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Abstract: This paper seeks numerical solutions to a stiff initial value problem using a modified extended 

backward differentiation formula. Some implicit schemes were developed based on the linear multi-step method. 

Stiff initial value problems are solved using the various stages of the derived modified extended backward 

differentiation formula, the result obtained at different stages are compared with Euler implicit method and 

Simpson’s implicit method. The results obtained are considered in determining which of the methods is more 

accurate and efficient in providing solutions to stiff initial value problems when compared with the exact 

solution. 
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I. Introduction 
A problem is stiff if the numerical solution has its step size limited more severely by the stability of the 

numerical technique than by the accuracy of the technique. Frequently, these problems occur in systems of 

differential equations that involve several components that are decaying at widely differing rates. E.g. damped 

stiff highly oscillatory problem [5].  

Although numerous attempts have been made to give a rigorous definition of this concept, it is 

probably fair to say that none of these definitions is entirely satisfactory. Indeed the authoritative book of Hairer 

and Wanner [12] deliberately avoids trying to define stiffness and relies instead on an entirely pragmatic 

definition given in [10]. What is clear, however, is that numerical methods for solving stiff initial value 

problems have to satisfy much more stringent stability requirements than is the case for methods intended for 

nonstiff problems. One of the first and still one of the most important, stability requirements particularly for 
linear multistep methods is that of A-stability which was proposed in [11]. However, the requirement of A-

stability puts a severe limitation on the choice of suitable linear multistep methods. 

 

II. General Formation of Linear Multistep Methods 
A linear k-step of differential equation 
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Is usually given as 
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Where j and j are constant and not both 0 and 0 are zero (not zero at same time) equation  2 is said to 

be explicit if 0k and it is implicit if 0k .  

Definition 

The linear difference operator is defined as [13] 
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Expanding  jhxy   and its derivation  jhxy   about x , we have 
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Substituting equation  4 and  5 in  3 we have       
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To derive any k-step method, we set 0...321  pCCCC and solve the system then check if it 

01 pC
 

 

III. Modified Extended Backward Differentiation Formula 
Modified extended backward differentiation formula (MEBDF) was originally proposed as a class of 

formula to which an efficient variable order, variable step boundary value approach could easily be applied. The 

general k-step MEBDF is defined by [4] 
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Where the coefficients are chosen so that this formula has order 1k . The accuracy and stability of this method 

is critically dependent on the predictor used to compute 1kny and in particular this predictor must be of order 

of least k if the whole process is to be of order 1k . A natural 
thk -order predictor is the k -step BDF and this 

lead to the so-called EBDF stages. 

Stage 1: using the standard BDF to compute kny   
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Stage 2: using a standard BDF to compute 1kny  
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Stage 3A: derived by computing a corrected solution of order 1k at knx  using 
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Note that at each of these three stages a nonlinear set of equations must be solved in order that the 

desired approximations can be computed. The Extended Backward Differentiation formula described above can 

be modified to give the so-called MEBDF approach by changing stage 3A to  

Stage 3B: 
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Fortunately, this modification not only improves the computational efficiency of this approach, it also improves 

its stability. 

Construction of Two Steps MEBDF Using the First Stage 
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Where 
j and k are constants. Using the implicit case, when k=2 
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Construction of Two Steps MEBDF Using the Second Stage Standard BDF to Compute 1kny , 

when k=2 
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Construction of Two Step MEBDF Using the Third Stage, when k=2 
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IV. Implementation of the Schemes 
Consider the initial value problem [14] 

yxy  Subjected to initial condition   10 y
                                                 

 16
 

The analytical solution to IVP in equation  15  when subjected to the initial condition gives 12   xey x
. 

Numerical solutions are preferred to the derived stage I, stage II and stage III of  the two step implicit Modified 

Extended Backward Differentiation Formula. We obtaining numerical solutions for the IVP in  16  for 

  .11.00x  

 

Table1: Solutions of MEBDF Stages with 1.0h  
x Exact 

 

Stage I Stage II Stage III 

0 1.00000 

 

1.00000 1.00000 1.00000 

0.1 1.11034 

 

1.11000 1.11000 1.11000 

0.2 1.24281 

 

1.24207 1.23100 1.11091 

0.3 1.39972 

 

1.38294 1.38294 1.23068 

0.4 1.58365 

 

1.55123 1.55123 1.37460 

0.5 1.79744 

 

1.74636 1.74636 1.54291 

0.6 2.04424 

 

1.97099 1.97099 1.73805 

0.7 2.32751 

 

2.22809 2.22809 1.96271 

0.8 2.65108 

 

2.52090 2.52090 2.21983 



Numerical Solutions of Stiff Initial Value Problems Using Modified Extended …. 

DOI: 10.9790/5728-11133740                                    www.iosrjournals.org                                               40 |Page 

0.9 3.01921 

 

2.85299 2.85299 2.51267 

1 3.43656 

 

3.22829 3.22829 2.92663 

 

Table 2: Absolute Errors of the MEBDF Stages with 1.0h  
x Stage I 

 
Stage II Stage III 

0 0.00000 

 

0.00000 0.00000 

0.1 0.00034 

 

0.00034 0.00034 

0.2 0.00074 

 

0.01181 0.13189 

0.3 0.01678 

 

0.01678 0.16904 

0.4 0.03242 

 

0.03242 0.20905 

0.5 0.05109 

 

0.05109 0.25453 

0.6 0.07324 

 

0.07324 0.30618 

0.7 0.09941 

 

0.09941 0.36480 

0.8 0.13018 

 

0.13018 0.43125 

0.9 0.16621 

 

0.16621 0.50654 

1 0.20827 

 

0.20827 0.50993 

 

V. Conclusion 
Investigation carried out on the numerical solutions of stiff initial value problems in ODEs  using 

Modified Extended Backward Differentiation Formula has shown that the stage I is the best scheme for solving 

stiff initial value problem. It converge better than the stage II and stage III with the lowest absolute error value. 

Hence is the most accurate.  
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