On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy Sets

Assist.Prof. Dr.Munir Abdul Khalik AL-Khafaji Gazwanhaider Abdul Hussein

AL-Mustinsiryah University \ College of Education \ Department of Mathematics

Abstract: The aim of this paper to introduce and study fuzzy δ -open set and the relations of some other class of fuzzy open sets like (R-open set, θ -open set, Δ -open set), introduce and study some types of fuzzy δ -separation axioms in fuzzy topological space on fuzzy sets and study the relations between of themand study some properties and theorems on this subject

I. Introduction

The concept of fuzzy set was introduced by Zedeh in his classical paper [1] in 1965. The fuzzy topological space was introduced by Chang [2] in 1968. Zahran [3] has introduced the concepts of fuzzy δ -open sets, fuzzy regular open sets, fuzzy regular closed sets. And LuayA.Al.Swidi,AmedS.A.Oon [15] introduced the notion of γ -open set, fuzzy γ -closed set and studied some of its properties. N.V.Velicko[9] introduced the concept of fuzzy θ -open set, fuzzy θ -closed set,the fuzzy separation axioms was defined bySinha[10],And Ismail Ibedou[7]introduced anewsetting of fuzzy separation axioms. The purpose of the present paper is to introduce and study the concepts of fuzzy δ -open sets and some types of fuzzy open set and relationships between of them and study some types of fuzzy δ -separation axioms in fuzzy topological space on fuzzy sets and study the relationships between of them and we examine the validity of the standard results.

1 .fuzzy topological space on fuzzy set

Definition 1.1 [4]Let X be a non empty set, a fuzzy set \tilde{A} in X is characterized by a function $\mu_{\tilde{A}}\colon X\to I$, where I=[0,1] which is written as $\tilde{A}=\{(x,\mu_{\tilde{A}}(x))\colon x\in X\ ,0\leq \mu_{\tilde{A}}(x)\leq 1\}$, the collection of all fuzzy sets in X will be denoted by I^X , that is $I^X=\{\tilde{A}:\tilde{A}:\tilde{A}\text{ is a fuzzy sets in }X\}$ where $\mu_{\tilde{A}}$ is called the membership function .

Proposition 1.2 [5]

Let \tilde{A} and \tilde{B} be two fuzzy sets in X with membership functions $\mu_{\tilde{A}}$ and $\mu_{\tilde{B}}$ respectively then for all $x \in X$:

- 1. $\tilde{A} \subseteq \tilde{B} \leftrightarrow \mu_{\tilde{A}}(x) \leq \mu_{\tilde{B}}(x)$.
- 2. $\tilde{A} = \tilde{B} \leftrightarrow \tilde{\mu}_{\tilde{A}}(x) = \tilde{\mu}_{\tilde{B}}(x)$.
- 3. $\tilde{C} = \tilde{A} \cap \tilde{B} \leftrightarrow C(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}.$
- 4. $\tilde{D} = \tilde{A} \cup \tilde{B} \leftrightarrow D(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}.$
- 5. \tilde{B}^c the complement of \tilde{B} with membership function $\mu_{\tilde{B}^c}(x) = \mu_{\tilde{A}}(x) \mu_{\tilde{B}}(x)$.

Definition 1.3 [4]

A fuzzy point x_r is a fuzzy set such that :

 $\mu_{x_r}(y) = r > 0$ if x = y, $\forall y \in X$ and $\mu_{x_r}(y) = 0$ if $x \neq y$, $\forall y \in X$ The family of all fuzzy points of \tilde{A} will be denoted by $FP(\tilde{A})$.

 $\text{\bf Remark 1.4 [6]:} \ \text{Let} \quad \tilde{A} \in \ I^X \ \ \text{then} \quad P(\tilde{A}) \ = \ \{ \ \tilde{B} : \tilde{B} \in \ I^X \ , \ \mu_{\tilde{B}}(x) \leq \mu_{\widetilde{A}}(x) \ \ \} \ \forall x \in X \ .$

Definition 1.5 [4]

A collection \tilde{T} of a fuzzy subsets of \tilde{A} , such that $\tilde{T} \subseteq P(\tilde{A})$ is said to be fuzzy topology on \tilde{A} if it satisfied the following conditions

- 1. \tilde{A} , $\tilde{\phi} \in \tilde{T}$
- 2. If \tilde{B} , $\tilde{C} \in \tilde{T}$ then $\tilde{B} \cap \tilde{C} \in \tilde{T}$
- 3. If $\tilde{B}_i \in \tilde{T}$ then $\bigcup_i \tilde{B}_i \in \tilde{T}, j \in J$

 (\tilde{A},\tilde{T}) is said to be Fuzzy topological space and every member of \tilde{T} is called fuzzy open set in \tilde{A} and its complement is a fuzzy closed set .

