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Abstract: The problem we address is to decide optimal ordering policy in a two echelon inventory system with 

repairable items. The system consists of a set of operating sites which are base station, depot. Each operating 

site has an inventory spare items to run the system properly without any delay of supplying items against failure 

demand. Replenishment of stock at base station is done from depot. The base station contains  an inspection 

center which is used to inspect the failed items. The arrival of a failed items follows Poisson process with 

parameter  (>0) and the inspection time follows an exponential distribution with rate  (>0). After inspection 

the repairable items are sent to depot for repair, otherwise the item is treated as condemned and it would be 

removed from the system. The repaired items which can be used are included in the depot stock. The system is 

designed under the continuous review Markov process model to find the steady distribution and applying the 

decision rule to obtain the optimal average cost of the system and optimal ordering policy by using Markov 

decision process concept. Numerical examples are provided to illustrate the problem. 

Keywords: Repairable items,  Poison arrival,  Inspection time, Transition probability, Value iteration. 

 

I. Introduction 
Inventory management in the context of recoverable items has drawn a lot of attention from 

researchers. During the time of war, we can not manage all the weapons at the spot. So, we keep the base 

inventory at the spot for replacement of failed items. At the same time, maintenance of  inventory at depot is 

important to supply the items to the base inventory. The fact is that all the failed items are not fully recoverable. 

So, early diagnosis is reduces the service time, service cost and transport cost of the failed items. 

Sherbrooke [11] pointed out that the US Air Force spent 15 billion dollars for recoverable items from 

the total investment. Schrady [10] studied a single-facility recoverable item model in which the demand of failed 

items were deterministic and item condemnations also occured. Phelps [8]  concentrated on the decision making 

as when to repair and when to procure multi-product recoverable items and he assumed that the repairing time 

and procurement time were zero. Allen and D'Esopo [1] obtained approximate steady-state results for a single-

facility model of recoverable parts subject to condemnation; they assumed stochastic demand and deterministic 
(positive) repair and procurement lead-times. 

Simon [12] considered a two-echelon model for consumable or repairable parts in which the repair and 

transportation times are assumed to be deterministic, and the failure processes that generate demands are 

assumed to be a Poisson. Hau L. Lee and Kamran Moinzadeh [4] considered an inventory system for repairable 

items where the stocking point also serves as a repair center for the failed items. Operating characteristics of the 

inventory system were analysed and optimal re-order points and order quantities were also obtained.   

Axs a ter [2] developed a recursive procedure to determine average holding and shortage costs and 

discussed the determination of optimal inventory base stock levels. Hopp et al. [5] considered that the depots 

were replenished by a control warehouse that followed an (r,Q) inventory policy. Their focus was to minimize 

system-wide inventory holding costs while keeping the average total delay at each facility below a threshold 

level. Jun Xie Hongwei Wang [7] calculated the performance measures and optimal stock of the two echelon 

inventory system by using simulation algorithm and genetic algorithms. 

In this paper, we considered a two echelon inventory system with repairable items which is treated as a 

Markov process with continuous time review model and the steady state probability distribution is obtained in 
each state of the system. Besides, the problem is modelled as a Markov decision model with specific cost 

structure at each state of the system. Transportation time, transportation cost, repairing cost and item cost are 

considered to formulate the cost function for inventory maintenance. 

The paper is organized as follows. Section 2 presents the  notations and assumptions which are given to 

describe the system. The models are formulated in section 3. Section 4 presents numerical examples followed by 

a conclusion in section 5. 
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II. Model Description 
2.1  Notations 
The following notations are used in describing the system. 
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2.2  Assumptions:   

The arrival process of failed item to inspection centre is a Poison with rate  . However, the failed 

items arrive at the base, the replacement is done from the base stock and an order is placed at the depot for 

replenishment  under (S-1,S) policy. The failed item is inspected at the base station and the inspection time is 

exponentially distributed with parameter 0)(> .  

The inspection reveals either the item is repairable or condemn with certain probabilities p and (1-p) 

respectively.  If the item is condemned, it is removed from the system. The rate of repairable item sent to 

Central depot is .p  The transportation time of a failed item from base to depot is assumed to be negligible.  

Assume that ample servers are available  at depot to avoid the queues ( //MM ). So that the 

repairable item from inspection center arrives to the depot for repair, the service is started immediately. The 

service time of an item is exponentially distributed with parameter 0)(> . After completion of service the 

item is included in the depot stock and the holding cost is incurred for each item. The lead time for 

replenishment at base is also exponentially distributed with rate 0)(> . The reordering policy at depot is 

'Order up to S', that is, an order is placed to pull inventory from ‘s’ to the max level ‘S’ (s+Q=S, where Q is the 

re-order quantity). 

