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Abstract: This paper presents the study of the effects of variable thermal conductivity and Darcy-Forchheimer 

on magnetohydrodynamic free convective flow in a vertical channel in the presence of constant suction. The 

resulting governing equations are non-dimensionalised, simplified and solved using Crank Nicolson type of 

finite difference method. To check the accuracy of the numerical solution, steady-state solutions for velocity, 

temperature and concentration profiles are obtained by using perturbation method.  Numerical results for the 

velocity, temperature and concentration profiles are illustrated graphically while the skin friction, Nusselt 

number and Sherwood number are tabulated and discussed for some selected controlling thermo physical 

parameters involved in the problem to show the behavior of the flow transport phenomena. It is found that the 
velocity and temperature increased due to increase in variable thermal conductivity parameter and there is 

decrease in concentration due to increase in Darcy-Forchheimer number. It is also observed that the numerical 

and analytical solutions are found to be in excellent agreement. 

Keywords: Variable thermal conductivity, Porous medium, Magnetohydrodynamic, Chemical reaction, Darcy-

Forchheimer. 

 

I. Introduction 
There has been a great deal of interest generated in the area of heat and mass transfer of free convective 

flow in porous medium due to it is numerous applications in a variety of industrial processes as well as in many 

natural circumstances. The subject of free convective flow in porous media has attracted considerable attention 
in the last few decades. Examples of such technological applications are ground water flows, thermal insulation 

engineering, food processing, soil pollution, fibrous insulation, geothermal extraction to name just a few. A 

comprehensive bibliography concerned with literature on convective flow in porous media can be found in the 

books of Nield and Bejan [12] and Ingham and Pop [6]. Processes involving heat and mass transfer effect have 

long been recognized as important principle in chemical processing equipment. The effect of chemical reaction, 

heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection 

have been examine by Kandasamy et al. [7]. Sattar [15] analyzed the effect of free and forced convection 

boundary layer flow through a porous medium with large suction. Mohammed et al. [11] investigated the effect 

of similarity solution for MHD flow through vertical porous plate with suction. In most of the studies on 

hydromagnetic heat transfer, thermal conductivity has been taken as constant. In metallurgical processing, the 

numerical value of thermal conductivity changes with temperature. Therefore the thermal conductivity is 
temperature dependent. In order to predict the accuracy of heat and mass transfer flow, mathematical models 

most consider the variation of thermal conductivity with temperature. Many papers were published with 

problem of thermal conductivity under different physical and geothermal conditions. Patowary and Dusmata 

[13] have presented the effects of thermal conductivity of micropolar fluid past a continuously moving plate 

with suction or injection in presence of magnetic field. Abdou [1] considered the effects of thermal radiation on 

unsteady boundary layer flow with temperature dependent viscosity and thermal conductivity due to a stretching 

sheet in porous medium. Similarly, Chiam [3] analyzed the effect of a variable thermal conductivity on the flow 

and heat transfer from a linearly stretching sheet. In another article, Seddek and Salema [18] have studied the 

effects of variable viscosity and thermal conductivity on an unsteady two-dimensional laminar flow of a viscous 

incompressible conducting fluid past a vertical plate taking into account the effect of magnetic field in the 

presence of variable suction. Gitima [4] presented a numerical model on the effect of thermal radiation on 

unsteady boundary layer flow with variable viscosity and variable thermal conductivity due to stretching sheet 
in a porous channel in the presence of magnetic field.  Additionally Hossain et al. [5] described the study of 

natural convection with variable viscosity and thermal conductivity from a vertical wavy cone. Sharma and 

Singh [19] have presented a theoretical study on the effects of variable thermal conductivity and heat 

source/sink on MHD flow near a stagnation point on a linearly stretching sheet. Very recently, Uwanta and 

Murtala [20] investigated the study of heat and mass transfer flow past an infinite vertical plate with variable 

thermal conductivity. Although considerable work has been reported on heat and mass transfer by free 



Finite difference solutions of magneto hydrodynamic free convective flow with constant suction …. 