2. On some types of fuzzy open set

Definition 2.1 [8,11,12,13,14]

A fuzzy set \tilde{B} in a fuzzy topological space (\tilde{A}, \tilde{T}) is said to be

- 1) Fuzzy δ -open [resp.Fuzzy δ -closed set] set if $\mu_{\text{Int}\left(\text{Cl}(\widetilde{B})\right)}(x) \leq \mu_{\widetilde{B}}(x)$
- $[\mu_{\tilde{B}}(x) \leq \mu_{Cl(Int(\tilde{B}))}(x)]$ The family of all fuzzy δ -open sets [resp. fuzzy δ -closed sets] in a fuzzy topological space (\tilde{A}, \tilde{T}) will be denoted by $F\delta O(\tilde{A})$ [resp. $F\delta C(\tilde{A})$]
- 2) Fuzzy regular open [Fuzzy regular closed] set if:
- $\mu_{\tilde{B}}(x) = \mu_{Int(Cl(\tilde{B}))}(x)[\mu_{\tilde{B}}(x) = \mu_{Cl(Int(\tilde{B}))}(x)]$, The family of all fuzzy regular open [fuzzy regular closed] set in \tilde{A} will be denoted by $FRO(\tilde{A})[FRC(\tilde{A})]$.
- 3) Fuzzy Δ -open set if for every point $x_r \in \tilde{B}$ there exist a fuzzy regular semi-open set \tilde{U} in \tilde{A} such that $\mu_{x_r}(x) \leq \mu_{\tilde{U}}(x) \leq \mu_{\tilde{B}}(x)$, \tilde{B} is called [Fuzzy Δ -closed] set if its complement is Fuzz Δ -open set the family of all Fuzzy Δ -open [Fuzzy Δ -closed] sets in \tilde{A} will be denoted by F Δ O(\tilde{A})[F Δ C(\tilde{A})].
- 4) Fuzzy $\gamma open [\gamma closed]$ set if $\mu_{\tilde{B}}(x) \leq \max \{\mu_{Int(Cl(\tilde{B}))}(x), \mu_{Cl(int(\tilde{B}))}(x)\}$, $[\mu_{\tilde{B}}(x) \geq \min \{\mu_{Int(Cl(\tilde{B}))}(x), \mu_{Cl(int(\tilde{B}))}(x)\}]$ The family of all fuzzy γ open [fuzzy γ closed] sets in \tilde{A} will be denoted by $F\gamma O(\tilde{A})$ [$F\gamma C(\tilde{A})$].
- Fuzzy θ -open [θ -closed] set if $\mu_{\mathcal{B}}(x) = \mu_{\theta Int(\mathcal{B})}(x)$, [$\mu_{\mathcal{B}}(x) = \mu_{\theta Cl(\mathcal{B})}(x)$]
 The family of all fuzzy θ -open (fuzzy θ -closed) sets in \tilde{A} will be denoted by $F\theta O(\tilde{A})$ [$F\theta C(\tilde{A})$].

Proposition 2.2

Let (\tilde{A}, \tilde{T}) be a fuzzy topological space then :

- 1) Every fuzzy δ -open set (resp. fuzzy δ -closed set) is fuzzy Δ -open set (resp. fuzzy Δ -closed set) [fuzzy γ -open set (resp. fuzzy γ -closed set)].
- 2) Every fuzzy θ -open set (resp. fuzzy θ -closed set) is fuzzy γ -open set (resp. fuzzy γ -closed set) [fuzzy δ -open set (resp. fuzzy δ -closed set, fuzzy δ -closed set)]
- 3) Every fuzzy regular open set (fuzzy regular closed set) is fuzzy δ -open set (resp. fuzzy δ -closed set) [fuzzy γ -open set(resp. fuzzy γ -closed set), fuzzy δ -open set(resp. fuzzy δ -closed set)]

Proof: Obvious.

Remark 2.3

The converse of proposition (2.2) is not true in general as following examples shows

