝛼 1− 3𝑀 ′  𝛻𝑓 𝑥∗ −𝐴  

2
 

2 3𝑀 ′  𝛻𝑓 𝑥∗ −𝐴  2 ,
𝛽−𝑏

𝑀 ′  3 𝛻𝑓 𝑥∗ −𝐴  2 −
𝛼

2
 .                                                                      (3.19) 

Then   𝑥 − 𝑥0 ≤  𝑥 − 𝑥∗ +  𝑥∗ − 𝑥0 ≤
𝛼

2
+ 𝜎. Note that 

𝑥 ∈ 𝑃𝑥0
−1 𝑦 − 𝑓 𝑥 + 𝑓 𝑥0 + 𝐴 𝑥 − 𝑥0  ∩ 𝐵𝛼

2
 𝑥∗ , and   

          𝑦 − 𝑓 𝑥 + 𝑓 𝑥0 + 𝐴 𝑥 − 𝑥0   

≤  𝑦 +  𝑓 𝑥 − 𝑓 𝑥0 − 𝛻𝑓 𝑥0  𝑥 − 𝑥0  +   𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥0  

≤ 𝑏 +    𝛻𝑓 𝑥0 + 𝑡 𝑥 − 𝑥0  − 𝛻𝑓 𝑥0  𝑥 − 𝑥0   𝑑𝑡

1

0

 

                        +  𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥0  

≤ 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥0 +   𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥0  

= 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥0 + 2 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥0  

= 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥0  

≤ 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  
𝛼

2
+ 𝜎 ≤ 𝛽. 

Now from Lemma 3.1, there exists 𝑥1 ∈ 𝑃𝑥0
−1 𝑦 , i.e. 𝑦 ∈ 𝑓 𝑥0 + 𝐴 𝑥1 − 𝑥0 + 𝐹 𝑥1 , 

such that     𝑥 − 𝑥1 ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥0 − 𝐴 𝑥 − 𝑥0    

                                   ≤ 𝑀′  𝑓 𝑥 − 𝑓 𝑥0 − 𝛻𝑓 𝑥0  𝑥 − 𝑥0    
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                                           +𝑀′  𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥0  

                                    ≤ 𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥0  

                                           +𝑀′  𝛻𝑓 𝑥0 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥0  

                                    ≤ M′ ∇f x∗ − A  x − x0  

                                          +M′  ∇f x∗ − A +  ∇f x∗ − A   x − x0  

                                    = M′ ∇f x∗ − A  x − x0 + 2M′ ∇f x∗ − A  x − x0                        

                                     = 3M′ ∇f x∗ − A  x − x0 .                                                                                    (3.20) 

Hence we have that    𝑥1 − 𝑥∗ ≤  𝑥1 − 𝑥 +  𝑥 − 𝑥∗     

                                                    ≤ 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥0 +  𝑥 − 𝑥∗             

                                                    ≤ 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  
𝛼

2
+ 𝜎 +

𝛼

2
≤ 𝛼. 

Furthermore,  𝑥1 ∈ 𝑃𝑥1
−1 𝑦 − 𝑓 𝑥 + 𝑓 𝑥1 + 𝐴 𝑥 − 𝑥1  ∩ 𝐵𝛼

2
 𝑥∗ , and from (3.20), we get 

 𝑥 − 𝑥1 ≤ 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  
𝛼

2
+ 𝜎 ≤ 𝛼. 

Therefore, we have that 

                        𝑦 − 𝑓 𝑥 + 𝑓 𝑥1 + 𝐴 𝑥 − 𝑥1   

                        ≤  𝑦 +  𝑓 𝑥 − 𝑓 𝑥1 − 𝛻𝑓 𝑥1  𝑥 − 𝑥1   

                                            +  𝛻𝑓 𝑥∗ − 𝛻𝑓 𝑥1  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥1  

                        ≤ 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥1  

                                             +  𝛻𝑓 𝑥∗ − 𝛻𝑓 𝑥1  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥1  

                         ≤ 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥1  

                                             +  𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥1  

                          = 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥1  

                          ≤ 𝑏 +  3 𝛻𝑓 𝑥∗ − 𝐴   3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴   
𝛼

2
+ 𝜎  

                           = 𝑏 +𝑀′ 3 𝛻𝑓 𝑥∗ − 𝐴  2  
𝛼

2
+ 𝜎 ≤ 𝛽, where the last inequality holds by  

third relation in (3.19). It follows from Lemma 3.1 that there exists 𝑥2 ∈ 𝑃𝑥1
−1 𝑦  with 

𝑦 ∈ 𝑓 𝑥1 + 𝐴 𝑥2 − 𝑥1 + 𝐹 𝑥2 , such that  

   𝑥2 − 𝑥 ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥1 − 𝐴 𝑥 − 𝑥1   

                    ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥1 − 𝛻𝑓 𝑥1  𝑥 − 𝑥1   

                                  +𝑀′  𝛻𝑓 𝑥1 − 𝛻𝑓 𝑥∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥1  

                  ≤ 𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥1  

                                  +𝑀′  𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥1  

                   = 𝑀′  𝛻𝑓 𝑥∗ − 𝐴 + 2 𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥1  

                 = 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥1 . 