DOI: 10.9790/5728-11124258                                     www.iosrjournals.org                                             43 | Page 

convection in a porous medium, majority of porous studies have been on Darcy’s law which states that the 

volume-averaged velocity is proportional to the pressure gradient which is valid only for slow flows through 

porous media with low permeability. However, Darcy’s law fails when the velocities and inertial effects are 
greater. Inertial porous phenomena can be accounted through the addition of a velocity-squared term in the 

momentum equation and the resulting model is known as Darcy-Forchheimer model Vafai and Tien [21]. The 

Darcy-Forchheimer model described the effect of inertia as well as viscous forces in porous media. Many 

investigators have reported work on Darcy and Darcy-Forchheimer. Numerical simulation of chemical reaction 

and viscous dissipation effects on Darcy-Forchheimer mixed convection in a fluid saturated media has been 

investigate by Mahdy and Chamkha [10]. Salem [17] has presented the radiation and mass transfer effects in 

Darcy-Forchheimer mixed convection from a vertical plate embedded in a fluid saturated porous medium. Lai 

[9] studied mixed convection heat and mass transfer from a vertical wall in a Darcian fluid saturated porous 

medium. Additionally, Kishan et al. [8] analyzed MHD free convective heat and mass transfer from a vertical 

surface embedded in a porous medium.  A detailed numerical study has been carried out on the natural 

convection in a porous square cavity with an isoflux and isothermal discrete heater placed at the left wall by 
Saeid and Pop [16] using Darcy law. Rawat et al. [14] have investigated a theoretical study on free convection 

MHD micropolar flow, heat and species diffusion between vertical plates enclosing a non-Darcian porous 

medium with variable thermal conductivity and internal heat generation/absorption effects.  

  Inspite of all these studies, the aim of this work is to investigate the numerical solutions to the system 

of equations for magnetohydrodynamic free convective flow past a finite vertical channel with constant suction 

and thermal conductivity in a porous medium using finite difference method. 

 

II. Mathematical analysis 
Consider an unsteady laminar one-dimensional boundary layer heat and mass transfer flow in an 

electrically conducting fluid with thermal conductivity, chemical reaction and radiation in a Darcy-Forchheimer 

porous medium. Fluid suction or injection is imposed at the boundary of the cylinder. The 
'x  - axis is taken 

along the plate in the vertically upward direction and the 
'y - axis is taken normal to the plate. A uniform 

transverse magnetic field 0B is applied normal to the flow direction. The magnetic Reynolds number is assumed 

to be small so that the assumed magnetic field can be neglected. It is also assumed that the effects of joule 

heating and viscous dissipation are neglected and the external electric field due to the effect of charge 

polarization and the hall effect of MHD are neglected. Under these assumptions, the governing boundary layer 

equations of continuity, momentum, energy and diffusion equations under Boussinesq’s approximations could 

be written as follows: 
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The corresponding initial and boundary conditions are prescribed as follows:  
' ' ' ' '0, 0, ,w wt u T T C C     for   all 

'y  

  
' ' ' ' '0, 0, ,w wt u T T C C    at 

' 0y 
                                                                                

(5)  

' ' '

0 00, ,u T T C C    at y ' = H  

From continuity equation, it is clear that the suction velocity is either a constant or a function of time. Hence, on 
integrating equation (1), the suction velocity normal to the plate is assumed in the form, 

'

0         

where 0 is a scale of suction velocity which is non-zero positive constant. The negative sign indicates 

that the suction is towards the plate and 0 0   corresponds to steady suction velocity normal at the surface.  
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The fourth and fifth terms on the right hand side of equation (2) denote the thermal and concentration 

buoyancy effects respectively. The last term of equation (3) represents the radiative heat flux term, while the last 

term of equation (4) is the chemical reaction term. 
'u  and 

'v  are the Darcian velocity components in the x - 

and y - directions respectively, t is the time,   is the kinematic viscosity, g  is the acceleration due to gravity, 