Examples 2.4

- 1) Let $X = \{a, b\}$ and \tilde{B} , \tilde{C} , \tilde{D} are fuzzy subset in \tilde{A} where $\tilde{A} = \{(a, 0.9), (b, 0.9)\}$, $\tilde{B} = \{(a, 0.0), (b, 0.7)\}$, $\tilde{C} = \{(a, 0.8), (b, 0.0)\}$, $\tilde{D} = \{(a, 0.8), (b, 0.7)\}$, The fuzzy topology defined on \tilde{A} is $\tilde{T} = \{\emptyset, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}\}$
- The fuzzy set \widetilde{D} is a fuzzy Δ -open set but not fuzzy δ open set (fuzzy regular open set, fuzzy θ open set).
- let $X = \{a, b, c\}$ and \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} are fuzzy subset in \tilde{A} where $\tilde{A} = \{(a, 0.9), (b, 0.9), (c, 0.9)\}$, $\tilde{B} = \{(a, 0.3), (b, 0.3), (c, 0.4)\}$, $\tilde{C} = \{(a, 0.4), (b, 0.3), (c, 0.4)\}$, $\tilde{C} = \{(a, 0.4), (b, 0.3), (c, 0.4)\}$, $\tilde{C} = \{(a, 0.5), (b, 0.5), (c, 0.4)\}$, $\tilde{E} = \{(a, 0.6), (b, 0.6), (c, 0.7)\}$, The fuzzy topology defined on \tilde{A} is $\tilde{T} = \{\emptyset, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}\}$
- The fuzzy set \tilde{B} is a fuzzy γ open set but not fuzzy δ open set (fuzzy regular open set, fuzzy θ open set).
- 2) Let $X = \{a, b, c\}$ and \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} , \tilde{F} be fuzzy subsets of \tilde{A} where: $\tilde{A} = \{(a,0.8),(b,0.8),(c,0.8)\}$, $\tilde{B} = \{(a,0.1),(b,0.1),(c,0.2)\}$, $\tilde{C} = \{(a,0.2),(b,0.1),(c,0.2)\}$, $\tilde{E} = \{(a,0.3),(b,0.3),(c,0.2)\}$, $\tilde{E} = \{(a,0.4),(b,0.4),(c,0.5)\}$, $\tilde{F} = \{(a,0.3),(b,0.3),(c,0.3)\}$. The fuzzy topologies defined on \tilde{A} are $\tilde{T} = \{\tilde{\phi},\tilde{A},\tilde{B},\tilde{C},\tilde{D}\}$. The fuzzy set \tilde{E} is a fuzzy δ -open set but not fuzzy regular open set (fuzzy θ -open set).

Remark 2.5

Figure - 1 – illustrates the relation between fuzzy δ -open set and some types of fuzzy open sets.

III. Some Types Of Fuzzy Separation Axioms

Definition 3.1

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_0$ – **space**($F\delta \tilde{T}_0$) if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist $\tilde{B} \in F\delta O(\tilde{A})$ such that either $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $y_t \tilde{q} \tilde{B}$ or $\mu_{y_t}(y) < \mu_{\tilde{B}}(y)$, $x_r \tilde{q} \tilde{B}$.

Theorem 3.2

If (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_0$ - space then for every pair of distinct fuzzy points x_r , y_t where $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ then either δ -cl $(x_r) \tilde{q} y_t$ or δ -cl $(y_t) \tilde{q} x_r$.

Proof: -

Let x_r , y_t be two distinct fuzzy points such that

 $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ then there exist a fuzzy δ - open set \tilde{B} such that either $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, \tilde{B} \tilde{q} y_t or $\mu_{y_t}(x) < \mu_{\tilde{B}}(x)$, \tilde{B} \tilde{q} x_r

If $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $\tilde{B} \hat{q} y_t$ then $\tilde{B}^c \hat{q} x_r$, $\mu_{y_t}(x) \leq \mu_{\tilde{B}^c}(x)$

Since \tilde{B}^c is a fuzzy δ - closed set therefore $\mu_{\delta cl(y_t)}(x) \leq \mu_{\tilde{B}^c}(x)$

Hence δ - cl $(y_t) \hat{q} x_r$

Similarly if $\mu_{v_t}(x) < \mu_{\tilde{B}}(x)$, $\tilde{B} \tilde{q} x_r \blacksquare$

Definition 3.3:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$) if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist two \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, y_t $\tilde{q}\tilde{B}$ and $\mu_{y_t}(y) < \mu_{\tilde{C}}(y)$, x_r \tilde{q} \tilde{C} .

Proposition 3.4:

Every fuzzy $\delta \tilde{T}_1$ – space is a fuzzy $\delta \tilde{T}_0$ – space .

Proof: Obvious.

Remark 3.5:

The converse of proposition (3.4) is not true in general as shown in the following example . Example 3.6:

Let $X=\{a,b\}$ and \tilde{B} , \tilde{C} , \tilde{D} are fuzzy subset of \tilde{A} where: $\tilde{A}=\{(a,0.4),(b,0.4)\}$, $\tilde{B}=\{(a,0.4),(b,0.1)\}$, $\tilde{C}=\{(a,0.1),(b,0.1)\}$, $\tilde{D}=\{(a,0.4),(b,0.2)\}$, $\tilde{E}=\{(a,0.3),(b,0.1)\}$, $\tilde{T}=\{\tilde{\emptyset},\tilde{A},\tilde{B},\tilde{C},\tilde{D}\}$ be a fuzzy topology on \tilde{A} and the $F\delta O(\tilde{A})=\{\tilde{\emptyset},\tilde{A},\tilde{C},\tilde{C},\tilde{D}\}$ Then the space (\tilde{A},\tilde{T}) is a fuzzy $\delta \tilde{T}_0$ - space but notfuzzy $\delta \tilde{T}_1$ - space

Theorem 3.7:

If (\tilde{A} , \tilde{T}) is a fuzzy Topological space then the following statements are equivalents :

1) (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_1$ - space.