 

III. Analysis and Formulation of the system 
3.1 Analysis of the steady state probability distribution of the system 

Let )(tB  and )(tD  denote the inventory levels of the base station and depot at time ‘t’. It is considered as a 

two dimensional continuous time Markov chain  0)),(),(( ttDtB  on the state space 

  21 0,0;, SiSqiqI  , where 1S  and 2S  are the maximum inventory level of base and depot 

and assume that 1S < 2S . 

Changes of state occur when the environment changes, when a failed item arrives or when inspection is 

completed or when a service is completed. The possible transitions, and the corresponding instantaneous rates 

are given in the table beow. 
From To Rate 
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In order to display the infinitesimal generator Q of the system, it is neccessary to define a linear ordering of the 

states. The lexicographical ordering of the states is  

}),,(,),2,(),1,(),,1(,),2,1(),1,1(),,0(,),2,0(),1,0{(  iqqqii . 

and the corresponding  infinitesimal generator Q is given by 
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The Embedded Markov chain method is used to find the steady state probability distribution   of  a 

continuous – time Markov chain Q (refer [3],[6]). The Embedded Markov chain of Q is a regular discrete – time 

Markov chain T with the transition probability from state ),( iq  to ),( jr , as given by 



Dynamic Programming approach in Two Echelon Inventory System with Repairable items 

DOI: 10.9790/5728-11126573                                     www.iosrjournals.org                                             68 | Page 

 


















otherwise

jriqif
p

p

t ksiq

ksiq

jriq

jriq

0

),(),(,

),(),(

),)(,(

),)(,(

),)(,(  

where Tt jriq ),)(,(  and Qp lkji ),)(,( . 

 

3.2 Formulation of the system by using Markov decision concept 

The two dimensional Markov process  0)),(),(( ttDtB  can be converted as a two dimensional 

Embedded Markov chain  with state space   21 0,0;, SiSqiqI   which is reviewed at 

equidistant points of time ,2,1,0t . The inventory levels of base and depot are reviewed periodically. At 

each review the system is classified into one of a possible number of states and subsequently a decision has to 

be made. For each state ,),( Iiq   a set )(iA of decisions or actions is given. The state space I  and the action 

sets )(iA are assumed to be finite. At the beginning of each period, the inventory level may be in any one of the 

state ),( iq . 

The economic consequences of the decisions taken at the review times (decision epochs) are reflected 

in costs and it satisfies the Markovian property. If at a decision epoch the action ‘ a ’ is chosen in state ),( iq ,  

then regardless of the past history of the system, the following happens: 

(a) an immediate cost   )(),( ac iq  is incurred. 

(b) at the next decision epoch the system will be in state ),( jr  with probability )(),)(,( aP jriq , where 

 
Ijr

jriq aP
),(

),)(,( 1)( ,    .),( Iiq   refer Tijms [13]. 

At each state of the system the decision can be taken from the action set A. The possible actions are denoted by,  
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Then for action a=0 in state ),( iq , the transition probability is of the form,  ),)(,(),)(,( )0( jriqjriq tP   , where 
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The corresponding one-step cost function in state ),( iq  is given by,  
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where tc  is the transportation cost from base to depot and rc  is the repairing cost. 

For action a=1 in state ),( iq , .1=(1)),)(,( 2SqiqP   

While the time of service, the repairable item is available in depot stock ,but it is not in use. In this 

situation, we take action a=1 to fulfil the depot stock by the remaining quantity and avoid the backlogging order 

at the depot from the base station. The corresponding one step-cost function in state ),( iq  is,  

.1;11,0||=(1) 212),(  SiSqciScc fiq  
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where fc  is the transportation cost for replenishment of depot inventory from the supplier. 

For action a=2 in state ,0)(q , 1=(2)),)(0,( 2SqqP   and the corresponding cost function in state ,0)(q  is,  

0.=;,0=(2) 12),( iSqcScc fiq   

Assume that the set of all state space is a weak unichain (Tijms [13]) and the minimal average cost per 

time unit is independent of the initial state. Let 
*g  denote the minimal long run average cost per unit time. The 

value iteration algorithm computes recursively for 1,2,=n , the optimality equation is  

Iiqjrvapaciqv njriq
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where ),( iqvn  is the value function and it is starting with an arbitrary chosen function ),(0 iqv , Iiq ),( . 

The quantity ),( iqvn  can be interpreted as the minimal total expected costs with n periods left to the time 

horizon when the currentstate is ),( iq  and a terminal cost ),(0 jrv  is incurred when the system ends up at 

state ),( jr . 

Value iteration algorithm is used to obtain the one-step difference ),(),( 1 iqviqv nn  , which is very 

close to the minimal average cost per time unit and the actions can be taken in each state of the system to 

minimize the right hand side of the value function. It is very close to the minimal average maintenance cost of 

the system. 