Moreover, we have that 

      𝑥2 − 𝑥
∗ ≤  𝑥2 − 𝑥 +  𝑥 − 𝑥∗  

                     ≤ 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥1 +
𝛼

2
 

                     ≤  3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴   3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  
𝛼

2
+ 𝜎  +

𝛼

2
 

                        =  3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  2  
𝛼

2
+ 𝜎 +

𝛼

2
≤ 𝛼. 

Proceeding by induction, suppose that there exists integer 𝑘 > 2 and points 𝑥2 , 𝑥3 , 𝑥4 , … , 𝑥𝑘  are obtained by the 

chord method (1.3), we get,  𝑥𝑘 ∈ 𝑃𝑥𝑘−1
 𝑦 , i.e. 

𝑦 ∈ 𝑓 𝑥𝑘−1 + 𝐴 𝑥𝑘 − 𝑥𝑘−1 + 𝐹 𝑥𝑘 , 
such that 
 𝑥𝑘 − 𝑥 ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥𝑘−1 − 𝐴 𝑥 − 𝑥𝑘−1   

                  ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥𝑘−1 − 𝛻𝑓 𝑥𝑘−1  𝑥 − 𝑥𝑘−1   

                                            +𝑀′  𝛻𝑓 𝑥𝑘−1 − 𝛻𝑓 𝑥
∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘−1  

               ≤ 𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘−1 +𝑀′  𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘−1  

                 = 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘−1 .  

This implies that the theorem is true for 𝑥𝑘 . To complete this theorem, it remains to prove that the induction is 

true for  𝑥𝑘+1 . Moreover, we have that 

𝑥𝑘 ∈ 𝑃𝑥𝑘
−1 𝑦 − 𝑓 𝑥 + 𝑓 𝑥𝑘 + 𝐴 𝑥 − 𝑥𝑘  ∩ 𝐵𝛼

2
 𝑥∗ . 

Then, we have that 
 𝑦 − 𝑓 𝑥 + 𝑓 𝑥𝑘 + 𝐴 𝑥 − 𝑥𝑘   

≤  𝑦 +  𝑓 𝑥 − 𝑓 𝑥𝑘 − 𝛻𝑓 𝑥𝑘  𝑥 − 𝑥𝑘  +   𝛻𝑓 𝑥∗ − 𝛻𝑓 𝑥𝑘  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘  

≤ 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘  
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                  +  𝛻𝑓 𝑥∗ − 𝛻𝑓 𝑥𝑘  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘  

≤ 𝑏 +  𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘 +   𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘  

= 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘  

≤ 𝑏 + 3 𝛻𝑓 𝑥∗ − 𝐴  3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘−1   
≤ 𝑏 + 𝑀′ 3 𝛻𝑓 𝑥∗ − 𝐴  2 𝑥 − 𝑥𝑘−1 ≤ 𝛽. 

Now, from Lemma 3.1, there exists 𝑥𝑘+1 ∈ 𝑃𝑥𝑘
−1 𝑦 , i.e. 𝑦 ∈ 𝑓 𝑥𝑘 + 𝐴 𝑥𝑘+1 − 𝑥𝑘 + 𝐹 𝑥𝑘+1 , such that 

 𝑥𝑘+1 − 𝑥 ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥𝑘 − 𝐴 𝑥 − 𝑥𝑘   

                      ≤ 𝑀′ 𝑓 𝑥 − 𝑓 𝑥𝑘 − 𝛻𝑓 𝑥𝑘  𝑥 − 𝑥𝑘    
                                 +𝑀′  𝛻𝑓 𝑥𝑘 − 𝛻𝑓 𝑥∗  +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘  

                       ≤ 𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘  

                                 +𝑀′  𝛻𝑓 𝑥∗ − 𝐴 +  𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘  

                    ≤ 𝑀′  𝛻𝑓 𝑥∗ − 𝐴 + 2 𝛻𝑓 𝑥∗ − 𝐴   𝑥 − 𝑥𝑘  

                    = 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  𝑥 − 𝑥𝑘 . 

Taking  𝛾 = 3𝑀′ 𝛻𝑓 𝑥∗ − 𝐴  . Then from the last inequality, we have that 
 𝑥𝑘+1 − 𝑥 ≤ 𝛾 𝑥 − 𝑥𝑘 . 

 This completes the proof. 

 

IV. Concluding Remarks 
In this study, we have established the uniformity of the local convergence results for the Chord method 

defined by (1.3) under the assumptions that 𝑃𝑥∗
−1 ∙  is pseudo-Lipschitz and 𝛻𝑓 is continuous. In particular, the 

uniformity of the convergence results of the Chord method defined by (1.3) are presented in two different ways 

when  𝑃𝑥∗
−1 ∙  is pseudo-Lipschitz and  𝛻𝑓 is continuous. These results improve and extend the corresponding 

one [4].  
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