- 2) For every maximal fuzzy points x_r , y_t in \tilde{A} , there exists a fuzzy open nbhds sets \tilde{U} and \tilde{V} of x_r and y_t respectively in \tilde{A} such that $\mu_{x_r}(x) = \min \{\{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$ and $\mu_{y_t}(y) = \min \{\{ \mu_{(\tilde{V})}(x), \mu_{(\tilde{V})}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$.
- 3) For every maximal fuzzy points x_r , y_t in $\tilde{\mathbf{A}}$, there exists a fuzzy δ-open nbhds sets $\tilde{\mathbf{U}}$ and $\tilde{\mathbf{V}}$ of x_r and y_t respectively in $\tilde{\mathbf{A}}$ such that $\mu_{x_r}(x) = \min \{\{\mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y)\}, \{\mu_{x_r}(x), \mu_{y_t}(y)\}\}$ and $\mu_{y_t}(y) = \min \{\{\mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y)\}, \{\mu_{x_r}(x), \mu_{y_t}(y)\}\}$.

Proof:

```
( 1\Longrightarrow 2 ) :- Let x_r , y_t \in \text{MFP}(\tilde{\mathbf{A}}) , \exists \ \tilde{\mathbf{U}} , \tilde{\mathbf{V}} \in \text{F}\delta \mathbf{O}(\tilde{\mathbf{A}})
```

such that $\mu_{x_r}(x) < \mu_{\tilde{U}}(x)$, $y_t \tilde{q} \tilde{U}$ and $\mu_{y_t}(y) < \mu_{(\tilde{V})}(y)$, $x_r \tilde{q} \tilde{V}$.then $\mu_{x_r}(x) = \mu_{\tilde{U}}(x) = \mu_{\tilde{A}}(x)$ $\mu_{y_t}(y) + \mu_{\tilde{U}}(y) \leq \mu_{\tilde{A}}(y)$ and

 $\mu_{y_t}(y) = \mu_{(\tilde{V})}(y) = \mu_{\tilde{A}}(y) \ , \ \mu_{x_r}(x) + \ \mu_{(\tilde{V})}(x) \leq \mu_{\tilde{A}}(x) \\ \text{then } \ \mu_{\tilde{U}}(y) = 0 \ , \ \mu_{(\tilde{V})}(x) = 0 \ , \text{and since } \tilde{\mathbf{U}} \ , \tilde{\mathbf{V}} \in \tilde{\mathbf{F}} \\ \delta O(\tilde{\mathbf{A}}) \ \ \text{then } \ \tilde{\mathbf{U}} \ , \tilde{\mathbf{V}} \in \tilde{\mathbf{T}}$

Therefore $\mu_{x_r}(x) = \min \{ \{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$

and $\mu_{y_t}(y) = \min \{ \{ \mu_{(V)}(x), \mu_{(V)}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}.$

$(2 \Longrightarrow 3)$:- Obvious.

(3 \Rightarrow 1):- Let x_n , $y_m \in \mathrm{FP}(\tilde{\mathrm{A}})$, then every x_r , $y_t \in \mathrm{MFP}(\tilde{\mathrm{A}})$, there exist $\tilde{\mathrm{U}}$, $\tilde{\mathrm{V}} \in \mathrm{F}\delta\mathrm{O}(\tilde{\mathrm{A}})$ such that

 $\mu_{x_r}(x) = \min \{ \{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$ and

 $\mu_{y_t}(y) = \min \{ \{ \mu_{(\tilde{V})}(x), \mu_{(\tilde{V})}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}.$

then $\mu_{x_r}(x)=\mu_{\tilde{U}}(x)=\mu_{\tilde{A}}(x)$, $\mu_{\tilde{U}}(y)=0$ and

 $\mu_{y_t}(y) = \mu_{(\tilde{V})}(y) = \mu_{\tilde{A}}(y)$, $\mu_{(\tilde{V})}(x) = 0$

 $\operatorname{then} y_t \, \widehat{q} \, \tilde{\mathbf{U}} \quad \text{ and } \quad x_r \, \widehat{q} \, \, \tilde{\mathbf{V}}, \operatorname{Since} \, \mu_{x_n}(x) \, < \mu_{x_r}(x) \, \operatorname{and} \, \, \mu_{y_m}(y) < \mu_{y_t}(y) \quad , \, \forall \ \, \mathbf{n} \quad , \, \mathbf{m} \in \, \mathbf{I}$

then $\mu_{x_n}(x) < \mu_{\tilde{U}}(x)$, $y_m \tilde{q} \tilde{U}$ and $\mu_{y_m}(y) < \mu_{(\tilde{V})}(y)$, $x_n \tilde{q} \tilde{V}$ Hence the space (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_1$ -space.

Definition 3.8

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_2$ – space ($F\delta \tilde{T}_2$) if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist two \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $\mu_{y_t}(y) < \mu_{\tilde{C}}(y)$ and \tilde{B} \tilde{G} \tilde{C} .

Theorem 3.9:

A fuzzy topological space (\tilde{A}, \tilde{T}) is a fuzzy $\delta - \tilde{T}_2$ –space if and only if $\min\{\mu_{\delta cl(\tilde{U})}(x) : \tilde{U} \text{ is a fuzzy } \delta \text{-open set } \mu_{x_*}(x) < \mu_{\tilde{U}}(x) \} < \mu_{v_*}(x)$ any fuzzy point such that $\mu_{v_*}(x) < \mu_{\tilde{A}}(x)$.

