On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy Sets Assist.Prof. Dr.Munir Abdul Khalik AL-Khafaji Gazwanhaider Abdul Hussein AL-Mustinsiryah University \ College of Education \ Department of Mathematics **Abstract:** The aim of this paper to introduce and study fuzzy δ -open set and the relations of some other class of fuzzy open sets like (R-open set, θ -open set, Δ -open set), introduce and study some types of fuzzy δ -separation axioms in fuzzy topological space on fuzzy sets and study the relations between of themand study some properties and theorems on this subject ### I. Introduction The concept of fuzzy set was introduced by Zedeh in his classical paper [1] in 1965. The fuzzy topological space was introduced by Chang [2] in 1968. Zahran [3] has introduced the concepts of fuzzy δ -open sets, fuzzy regular open sets, fuzzy regular closed sets. And LuayA.Al.Swidi,AmedS.A.Oon [15] introduced the notion of γ -open set, fuzzy γ -closed set and studied some of its properties. N.V.Velicko[9] introduced the concept of fuzzy θ -open set, fuzzy θ -closed set,the fuzzy separation axioms was defined bySinha[10],And Ismail Ibedou[7]introduced anewsetting of fuzzy separation axioms. The purpose of the present paper is to introduce and study the concepts of fuzzy δ -open sets and some types of fuzzy open set and relationships between of them and study some types of fuzzy δ -separation axioms in fuzzy topological space on fuzzy sets and study the relationships between of them and we examine the validity of the standard results. # 1 .fuzzy topological space on fuzzy set **Definition 1.1 [4]**Let X be a non empty set, a fuzzy set \tilde{A} in X is characterized by a function $\mu_{\tilde{A}}\colon X\to I$, where I=[0,1] which is written as $\tilde{A}=\{(x,\mu_{\tilde{A}}(x))\colon x\in X\ ,0\leq \mu_{\tilde{A}}(x)\leq 1\}$, the collection of all fuzzy sets in X will be denoted by I^X , that is $I^X=\{\tilde{A}:\tilde{A}:\tilde{A}\text{ is a fuzzy sets in }X\}$ where $\mu_{\tilde{A}}$ is called the membership function . Proposition 1.2 [5] Let \tilde{A} and \tilde{B} be two fuzzy sets in X with membership functions $\mu_{\tilde{A}}$ and $\mu_{\tilde{B}}$ respectively then for all $x \in X$: - 1. $\tilde{A} \subseteq \tilde{B} \leftrightarrow \mu_{\tilde{A}}(x) \leq \mu_{\tilde{B}}(x)$. - 2. $\tilde{A} = \tilde{B} \leftrightarrow \tilde{\mu}_{\tilde{A}}(x) = \tilde{\mu}_{\tilde{B}}(x)$. - 3. $\tilde{C} = \tilde{A} \cap \tilde{B} \leftrightarrow C(x) = \min\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}.$ - 4. $\tilde{D} = \tilde{A} \cup \tilde{B} \leftrightarrow D(x) = \max\{\mu_{\tilde{A}}(x), \mu_{\tilde{B}}(x)\}.$ - 5. \tilde{B}^c the complement of \tilde{B} with membership function $\mu_{\tilde{B}^c}(x) = \mu_{\tilde{A}}(x) \mu_{\tilde{B}}(x)$. # Definition 1.3 [4] A fuzzy point x_r is a fuzzy set such that : $\mu_{x_r}(y) = r > 0$ if x = y, $\forall y \in X$ and $\mu_{x_r}(y) = 0$ if $x \neq y$, $\forall y \in X$ The family of all fuzzy points of \tilde{A} will be denoted by $FP(\tilde{A})$. $\text{\bf Remark 1.4 [6]:} \ \text{Let} \quad \tilde{A} \in \ I^X \ \ \text{then} \quad P(\tilde{A}) \ = \ \{ \ \tilde{B} : \tilde{B} \in \ I^X \ , \ \mu_{\tilde{B}}(x) \leq \mu_{\widetilde{A}}(x) \ \ \} \ \forall x \in X \ .