  is the coefficient of volume expansion,  the density of the fluid,  is the scalar electrical conductivity, 
*  

is the volumetric coefficient of expansion with concentration, 
pC  is the specific heat capacity at constant 

pressure, 
'K  is the Darcy permeability of the porous medium, 

'b is the empirical constant, 0k  is the 

dimensionless thermal conductivity of the ambient fluid,  is a constant depending on the nature of the fluid, 
*R is the dimensionless chemical reaction, D  is the coefficient of molecular diffusivity, 0v  is the constant 

suction parameter, rq  is the radiative heat flux in the y- direction,
 0B  is the magnetic induction of constant 

strength. 
'T  and 

'

0T  are the temperature of the fluid inside the thermal boundary layer and the fluid temperature 

in the free stream respectively, while 
'C  and 

'

0C  are the corresponding concentrations.                                                                                                                                                                                                                                          

To obtain the solutions of equations (2), (3) and (4) subject to the conditions (5) in non-dimensional forms, we 

introduce the following non-dimensional quantities: 
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Applying these non-dimensionless quantities (6), the set of equations (2), (3), (4), and (5) reduces to the 
following: 

2
2

2

1u u u Fs
M u u Gr GcC

t y y Da Da
 

    
       

    
                                                    (7) 

 
2 2

2

1 1
1

Pr Pr Pr
R

t y y y

    
  

    
     

    
                                                                   (8)

 

  

  

2

2

1
r

C C C
K C

t y Sc y


  
  

  
                                                                                                          (9)

                                                                                                         

 

 

with the following initial and boundary conditions 

0 0, 0, 0, ,

0 0, 1, 1, 0,

0, 0, 0 1.

t u C for all y

t u C at y

u C at y







   

    

   
                                                                          (10)

 

Where Pr  is the Prandtl number, Sc  is the Schmidt number, M  is the Magnetic field parameter, 

Gr  is the thermal Grashof number, Gc  is the Solutal or mass Grashof number,   is the variable thermal 

conductivity,   is the variable suction parameter, R  is the Radiation parameter, rK  is the chemical reaction 

parameter, Da  is the Darcy number, Fs  is the Darcy-Forchheimer number,  t  is the dimensionless time while 

u  and v  are dimensionless velocity components in x - and y - directions respectively. 
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III. Analytical solutions 
In order to check the accuracy of the present numerical scheme of this model, there is need to compare 

numerical solutions with the analytical solutions. Since the governing equations are highly coupled and non-

linear, it is, therefore, of interest to reduce the governing equations of the present problem due to its non-

linearity into a form that can be solved analytically. At steady state the governing equations of the problem 

becomes: 
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To find the approximate solution to equations (11)-(13) subject to equation (14), we employed a regular 

perturbation method by taking a power series expansion and assume solution of the form:  
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Using equation (15) into equations (11)-(14) and equating the coefficient of like powers of R, the solutions to 

the governing equations are obtained as: 
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IV. Numerical solution procedure 
To solve the system of transformed coupled non-linear partial differential equations (7)-(9), under the 

initial and boundary conditions (10), an implicit finite difference scheme of Crank-Nicolson type which is 
unconditionally stable Carnahan et al, [2] has been employed. The equivalent finite difference approximations 

corresponding to equations (7)-(9) are given as follows: 
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The initial and boundary conditions take the following forms 

      

u
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where H  corresponds to 1. 

The index i corresponds to space y and j corresponds to time t. y and t  are the mesh sizes along y-

direction and time t-direction respectively. The analytical solutions obtained in this work are used to check on 

the accuracy and effectiveness of the numerical scheme. Computations are carried out for different values of 

physical parameters involved in the problem.  
The skin friction coefficient, Nusselt number and Sherwood number are important physical parameters 

for this type of boundary layer flow, which respectively are given by: 
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V. Results and discussion 
Numerical computations have been carried out for various values of thermo physical parameters 

involved in this work such as thermal Grashof number ( Gr ), solutal Grashof number ( Gc ), Magnetic 

parameter ( M ), Darcy number  Da , suction parameter ( ), radiation parameter ( R ), chemical reaction 

parameter ( rK ), Darcy-Forchheimer number  Fs , variable thermal conductivity (  ), Prandtl number ( Pr ) 

and Schmidt number ( Sc ) using an implicit method of Crank-Nicolson type. In order to illustrate the results 

graphically, the numerical values are plotted in Figs. (1-25). Values of local skin friction ,fC  Nusselt number 

Nu and Sherwood number Sh are presented in Tables 1 and 2 for various values of physical parameters. 