Proof:

 (\Longrightarrow) Let (\tilde{A}, \tilde{T}) be a fuzzy δ- \tilde{T}_2 -space and x_r , y_t be a distinct fuzzy points in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ and

 $\mu_{y_n}(x) = \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ then $\mu_{y_n}(x) < \mu_{\tilde{A}}(x)$ and there exists two fuzzy δ -open set \tilde{U} , \tilde{G} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{U}}(x)$, $\mu_{y_n}(x) < \mu_{\tilde{G}}(x)$, \tilde{U} \tilde{G} \tilde{G} , $\mu_{\tilde{U}}(x) \leq \mu_{\tilde{G}^c}(x)$ and

 $\mu_{\delta cl(\tilde{U})}(x) \leq \mu_{\delta cl(\tilde{G}^c)}(x) = \mu_{\tilde{G}^c}(x)$

Since $\mu_{\nu_n}(x) < \mu_{\tilde{G}}(x)$ and $\mu_{\nu_n}(x) = \mu_{\tilde{A}}(x) - \mu_{\nu_t}(x)$, Then

 $\mu_{\tilde{A}}(x) - \mu_{y_t}(x) < \mu_{\tilde{G}}(x)$, $\mu_{\tilde{G}^c}(x) < \mu_{\tilde{A}}(x) - \mu_{y_n}(x)$ and $\mu_{\tilde{G}^c}(x) < \mu_{y_t}(x)$

Since $\mu_{\delta cl(\mathcal{O})}(x) \le \mu_{\mathcal{G}^c}(x) < \mu_{y_t}(x)$ then $\mu_{\delta cl(\mathcal{O})}(x) < \mu_{y_t}(x)$

Hence $\min\{\mu_{\delta cl(\widetilde{U}i)}(\mathbf{x}): i=1,\ldots,n\} < \mu_{v_t}(\mathbf{x})$

 (\Leftarrow) Suppose that given condition hold x_r , y_t are distinct fuzzy points in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ and

Let $\mu_{y_n}(x) = \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ then $\mu_{y_n}(x) < \mu_{\tilde{A}}(x)$

And $\mu_{\delta cl(\tilde{U})}(x) < \mu_{\gamma_n}(x)$ for every $\mu_{x_r}(x) < \mu_{\tilde{U}}(x) \le \mu_{\delta cl(\tilde{U})}(x)$

, since $\mu_{y_n}(x) = \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$

Then $\mu_{\delta cl(\mathcal{O})}(x) < \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ and $\mu_{\tilde{A}}(x) - \mu_{y_n}(x) < \mu_{\delta int(\mathcal{O}^c)}(x)$ hence $\mu_{y_t}(x) < \mu_{\delta int(\mathcal{O}^c)}(x)$

 $\operatorname{let} \mu_{\tilde{G}}(x) = \mu_{\delta int}(\tilde{U}^c)(x)$ and since $\mu_{\delta int}(\tilde{U}^c)(x) \leq \mu_{(\tilde{U}^c)}(x)$, Then

 $\mu_{v_t}(x) < \mu_{\tilde{G}}(x) \text{ and } \mu_{\tilde{G}}(x) \le \mu_{(\tilde{U}^c)}(x) \text{ we get } \tilde{U} \tilde{q} \tilde{G}$

Hence the space (\tilde{A}, \tilde{T}) is a fuzzy $\delta - \tilde{T}_2$ –space

Proposition 3.10:

Every fuzzy $\delta \tilde{T}_2$ – space is a fuzzy $\delta \tilde{T}_1$ – space .

Proof: Obvious.

Remark 3.11:

The converse of proposition (3.10) is not true in general as shown in the following example . Example 3.12:

Let $X=\{a,b\}$ and \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} are fuzzy subset of \tilde{A} where: $\tilde{A}=\{(a,0.7),(b,0.9)\}, \tilde{B}=\{(a,0.5),(b,0.0)\}, \tilde{C}=\{(a,0.0),(b,0.7)\}, \tilde{D}=\{(a,0.5),(b,0.7)\}, \tilde{E}=\{(a,0.1),(b,0.8)\}, \tilde{F}=\{(a,0.6),(b,0.1)\}, \tilde{T}=\{\tilde{\emptyset},\tilde{A},\tilde{B},\tilde{C},\tilde{D}\}$ be a fuzzy topology on \tilde{A} and the $F\delta O(\tilde{A})=\{\tilde{\emptyset},\tilde{A},\tilde{B},\tilde{C},\tilde{D},\tilde{E},\tilde{F}\}$ then the space (\tilde{A},\tilde{T}) is a fuzzy $\delta \tilde{T}_1$ - space but not fuzzy $\delta \tilde{T}_2$ - space

Definition 3.13:

A fuzzy topological space ($\tilde{\mathbf{A}}$, $\tilde{\mathbf{T}}$) is said to be **Fuzzy** $\boldsymbol{\delta} \, \widetilde{\boldsymbol{T}}_{2\frac{1}{2}}$ - **space** ($\mathbf{F} \boldsymbol{\delta} \widetilde{\boldsymbol{T}}_{2\frac{1}{2}}$) if for every pair of distinct fuzzy points x_r , y_t in $\tilde{\mathbf{A}}$ there exist two $\tilde{\mathbf{B}}$, $\tilde{\mathcal{C}} \in \mathrm{F} \delta \mathrm{O}(\tilde{\mathbf{A}})$ such that $\mu_{x_r}(x) < \mu_{\tilde{\mathcal{B}}}(x)$, $\mu_{y_t}(x) < \mu_{\mathcal{C}}(x)$ and $\delta cl(\tilde{\mathcal{B}}) \, \widetilde{\boldsymbol{q}} \, \delta cl(\tilde{\mathcal{C}})$.

Proposition 3.14:

Every fuzzy $\delta \tilde{T}_{2^{\frac{1}{2}-}}$ space is a fuzzy $\delta \tilde{T}_2$ - space .

Proof:

Let (\tilde{A}, \tilde{T}) be a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space, then every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist two \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{C}}(x)$ and $\delta cl(\tilde{B})$ \tilde{q} $\delta cl(\tilde{C})$ Since $\mu_{\tilde{B}}(x) \leq \delta cl(\tilde{B})$, $\mu_{C}(x) \leq \delta cl(\tilde{C})$ Then We get \tilde{B} \tilde{q} \tilde{C} , hence (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_2$ - space

Remark 3.15:

The converse of proposition (3.14) is not true in general as shown in the following example

.Example 3.16:

Let X={ a , b } and , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_3 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_8 , are fuzzy subset of \tilde{A} where: $\tilde{A} = \{(a,0.9),(b,0.9)\}$, $\tilde{B}_1 = \{(a,0.8),(b,0.1)\}$, $\tilde{B}_2 = \{(a,0.0),(b,0.7)\}$, $\tilde{B}_3 = \{(a,0.8),(b,0.7)\}$, $\tilde{B}_4 = \{(a,0.0),(b,0.1)\}$, $\tilde{B}_5 = \{(a,0.0),(b,0.9)\}$, $\tilde{B}_6 = \{(a,0.8),(b,0.9)\}$, $\tilde{B}_7 = \{(a,0.0),(b,0.8)\}$ $\tilde{B}_8 = \{(a,0.8),(b,0.9)\}$, $\tilde{T} = \{\tilde{\emptyset},\tilde{A},\tilde{B}_1,\tilde{B}_2,\tilde{B}_3,\tilde{B}_4,\tilde{B}_5,\tilde{B}_6\}$ be a fuzzy topology on \tilde{A} and the F δ O(\tilde{A}) = $\{\tilde{\emptyset},\tilde{A},\tilde{B}_1,\tilde{B}_2,\tilde{B}_4,\tilde{B}_7,\tilde{B}_8\}$, then the space (\tilde{A},\tilde{T}) is a fuzzy $\delta\tilde{T}_2$ - space but not fuzzy $\delta\tilde{T}_2$ -space

Definition 3.17: A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy \delta- regular space** ($F\delta R$) if for each fuzzy point x_r in \tilde{A} and each fuzzy closed set \tilde{F} with x_r \tilde{q} \tilde{F} there exists \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) \leq \mu_{\tilde{B}}(x)$, $\mu_{\tilde{F}}(x) \leq \mu_{\tilde{C}}(x) \forall x \in X$ and \tilde{B} \tilde{q} \tilde{C}

Definition 3.18:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **fuzzy** δ^* - **regular space** ($F\delta^*R$) if for each fuzzy point x_r in \tilde{A} and each fuzzy δ - closed set \tilde{F} with x_r \tilde{q} \tilde{F} there exists \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) \leq \mu_{B}(x)$, $\mu_{F}(x) \leq \mu_{C}(x) \forall x \in X$ and \tilde{B} \tilde{q} \tilde{C}

Proposition 3.19:

Every fuzzy δ - regular space is a fuzzy δ^* - regular space.

Proof: Obvious.

Remark 3.20:

The converse of proposition (3.19) is not true in general as shown in the following example Example 3.21:

```
Let X={ a, b } and \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{F} is a fuzzy subset of \tilde{A} where: \tilde{A} = \{(a, 0.7), (b, 0.8)\}, \tilde{B} = \{(a, 0.0), (b, 0.7)\}, \tilde{C} = \{(a, 0.6), (b, 0.0)\}, \tilde{D} = \{(a, 0.6), (b, 0.7)\}, \tilde{E} = \{(a, 0.7), (b, 0.0)\}, \tilde{E} = \{(a, 0.0), (b, 0.8)\}
```

 $\tilde{T} = \{ \widetilde{\emptyset}, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D} \}$ be a fuzzy topology on \widetilde{A} and the $F\delta O(\widetilde{A}) = \{ \widetilde{\emptyset}, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}, \widetilde{E}, \widetilde{F} \}$ Then the space $(\widetilde{A}, \widetilde{T})$ is a fuzzy δ^* - regular space but not fuzzy δ - regular space.