Theorem 1: Suppose that the weak unichain assumption is satisfied. Let )(= ),( iqvv  be given, and define the 

stationary policy )(vR  as a policy which adds to each state Iiq ),(  an action )(= ),( vRa iq  that minimizes 

the right-hand side of (2). Then  
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 for any Its ),( , where 
*g  is the minimal long-run average cost per time unit and ))((),( vRg ts  denotes the 

long-run average cost per time unit under policy )(vR  when the initial state is ),( ts . 

Theorem2: In the standard value iteration algorithm, the lower and upper bounds satisfy 
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 The proof of these theorems could be found in our earlier work (Satheesh kumar and Elango [9]). Based on the 

above theorems we can get the following value iteration algorithm.  

Algorithm: 

Step 0 : (initialization).Choose Iiqiqv ),(),,(0  with )(),(0 ),(0 acminiqv iqa . 

 Let n:=1. 

Step 1: (value-iteration step).For each state Iiq ),( , compute  
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 Let )(nR  be any stationary policy such that the action )(= ),( nRa iq  minimizes the right-hand side of 

the equation for ),( iqvn  for each state ),( iq . 

Step 2: (bounds on the minimal costs).Compute the bounds  

    .),(),(max=;),(),(min= 1
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1
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Iiq

nnn
Iiq
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Step 3: (stopping test). If  nnn mmM <0  with 0>  a prespecified accuracy number 

0.001)=..( ge , stop with policy )(nR . 

Step 4: (continuation). 1:= nn  and repeat step 1. By the theorem, we have  
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where the algorithm is stopped after the 
thn  iteration with policy )(nR . In other words, the average cost of 

policy )(nR  cannot deviate more than   from the theoretically minimal average reordering cost when the 

bounds nm  and nM  satisfy nnn mmM <0 . In practical applications one is usually satisfied with a 

policy whose average cost is sufficiently close to the theoretically minimal average cost.  

 

IV. Numerical examples and discussions 
The system is designed as a two dimensional continuous time Markov chain process 

 0)),(),(( ttDtB  on the state space   21 0,0;, SiSqiqI  , where 1S  and 2S  are the 

maximum inventory level of base and depot and assume that 1S < 2S . Let 1S =3 and 2S =5. Form the 

infinitesimal generator Q and using embbed Markov chain concept to obatined the steady state probability 

distribution of each state of the system  for the different values of  , ,  , and p=0.6. 

S.No   
 =4  =6 

 =3  =5 

 =4  =5 

 =6   =3 

 =4  =5 

 =6   =3 

 =4  =5 

 =6   =3 

 =4  =5 

 =6   =3 

1 
1  0.0000 0.0000 0.0000 0.0000 0.0000 

2 
2  0.0001 0.0000 0.0000 0.0001 0.0001 

3 
3  0.0011 0.0002 0.0002 0.0010 0.0006 

4 
4  0.0293 0.0046 0.0052 0.0235 0.0067 

5 
5  0.0186 0.0020 0.0024 0.0116 0.0029 

6 
6  0.0000 0.0001 0.0000 0.0001 0.0002 

7 
7  0.0006 0.0003 0.0002 0.0006 0.0012 

8 
8  0.0090 0.0032 0.0027 0.0075 0.0061 

9 
9  0.0303 0.0090 0.0084 0.0271 0.0148 

10 
10  0.1075 0.0405 0.0442 0.0959 0.0463 

11 
11  0.0002 0.0003 0.0002 0.0002 0.0013 

12 
12  0.0023 0.0026 0.0016 0.0022 0.0069 

13 
13  0.0116 0.0118 0.0081 0.0118 0.0238 

14 
14  0.0759 0.0723 0.0624 0.0689 0.0956 

15 
15  0.3335 0.3407 0.3556 0.3617 0.3119 

16 
16  0.0004 0.0011 0.0006 0.0004 0.0032 

17 
17   0.0027 0.0057 0.0033 0.0027 0.0124 

18 
18  0.0167 0.0330 0.0239 0.0156 0.0485 

19 
19  0.1371 0.2186 0.2063 0.1179 0.2081 

20 
20  0.2230 0.2540 0.2746 0.2514 0.2092 

Table 1. Steady state distribution of each states. 

 

It is seen from Table 1 that some of the states having probability values as zero in a long run. It reveals 

that the inventory position of the system would not come to the particular states due to the arrival rate, 

inspection time, service time and the tranportation time.   
Applying the decision rule the system is considered as a Markov decision process model with action set 

A. Form the value (cost) function associated with the following costs. Let c be the item cost per unit. Let tc  be 
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the transportation cost from depot to base and hc  be the holding cost for each item. Let fc  be the 

transportation cost for replenishment of inventory at depot from the Manufacturer.  

The Optimal average cost of inventory maintenance is given below for the different values of  , ,  ,  , c, 

tc , hc , fc and p. 