Solutions are obtained for fluids with Prandtl number (Pr = 0.71, 1.0 and 7.0) corresponding to air, salt water 

and water respectively. The values of Schmidt number are chosen in such a way as they represent the diffusing 

chemical species of most common interest in air and are taken for (Sc = 0.22 0.60, 0.78, 2.62) corresponding to 

hydrogen, water, 3NH and Propyl benzene respectively. Default values of the physical parameters for velocity, 

temperature and concentration profiles are specified as follows: 
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Gr = 5.0,Gc = 5.0, M = 2.0, K
r
= 1.0,Pr = 0.71,Sc = 0.22, R = 3.0, Da = 0.01,

Fs = 3.0,g = 5.0,l = 0.05.
 

All graphs therefore correspond to these values unless specifically indicated on the appropriate graphs. 

The effects of various thermo physical parameters on the fluid velocity are illustrated in Figs.1-11 at 

time 0.1t  . The influence of thermal Grashof number and solutal Grashof number are presented in Figs. 1 and 

2. As expected, it is observed that there is a rise in the velocity profiles due to the enhancement of thermal and 

mass buoyancy force. The velocity distribution increases rapidly near the porous plate and then decrease 

smoothly to the free stream velocity. Fig. 3 illustrates the effect of magnetic parameter on the velocity profile. It 

is interesting to note that increase in M leads to decreasing the flow velocity. This is because the presence of 
magnetic field in an electrically conducting fluid tends to produce a body force, which reduces the velocity of 

the fluid. Fig. 4 depicts typical velocity distribution across the boundary layer for various values of Darcy 

number. It is seen that the dimensionless velocity increases with increase in Darcy number. This is due to the 

fact that larger values of Da  parameter correspond to higher permeability porous media, which implies that, 

less porous fiber resistance to the flow and therefore acceleration in transport. The effect of Darcy-Forchheimer 

parameter is demonstrated in Fig. 5. It is noticed that an increase in Fs parameter increases the resistance to the 

flow and so a decrease in the velocity profile. Figs. 6-8 graphically illustrate the behavior of Prandtl number, 

suction and Schmidt number respectively. It is observed that the momentum boundary layer decreases with the 

increase in  Pr  
this is due to the fact that convection current becomes weak and hence results in a decrease in 

the velocity. Also, it is seen that the velocity decreases with an increase in g  
parameter. This is because suction 

parameter decelerates fluid particles through porous wall there by reducing the growth of the fluid boundary 

layers. Figure 8 illustrates the effect of Sc  on the velocity profiles. Clearly, it is observed that the velocity 

distribution decreases with an increase in Sc. This is due to the fact that as Sc increases, the concentration 

buoyancy effect decreases yielding a reduction in the velocity profiles. The influence of variable thermal 

conductivity parameter, radiation parameter and dimensionless time are displayed in Figs. 9-11 respectively. It 

is observed that as  and t increases the momentum boundary layer increases, while an increase in radiation 

parameter obviously decreases the velocity within the boundary layer. This is because larger values of 

R correspond to an increased dominance of conduction over radiation, thereby decreasing the buoyancy force 

and the thickness of the momentum boundary layer. 