Definition 3.22: A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_3$ – space ($F\delta \tilde{T}_3$) if it is δ - regular space ($F\delta R$) as well as fuzzy $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$).

Proposition 3.23:

Every fuzzy $\delta \tilde{T}_3$ - space is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space .**Proof :**

Let (\tilde{A}, \tilde{T}) be a fuzzy $\delta \tilde{T}_3$ - space,

Then (\tilde{A}, \tilde{T}) be a fuzzy δ - regular space, for every fuzzy point $x_r \in FP(\tilde{A})$ and $\tilde{F} \in FC(\tilde{A})$

Such that $x_r \hat{q} \tilde{F}$, $\tilde{F} = \delta cl(\tilde{F})$

And since (\tilde{A}, \tilde{T}) be a fuzzy $\delta \tilde{T}_1$ - space then We get $\{x_r\}$ is a fuzzy δ -closed set

Let $\{x_r\} = \tilde{B}$ is a fuzzy δ -closed set

Then $\delta cl(\tilde{B}) \vec{q} \, \delta cl(\tilde{F})$, hence (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ -space

Remark 3.24 :The converse of proposition (3.23) is not true in general as shown in the following example . Example 3.25 :Let X={ a, b } and , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_3 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_8 , \tilde{B}_9 , \tilde{B}_{10} , \tilde{B}_{11} , are fuzzy subset of \tilde{A} where: $\tilde{A} = \{(a,0.8),(b,0.9)\}$, $\tilde{B}_1 = \{(a,0.8),(b,0.0)\}$, $\tilde{B}_2 = \{(a,0.0),(b,0.7)\}$, $\tilde{B}_3 = \{(a,0.8),(b,0.7)\}$, $\tilde{B}_4 = \{(a,0.1),(b,0.9)\}$, $\tilde{B}_5 = \{(a,0.6),(b,0.0)\}$, $\tilde{B}_6 = \{(a,0.1),(b,0.0)\}$, $\tilde{B}_7 = \{(a,0.6),(b,0.7)\}$, $\tilde{B}_9 = \{(a,0.6),(b,0.7)\}$, $\tilde{B}_{10} = \{(a,0.0),(b,0.7)\}$, $\tilde{B}_{11} = \{(a,0.7),(b,0.0)\}$, $\tilde{T} = \{\tilde{\emptyset}$, \tilde{A} , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_3 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_8 , \tilde{B}_9 } be a fuzzy topology on \tilde{A} and the F δ O(\tilde{A}) = $\{\tilde{\emptyset}$, \tilde{A} , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_{11} }, then the space (\tilde{A} , \tilde{T}) is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space but not fuzzyfuzzy $\delta \tilde{T}_3$ – space .

Definition 3.26: A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **fuzzy** $\delta^* \tilde{T}_3 - \text{space}(F \delta^* \tilde{T}_3)$ if it is δ^* - regular space ($F \delta^* R$) as well as fuzzy $\delta \tilde{T}_1 - \text{space}(F \delta \tilde{T}_1)$

Proposition 3.27 :Every fuzzy $\delta \tilde{T}_3$ - space is a fuzzy $\delta^* \tilde{T}_3$ - space.

Proof: Obvious

Proposition 3.28 :Every fuzzy $\delta^* \tilde{T}_3$ - space is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space .

Proof: Obvious

Remark 3.29: The converse of proposition (3.27) and (2.28) is not true in general

Definition 3.30:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be Fuzzy δ - normal space ($F\delta N$) if for each two fuzzy closed sets \tilde{F}_1 and \tilde{F}_2 in \tilde{A} such that \tilde{F}_1 \tilde{q} \tilde{F}_2 , there exists \tilde{U}_1 , \tilde{U}_2 \in F δ O(\tilde{A}) such that $\mu_{\tilde{F}_1}(x) \leq \mu_{\tilde{U}_1}(x)$, $\mu_{\tilde{F}_2}(x) \leq \mu_{\tilde{U}_2}(x)$ and \tilde{U}_1 \tilde{q} \tilde{U}_2 .

Definition 3.31:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy \delta^*- normal space** ($F\delta^*N$) if for each two fuzzy δ -closed sets \tilde{F}_1 and \tilde{F}_2 in \tilde{A} such that \tilde{F}_1 \tilde{q} \tilde{F}_2 , there exists \tilde{U}_1 , $\tilde{U}_2 \in F\delta O(\tilde{A})$ such that $\mu_{\tilde{F}_1}(x) \leq \mu_{\tilde{U}_1}(x)$, $\mu_{\tilde{F}_2}(x) \leq \mu_{\tilde{U}_2}(x)$ and \tilde{U}_1 \tilde{q} \tilde{U}_2 .

