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Abstract: In this paper we proposed bootstrap algorithm for the estimation of parameters of the non-linear 

regression analysis by cooperating the Gauss- Newton method. We used bootstrapping to provide estimates of 
exponential regression coefficients. The computational difficulties that would have encountered in using the 

proposed method have been resolved by developing a computer program in R which was used to implement the 

algorithm. From the result obtained the bootstrap algorithm yielded a better reduced error sum of squares 

SS  than the analytical method. With these results, we have a greater confidence in the result obtained.  
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I. Introduction 
Bootstrap resampling as computer based methods is a tools for constructing inferential procedures in 

statistical data analysis. The bootstrap approach introduced by Efron (1979) was used initially for estimation of 

certain statistics such as the mean and the variability of estimated characteristics of the probability distribution 

of a set of observations by providing confidence intervals for the population parameters (Efron, 2003; Efron and 
Tibshirani (1998). It is a technique in which sample of size n are obtained randomly with replacement from the 

original sample each with 
1n chances of being selected. This is basically to analyze the population by replacing 

the unknown distribution function F  by the empirical distribution function F̂  obtained from the sample. (See 

Davison and Hinkley, 1997, 2003; Efron, 2003; Bickel and Freedman, 2007; Hall, 2003; Casella, 2003). 

Exponential regression is a non-linear regression model often used to measure the growth of a variable, 

such as population, GDP etc. An exponential relationship between X and Y  exists whenever the dependent 

variable Y  changes by a constant percentage, as the variable X also changes. 
 

II. Materials And Method 

 Let     jkXXXfY ,,,,,,, 2121              (2.1) 

be a non linear regression model with s   being the parameters, sX   are the predictor variables and the error 

term  2,0~  N  independently identically distributed and are uncorrelated. 

Equation (2.1) is assumed to be intrinsically nonlinear. Suppose n is number of observations on the Y  and sX 
, then  

  niXXXfY ijikiii ,,2,1;,,,,,,, 2121              (2.2)

  

The n-equation can be written compactly in a matrix notation as 

     ,XfY                              (2.3) 

where  
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The error sum of squares for the nonlinear model is defined as 
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Denoting the least square estimates of    ˆby  , these minimize the . The least square estimates of  

are obtained by differentiating (2.4) with respect to , equate to zero and solve for  , this results in J normal 

equations: 
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In estimating the parameters of nonlinear regression model, we use the Gauss-Newton method based on 

Taylor’s series to approximate equation (2.3).  Now, considering the function which is the 

deterministic component of  

  niXY iii ,,2,1,                       (2.6)                                                                                  

Let 
0 be the initial approximate value of . Adopting Taylor’s series expansion of about  

0 , we 

have the linear approximation 
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Substituting expressions (2.7) in (2.6) we obtain  

       JpniXfXfY
J

p

ippi

i

ii ,,2,1,,,2,1,,
1

00

0

 











 

 







 

Equation (2.8) may be viewed as a linear approximation in a neighborhood of the starting value  

Let      00 , ii Xff      
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Hence, equation (2.8) becomes  
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In a matrix form, we have 
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Compactly, equation (2.11) becomes   

 

   000 ZfY           (2.12) 
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where 

   

0 0

11 1

0 0
'' '0 0 0 0 0 0 0 012 2

1 1 2 2 1 1

0 0

1

, , , , ,

J

J

n n J n

n Jn

Z Z

Z Z
Y f Y f Y f Y f Z

Z Z

     

 
 
            
 
  




  

  



  

We obtain the Sum of squares error  SS  
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Hence, 
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Therefore, the least square estimates of  
0  is  
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Thus,   00

2

0

1

0 ˆ,,ˆ,ˆˆ
J  minimizes the error sum of squares, 

    
 
















n

i

J

p

ppiii ZfYS
1

2

1

000* ̂                              (2.16)        

Now, the estimates of parameters p  of non linear regression (2.1) are 

 Jpppp ,,2,1;ˆ 001              (2.17) 

 

Iteratively, equation (2.17) reduces to 
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where    1ˆ r r r r rZ Z Z Y f     are the least squares estimates of   obtained at the 

  thr 1  iterations. The iterative process continues until 
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where 
510  is the error  tolerance  (See Smith (1998) and Nduka (1999)). 