$ #### Definition 1.5 [4] A collection \tilde{T} of a fuzzy subsets of \tilde{A} , such that $\tilde{T} \subseteq P(\tilde{A})$ is said to be fuzzy topology on \tilde{A} if it satisfied the following conditions - 1. \tilde{A} , $\tilde{\phi} \in \tilde{T}$ - 2. If \tilde{B} , $\tilde{C} \in \tilde{T}$ then $\tilde{B} \cap \tilde{C} \in \tilde{T}$ - 3. If $\tilde{B}_i \in \tilde{T}$ then $\bigcup_i \tilde{B}_i \in \tilde{T}, j \in J$ (\tilde{A},\tilde{T}) is said to be Fuzzy topological space and every member of \tilde{T} is called fuzzy open set in \tilde{A} and its complement is a fuzzy closed set . # 2. On some types of fuzzy open set # **Definition 2.1 [8,11,12,13,14]** A fuzzy set \tilde{B} in a fuzzy topological space (\tilde{A}, \tilde{T}) is said to be - 1) Fuzzy δ -open [resp.Fuzzy δ -closed set] set if $\mu_{\text{Int}\left(\text{Cl}(\widetilde{B})\right)}(x) \leq \mu_{\widetilde{B}}(x)$ - $[\mu_{\tilde{B}}(x) \leq \mu_{Cl(Int(\tilde{B}))}(x)]$ The family of all fuzzy δ -open sets [resp. fuzzy δ -closed sets] in a fuzzy topological space (\tilde{A}, \tilde{T}) will be denoted by $F\delta O(\tilde{A})$ [resp. $F\delta C(\tilde{A})$] - 2) Fuzzy regular open [Fuzzy regular closed] set if: - $\mu_{\tilde{B}}(x) = \mu_{Int(Cl(\tilde{B}))}(x)[\mu_{\tilde{B}}(x) = \mu_{Cl(Int(\tilde{B}))}(x)]$, The family of all fuzzy regular open [fuzzy regular closed] set in \tilde{A} will be denoted by $FRO(\tilde{A})[FRC(\tilde{A})]$. - 3) Fuzzy Δ -open set if for every point $x_r \in \tilde{B}$ there exist a fuzzy regular semi-open set \tilde{U} in \tilde{A} such that $\mu_{x_r}(x) \leq \mu_{\tilde{U}}(x) \leq \mu_{\tilde{B}}(x)$, \tilde{B} is called [Fuzzy Δ -closed] set if its complement is Fuzz Δ -open set the family of all Fuzzy Δ -open [Fuzzy Δ -closed] sets in \tilde{A} will be denoted by F Δ O(\tilde{A})[F Δ C(\tilde{A})]. - 4) Fuzzy $\gamma open [\gamma closed]$ set if $\mu_{\tilde{B}}(x) \leq \max \{\mu_{Int(Cl(\tilde{B}))}(x), \mu_{Cl(int(\tilde{B}))}(x)\}$, $[\mu_{\tilde{B}}(x) \geq \min \{\mu_{Int(Cl(\tilde{B}))}(x), \mu_{Cl(int(\tilde{B}))}(x)\}]$ The family of all fuzzy γ open [fuzzy γ closed] sets in \tilde{A} will be denoted by $F\gamma O(\tilde{A})$ [$F\gamma C(\tilde{A})$]. - Fuzzy θ -open [θ -closed] set if $\mu_{\mathcal{B}}(x) = \mu_{\theta Int(\mathcal{B})}(x)$, [$\mu_{\mathcal{B}}(x) = \mu_{\theta Cl(\mathcal{B})}(x)$] The family of all fuzzy θ -open (fuzzy θ -closed) sets in \tilde{A} will be denoted by $F\theta O(\tilde{A})$ [$F\theta C(\tilde{A})$]. #### **Proposition 2.2** Let (\tilde{A}, \tilde{T}) be a fuzzy topological space then : - 1) Every fuzzy δ -open set (resp. fuzzy δ -closed set) is fuzzy Δ -open set (resp. fuzzy Δ -closed set) [fuzzy γ -open set (resp. fuzzy γ -closed set)]. - 2) Every fuzzy θ -open set (resp. fuzzy θ -closed set) is fuzzy γ -open set (resp. fuzzy γ -closed set) [fuzzy δ -open set (resp. fuzzy δ -closed set, fuzzy δ -closed set)] - 3) Every fuzzy regular open set (fuzzy