The influences of various thermo physical parameters on the temperature distribution are respectively 

presented in Figs. 12-17 at time 0.2t  . Fig. 12 depicts the behavior of Prandtl number that is inversely 

proportional to the thermal diffusivity of the working fluid on temperature distribution. It is noticed that the 

thermal boundary layer decreases with increasing Pr . This is due to the fact that as values of Pr increases, the 
thermal diffusivity of the fluid increases which results in a corresponding decrease in the temperature within the 

fluid. The temperature profile decreases with increasing suction parameter in Fig.13. This is because suction 

decelerates the fluid properties through porous wall thereby reducing the thermal boundary layer. The effect of 

variable thermal conductivity parameter on temperature profile is shown in Fig. 14. Here it is observed that the 

temperature profile decreases with increase in the variable thermal conductivity parameter. Fig. 15 described the 

influence of radiation parameter on the temperature profile. An increase in R leads to increasing the 
temperature boundary layer. This is obvious because the effect of radiation is to increase the temperature 

distribution in the thermal boundary layer. Figs.16 and 17 graphically illustrate the effects of Darcy-

Forchheimer parameter and dimensionless time. It is observed that there is no significant change in the 

temperature profile as Darcy-Forchheimer parameter is increased, but there is a rise in the thermal boundary 

layer as the time increases.   

Figs. 18-21 illustrate the concentration profiles for various values of Schmidt number, chemical 

reaction parameter, suction parameter and Darcy-Forchheimer parameter respectively at time 0.4t  . A 

decrease in concentration profile with increasing these parameters is observed from these figures. This is due to 

the fact that an increase of Schmidt number means decrease in molecular diffusivity, while suction parameter 

stabilizes the boundary layer growth and therefore the concentration profile decreased. The effect of 

dimensionless time on the concentration profile is presented in Fig. 22. It is seen that the concentration profile 

increases with increase in the dimensionless time. The validity of the present model has been verified by 

comparing the numerical solutions and the analytical solutions through Fig. 23-25 for velocity, temperature and 
concentration profiles respectively.These results are presented to illustrate the accuracy of the numerical 

solution. It is observed that the agreement between the results is excellent because the curves corresponding to 

analytical and numerical solutions coincide with one another. This has established confidence in the numerical 

results reported in this paper.  
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Fig.2. Effect of Gc  on the velocity profiles 

 
Fig.3. Effect of M  on the velocity profiles 
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Fig.4. Effect of Da  on the velocity profiles 

 
Fig.5. Effect of Fs  on the velocity profiles 

 
Fig.6. Effect of Pr  on the velocity profiles 
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Fig.7. Effect of (  = S) on the velocity profiles 

 
Fig.8. Effect of Sc  on the velocity profiles 

 
Fig.9. Effect of ( = V) on the velocity profiles 
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Fig.10. Effect of R  on the velocity profiles 
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Fig.11. Effect of t  on the velocity profiles 
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Fig.12. Effect of Pr  on the temperature profiles 
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Fig.13. Effect of (  = S) on the temperature profiles 

 
Fig.14. Effect of ( = V) on the temperature profiles 
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Fig.15. Effect of R  on the temperature profiles 
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Fig.16. Effect of Fs  on the temperature profiles 
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Fig.17. Effect of t  on the temperature profiles 
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Fig.18. Effect of Sc  on the concentration profiles 
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Fig.19. Effect of rK  on the concentration profiles 
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                                                       Fig.20. Effect of (  = S) on the concentration profiles 
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                                                     Fig.21. Effect of Fs  on the concentration profiles 
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                                                      Fig.22. Effect of t  on the concentration profiles 
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                                Fig.23. Comparison of  numerical and analytical solutions for velocity profiles 
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Fig.24. Comparison of  numerical and analytical solutions for temperature profiles 
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Fig.25. Comparison of  numerical and analytical solutions for concentration profiles 

  
Table 1 elucidates the effect of thermal conductivity parameter on skin friction and Nusselt number 

respectively. It is observed that an increase in   causes a reduction in the skin friction coefficient for 

 Pr 0.71,7.0 respectively. Whereas heat transfer rate increase as expected with increase in  and Pr . The 

effects of various thermo physical parameters on Sherwood number are shown in Table 2. It is observed that the 
Sherwood number increases with an increase in Schmidt number and chemical reaction parameter respectively, 

but it is noticed that there is no significant change in the Sherwood number when the thermal Grashof number, 

thermal conductivity parameter and Darcy-Forchheimer parameter are increased. 