 *S is evaluated after each iteration to see if a reduction in its value has actually been achieved. At the end of 

the  thr 1  iteration, we have  
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 and iteration is stopped if convergence is achieved. The final estimates of the parameters at the end of the 

 thr 1 iteration are: 

  11
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The Bootstrap Algorithm based on the Resampling Observations for the Estimation of Non- linear 

Regression Parameters 

   jiii ZYW , being the original sample of size n for the resampling, sWi  are drawn independently and 

identically from a distribution of F.   ni yyyY ,,, 21   is the column vector of the response variables, 

  jnjjji zzzZ ,,, 21  is the matrix of dimension kn  for the predictor variables, where 

niandkj ,,2,1,,2,1   . 
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Step2: Calculate the least square estimates for nonlinear regression coefficient from the bootstrap sample; 

   fYZZZ 
10̂  . 

Step3: Compute 
001 ˆˆˆ    using the Gauss-Newton method, the 

1̂  value is treated as the initial value 

in the first approximated linear model. 

Step4: We return to the second step and again compute s ˆ . At each iteration, new s ˆ  represent increments 

that are added to the estimates from the previous iteration according to step 3 and eventually find
2̂ , 

which is 
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Step 5: Stopping Rule; the iteration process continues until 
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values of 110 ,,, p   from the first bootstrap sample 
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Step6: Repeat steps 1 to 5 for Br ,,2,1  , where B is the number of repetition.  

Step 7: Obtain the probability distributions  )(ˆ bF   of bootstrap estimates 
)()21()1( ˆ.,ˆ,ˆ bBbb    and use 

 )(ˆ bF   to estimate regression coefficients, variances. The bootstrap estimates of regression 

coefficient is the mean of the distribution  )(ˆ bF  , (see Topuz and Sahinler,2007; Obiora-Ilouno and 

Mbegbu, 2012). 
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  The bootstrap standard deviation from  )(ˆ bF   distribution is  
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The Computer Program In R For Bootstrapping Non-Linear Regression: 

#x is the vector of independent variable 

#theta is the vector of parameters of the model 

#This function calculates the matrix of partial derivatives 

F=function(x,theta) 

{ 

output=matrix(0,ncol=2,nrow=length(x)) 

for(i in 1:length(x)) output[i,]=c(exp(theta[2]*x[i]),theta[1]*x[i]*exp(theta[2]*x[i])) 

output 

} 

#This function calculates the regression coefficients using the Gauss-Newton Method 

gaussnewton=function(y,x,initial,tol) 
{ 

theta=initial 

count=0 

eps=y-(theta[1]*exp(theta[2]*x)) 

SS=sum(eps**2) 

diff=1 

while(tol<diff) 

{ 

S=SS 

ff=F(x,theta) 

theta=c(theta+solve(t(ff)%*%ff)%*%t(ff)%*%eps) 
eps=y-(theta[1]*exp(theta[2]*x)) 

SS=sum(eps**2) 

diff=abs(SS-S) 

count=count+1 

if(count==100) break 

pp=c(theta,SS) 

#at each iteration 

} 

pp 

} 

#This part of the code does the bootstrap 

boot=function(data,p,b,initial) 
{ 

n=length(data[,1]) 

z=matrix(0,ncol=p,nrow=n) 

output=matrix(0,ncol=p+1,nrow=b) 

for (i in 1:b) 

{ 

u=sample(n,n,replace=T) 

for (j in 1:n) z[j,]=data[u[j],] 

y=z[,1] 

x=z[,2:p] 

logreg=gaussnewton(y,x,initial,0.00001) 
coef=logreg 

output[i,]=c(coef) 