Proposition 3.32:

Every fuzzy δ - normal space is a fuzzy δ^* - normal space

Proof: Obvious.

Definition 3.33:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_4$ – space ($F\delta \tilde{T}_4$) if it is δ -normal space ($F\delta N$)as well as fuzzy $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$).

Definition 3.34:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be fuzzy $\delta^* \tilde{T}_4 - space (F\delta^* \tilde{T}_4)$ if it is δ^* - normal space ($F\delta^* N$) as well as fuzzy $\delta \tilde{T}_1 - space (F\delta \tilde{T}_1)$

Proposition 3.35:

Every fuzzy $\delta \widetilde{T}_4$ – space is a fuzzy $\delta^* \widetilde{T}_4$ – space

Proof: Obvious

Proposition 3.36:

Every fuzzy $\delta \widetilde{T}_4$ – space is a fuzzy $\delta \widetilde{T}_3$ – space

Proof: Obvious

Remark 3.37:

The converse of proposition (3.35) and (3.36) is not true in general Definition 3.38:

A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy \delta-completely normal** if for any two fuzzy δ -separated sets \tilde{B} , \tilde{C} in \tilde{A} there exist \tilde{D} , $\tilde{E} \in F\delta O(\tilde{A})$ such that $\mu_{\tilde{B}}(x) \leq \mu_{\tilde{D}}(x)$, $\mu_{\tilde{C}}(x) \leq \mu_{\tilde{E}}(x)$ and \tilde{D} \tilde{q} \tilde{E}

Definition 3.39: A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be Fuzzy $\delta \tilde{T}_5$ – space ($F\delta \tilde{T}_5$) if it is δ -completely normal space as well as fuzzy $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$).

Proposition 3.40:

Every fuzzy $\delta \widetilde{T}_5$ – space is a fuzzy $\delta \widetilde{T}_4$ – space

Proof: Obvious

Remark 3.41:

The converse of proposition (3.40) is not true in general Remark 3.42:

Figure (2) illustrate the relations among a certain types of fuzzy $\delta \widetilde{T}_i-space$, i=0 , 1 , 2 , $2\frac{1}{2},3,4,5.$

References

[1]. Zadeh L. A. "Fuzzy sets", Inform.Control 8, 338-353 (1965).

- [2]. Chang, C. L. "Fuzzy Topological Spaces", J. Math. Anal. Appl., Vol. 24, pp. 182-190, (1968).
- [3]. A.M.Zahran "fuzzy δ-continuous", fuzzy almost Regularity (normality) on fuzzy topology No fuzzy set fuzzy mathematics, Vol.3, No.1,1995, pp.89-96
- [4]. Kandill A., S. Saleh2 and M.M Yakout3 "Fuzzy Topology On Fuzzy Sets: Regularity and Separation Axioms" American Academic & Scholarly Research Journal Vol. 4, No. 2, March (2012).
- [5]. Mashhour A.S. and Ghanim M.H."Fuzzy closure spaces" J.Math.Anal.And Appl.106,pp.145-170(1985).
- [6]. Chakraborty M. K. and T. M. G. Ahsanullah "Fuzzy topology on fuzzy sets and tolerance topology" Fuzzy Sets and Systems, 45103-108(1992).

- Ismail Ibedou," A New Setting of fuzzy separation axioms "Department of Mathematics, Faculty of Science, Benha University, [7]. Benha, (13518), Egypt
- [8]. ShymaaAbdAlhassan A " On fuzzy semi-separation Axioms in fuzzy topological space on fuzzy sets"M.Sc Thesis , College of Eduction, Al-Mustansiritah University (2013).
- $N.V. Velicko "H-closed topological space" Amer. math. soc. Transl. (2), 78 (1968), \, 103-118.$
- [10].
- Sinha,S.P." separation axioms in fuzzy topological spaces"suzzy sets and system,45:261-270(1992).

 S.S.Benchalli,R.S.Wali and BasavarajM.Ittanagi "On fuzzy rw-closed sets And fuzzy rw-open sets in fuzzy topological spaces"Int.J.mathematical sciences and Applications , Vol.1,No.2,May 2011. [11].
- Shahla H. K. "On fuzzy Δ open sets in fuzzy topological spaces" M. Sc. Thesis, college of science, Salahddin Univ. (2004). [12].
- [13]. R.UshaParameswari and K.Bageerathi" On fuzzy γ -semi open sets and fuzzy γ -semi closed sets in fuzzy topological spaces" IOSR Journal of mathematics, Vol 7, pp 63-70, (May-Jun. 2013).
- M.E. El-shafei and A. Zakari," 0-generalized closed sets in fuzzy topological spaces " The Arabian Journal for science and [14]. Engineering 31(2A) (2006), 197-206.
- [15]. Luay A.Al. Swidi, Amed S.A.Oon, Fuzzy γ-open sets and fuzzy γ-closed sets " Americal Journal of Scientific research, 27(2011), 62-