For p = 0.4 

Case(i):  

Table 2. Optimal Average cost & Stationary Policies for 1c ; 2=tc ; 5.1hc ; 3=fc . 

Case(ii):  

Table 3. Optimal Average cost  & Stationary Policies for 2c ; 2=tc ; 3hc ; 5=fc . 

For p = 0.5 

Case(i):  

Table 4. Optimal Average cost  & Stationary Policies for 1c ; 2=tc ; 5.1hc ; 3=fc . 

 

Table 5. Optimal Average cost  & Stationary Policies for 2c ; 2=tc ; 3hc ; 5=fc . 

Case(ii):  

 

For  p = 0.6 

Case(i):  

Table 6. Optimal Average cost  & Stationary Policies for 1c ; 2=tc ; 5.1hc ; 3=fc  

 

 

 

 

 

S. 

No 
        Number of 

iterations 

Optimal 

Average cost 

Stationary Policy 

1 4 5 6 3 27 09.9031 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

2 5 3 4 7 33 10.2597 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

3 5 3 5 6 28 10.3262 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

4 7 6 4 3 34 10.3750 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

5 6 4 3 8 50 10.1862 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

S. 

No 
        Number of 

iterations 

Optimal 

Average 

Cost 

Stationary Policy 

1 4 5 6 3 27 16.4337 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

2 5 3 4 7 35 16.6751 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

3 5 3 5 6 29 16.8064 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

4 7 6 4 3 35 17.0736 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2] 

5 6 4 3 8 53 16.4406 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2] 

S. 

No 
        Number of 

iterations 

Optimal 

Average cost 

Stationary Policy 

1 4 5 6 3 25 10.0993 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

2 5 3 4 7 31 10.3242 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

3 5 3 5 6 26 10.3951 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

4 7 6 4 3 31 10.5700 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

5 6 4 3 8 43 10.2859 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

S. 

No 
        Number of 

iterations 

Optimal 

Average cost 

Stationary Policy 

1 4 5 6 3 25 16.6744 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

2 5 3 4 7 32 16.7615 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

3 5 3 5 6 27 16.8925 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

4 7 6 4 3 31 17.3365 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2] 

5 6 4 3 8 47 16.6402 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2] 

S. 

No 
        Number of 

iterations 

Optimal 

Average cost 

Stationary Policy 

1 4 5 6 3 24 10.3001 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

2 5 3 4 7 28 10.3841 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

3 5 3 5 6 25 10.4618 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

4 7 6 4 3 27 10.7597 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

5 6 4 3 8 38 10.3672 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 
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Case(ii):  

Table 7. Optimal Average cost  & Stationary Policies for 2c ; 2=tc ; 3hc ; 5=fc . 

 From Table 2 to 7, the optimal average cost and optimal reordering policies are obtained for the 

repairable rate p= 0.4, 0.5, 0.6 based on the values of  , ,  ,  , c, tc , hc , fc and p. From this result, we see 

that if the repairable rate increases, then the average cost of maintenance is also increase. The outcome of the 

result is illustrated from the graph Figure 1, given below. 

 

 
Fig. 1 

 

V. Conclusion 
Management of inventory in the context of repairable items has drawn attention of the researchers. But 

the analysis of the failed item which is recoverable or not is extremely difficult. Most of the papers available in 

literature address the problem for a single echelon. The literature of Multi echelon systems with repairable item 

is very limited. In this paper, we considered a two-echelon inventory system with repairable items under 

generalized conditions, and developed a infinitesimal generator Q. The Embedded Markov chain method is 

implemented to find the steady state probability of the each state of the system. The same system is treated as a 

Markov decision model problem associated with action set A. This model is solved by value iteration procedure 

to obtain the optimal average cost to maintain the inventory in the two-echelon inventory system. The sensitive 

analysis of the cost funtion in section 4 reveals that, if the repairing rate is increased, the average cost of 

inventory maintenance is also increased. The future investigation of the two echelon inventory system is to find 
the optimal average maintenance cost for the system consisting of one depot and finite number of base stations.  

This study may be furthered to include Multi-echelon inventory system holding perishable inventory. 

For example, 

1. Perishable items supply from depot to base stations. 

2. Maintenance of blood units in the district head quarter and rural areas. 

 

The complexity level would increase when the requirements of the base stations differ from one 

another. If we allow formation of queue in the model the study would become more challenging and complex. 

We may apply a decision rule in each station to replenish and try developing a model using Markov decision 

process. 

 

 

S. 

No 

 

        Number of 

iterations 

Optimal 

Average cost 

Stationary Policy 

1 4 5 6 3 24 16.9163 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

2 5 3 4 7 30 16.8404 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

3 5 3 5 6 26 16.9731 [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

4 7 6 4 3 28 17.5758 [0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 2 2 2] 

5 6 4 3 8 41 16.7963 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 2 2 2] 
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