 

Table 1: Skin friction (
fC ) and Nusselt number  Nu for different values of thermal conductivity ( l =V ) 

and Prandtl number with 0.1, 0.5, 1, 1, 1, 0.1, 0.6, 5, 0.5rGr Gc M K R Sc Fs Da          . 

  

Pr 0.71

fC


 

Pr 7.0

fC


 

Pr 0.71

Nu


 

Pr 7.0

Nu


 

0 0.2820 0.2360 1.5656 5.1088 

0.05 0.2826 0.2363 1.5276 4.9952 

0.1 0.2832 0.2367 1.4908 4.8839 

0.2 0.2843 0.2374 1.4207 4.6682 

0.25 0.2848 0.2377 1.3872 4.5638 

0.3 0.2854 0.2381 1.3547 4.4617 

 

Table 2: Sherwood number ( Sh ) for different values of ( , , , ,rGr Sc K Fs ) 

with 0.1, 1, 1, 0.1, 0.5,Pr 0.71.Gc M R Da        

Gr  Sc  
rK    Fs  Sh  

5 0.22 01 0.05 3.0 1.0835 

10 0.22 01 0.05 3.0 1.0835 

5 0.60 01 0.05 3.0 1.2802 

5 0.22 2.0 0.05 3.0 1.1537 

5 0.22 01 0.1 3.0 1.0835 

5 0.22 01 0.05 7.0 1.0835 

 

VI. Conclusion 
A finite difference solution of MHD free convective flow in a vertical channel with constant suction and thermal 

conductivity in a Darcy-Forchheimer porous medium has been analyzed both analytically and numerically. The 

resulting governing equations of the problem are non-dimensionalised, simplified and solved by Crank Nicolson 

type of implicit finite difference method. It reveals that the velocity increased due to increases in either of the 

Darcy parameter or thermal conductivity parameter and decreased as the magnetic parameter, Darcy-

Forchheimer parameter, Prandtl number, and suction parameter were increased. An increased in the fluid 

temperature and the thermal boundary layer thickness is a function of an increased in thermal conductivity 

parameter and radiation parameter. In addition, the concentration decreased as either of the Schmidt number or 
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chemical reaction parameter or suction or Darcy-Forchheimer parameters was increased. The thermal 

conductivity and Prandtl number decreases the skin friction coefficient, whereas reverse trend is seen in the rate 

of heat transfer increasing with increase in thermal conductivity and Prandtl number. Also, the Schmidt number 
and chemical reaction parameter increases the Sherwood number. It is hoped that solutions presented in this 

work for various thermo physical effects will serve as a tool for understanding more general problems in heat 

and mass transfer in metallic materials processing and also in geophysical processes. 
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Nomenclature 

C – Concentration 

pC  – Specific heat at constant pressure 

D  - Mass diffusivity 
g – Acceleration due to gravity 

Gr  – Grashof number 

Gc  – Solutal Grashof number 

Nu  – Nusselt number 

Pr  – Prandtl number 

Sc  – Schmidt number 

R - Radiation parameter 

rK - Chemical reaction parameter 

T  – Temperature 

fC -Skin friction 

Sh - Sherwood number 

u, v – velocities in the x and y-direction respectively 

x, y – Cartesian coordinates along the plate and normal to it respectively 

0B  - Magnetic field of constant strength 

M  – Magnetic field parameter 

Da -Darcy number 

Fs -Forchheimer number 

 

Greek letters 

β* - Coefficient of expansion with concentration 
β - Coefficient of thermal expansion 

ρ- Density of fluid 

θ- Dimensionless temperature 

υ- Kinematic viscosity 

  - suction parameter 

  - Variable thermal conductivity 

 - electrical conductivity of the fluid 
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