} 

output 

} 
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#Then to run the code we use the following 

y <- c(data) 

x <- c(data) 
data=cbind(y,x) 

initial=c(initial) 

expo=boot(data,p,B,initial) 

#Run the following to view the bootstrap results 

theta_0=mean(expo[,1]) 

theta_0 

theta_1=mean(expo[,2]) 

theta_1 

SSE=mean(expo[,3]) 

SSE 

 

Problem[ GUJARATI AND PORTER, 2009] 
The data below relates to the management fees that a leading mutual fund pays to its investment advisors to 

manage its assets.  The fees paid depend on the net asset value of the fund.  

 Develop a regression model for the management fees to the advisors.   

 
Fee % 0.520 0.508 0.484 0.46 0.4398 0.4238 0.4115 0.402 0.3944 0.388 0.3825 0.3738 

Asset 0.5 5.0 10.0 15 20 25 30 35 40 45 55 60 

 

III. Results And Discussion 
From the data, the higher the net asset values of the fund, the lower are the advisory fees. (see Gujarati and 
Porter ,2009). 

 

The Analytical Result of R Program (Without Bootstrapping) 

 y <- c(0.520,0.508,0.484,0.46,0.4398,0.4238,0.4115,0.402,0.3944,0.388,0.3825,0.3738) 

x <- c(0.5,5,10,15,20,25,30,35,40,45,55,60) 

 run=gaussnewton(y,x,c(0.5028,-0.002),0.00001) 

[1]   0.505805756 -0.005487479   0.001934099 

[1]   0.508724700 -0.005949598   0.001699222 

[1]   0.508897316 -0.005964811   0.001699048 

 

 The estimated model from the result is: 

 
0.00596ˆ 0.50890iY X              

where Y and X are the fee and assets respectively. 
 

 
 

 

The Result of R Program Using Bootstrapping Algorithm 

> # run the code use the following for the bootstrap algorithm 
> y <- c(0.520,0.508,0.484,0.46,0.4398,0.4238,0.4115,0.402,0.3944,0.388,0.3825,0.3738) 

6050403020100
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> x <- c(0.5,5,10,15,20,25,30,35,40,45,55,60) 

> data=cbind(y,x) 

> initial=c(0.5028,-0.002) 
> expo=boot(data,2,1000,initial) 

>  

> #Run the following to view the bootstrap results 

> theta_0=mean(expo[,1]) 

> theta_0 

[1] 0.5075696 

> theta_1=mean(expo[,2]) 

> theta_1 

[1] -0.005964939 

> SSE=mean(expo[,3]) 

> SSE 
[1] 0.001328289 

 

IV. Discussion 

 are the revised parameter estimates at the end of the last 

iteration. The least squares criterion measure SS  for the starting values has been reduced in the first iteration 

and also further reduced in second, third iterations respectively. The third iteration led to no change in either the 

estimates of the coefficient or the least squares SS
 
criterion measure. Hence, convergence is achieved, and 

the iteration end.  

 

The fitted regression function is,  XY 00586.0exp50889.0ˆ   

The results of the analytical and the bootstrap computations are shown in Table 2 

 

Table 2:  Analytical and Bootstrap Results  
      

0  
1  SS  

Analytical 0.50889 -0.00596 0.001699 

Bootstrap 0.50757 -0.00596 0.001328 

 

The fitted regression function for both the analytical bootstrapping computation are   

 ˆ 0.50889exp 0.00596Y X   and  XY 00596.0exp50757.0ˆ   respectively. 

 

V. Conclusion 

From the result of our analysis the bootstrap approach yields approximately the same inference as the 

analytical method. Also the bootstrap algorithm yielded a better reduced error sum of squares SS  than the 

analytical method (see Table 2). With these results, we have a greater confidence in the result obtained by 

bootstrap approach. 
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