regular closed set) is fuzzy δ -open set (resp. fuzzy δ -closed set) [fuzzy γ -open set(resp. fuzzy γ -closed set), fuzzy δ -open set(resp. fuzzy δ -closed set)] **Proof**: Obvious. #### Remark 2.3 The converse of proposition (2.2) is not true in general as following examples shows #### Examples 2.4 - 1) Let $X = \{a, b\}$ and \tilde{B} , \tilde{C} , \tilde{D} are fuzzy subset in \tilde{A} where $\tilde{A} = \{(a, 0.9), (b, 0.9)\}$, $\tilde{B} = \{(a, 0.0), (b, 0.7)\}$, $\tilde{C} = \{(a, 0.8), (b, 0.0)\}$, $\tilde{D} = \{(a, 0.8), (b, 0.7)\}$, The fuzzy topology defined on \tilde{A} is $\tilde{T} = \{\emptyset, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}\}$ - The fuzzy set \widetilde{D} is a fuzzy Δ -open set but not fuzzy δ open set (fuzzy regular open set, fuzzy θ open set). - let $X = \{a, b, c\}$ and \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} are fuzzy subset in \tilde{A} where $\tilde{A} = \{(a, 0.9), (b, 0.9), (c, 0.9)\}$, $\tilde{B} = \{(a, 0.3), (b, 0.3), (c, 0.4)\}$, $\tilde{C} = \{(a, 0.4), (b, 0.3), (c, 0.4)\}$, $\tilde{C} = \{(a, 0.4), (b, 0.3), (c, 0.4)\}$, $\tilde{C} = \{(a, 0.5), (b, 0.5), (c, 0.4)\}$, $\tilde{E} = \{(a, 0.6), (b, 0.6), (c, 0.7)\}$, The fuzzy topology defined on \tilde{A} is $\tilde{T} = \{\emptyset, \tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}\}$ - The fuzzy set \tilde{B} is a fuzzy γ open set but not fuzzy δ open set (fuzzy regular open set, fuzzy θ open set). - 2) Let $X = \{a, b, c\}$ and \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} , \tilde{F} be fuzzy subsets of \tilde{A} where: $\tilde{A} = \{(a,0.8),(b,0.8),(c,0.8)\}$, $\tilde{B} = \{(a,0.1),(b,0.1),(c,0.2)\}$, $\tilde{C} = \{(a,0.2),(b,0.1),(c,0.2)\}$, $\tilde{E} = \{(a,0.3),(b,0.3),(c,0.2)\}$, $\tilde{E} = \{(a,0.4),(b,0.4),(c,0.5)\}$, $\tilde{F} = \{(a,0.3),(b,0.3),(c,0.3)\}$. The fuzzy topologies defined on \tilde{A} are $\tilde{T} = \{\tilde{\phi},\tilde{A},\tilde{B},\tilde{C},\tilde{D}\}$. The fuzzy set \tilde{E} is a fuzzy δ -open set but not fuzzy regular open set (fuzzy θ -open set). #### Remark 2.5 Figure - 1 – illustrates the relation between fuzzy δ -open set and some types of fuzzy open sets. III. Some Types Of Fuzzy Separation Axioms # **Definition 3.1** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_0$ – **space**($F\delta \tilde{T}_0$) if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist $\tilde{B} \in F\delta O(\tilde{A})$ such that either $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $y_t \tilde{q} \tilde{B}$ or $\mu_{y_t}(y) < \mu_{\tilde{B}}(y)$, $x_r \tilde{q} \tilde{B}$. #### Theorem 3.2 If (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_0$ - space then for every pair of distinct fuzzy points x_r , y_t where $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ then either δ -cl $(x_r) \tilde{q} y_t$ or δ -cl $(y_t) \tilde{q} x_r$. #### Proof: - Let x_r , y_t be two distinct fuzzy points such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ then there exist a fuzzy δ - open set \tilde{B} such that either $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, \tilde{B} \tilde{q} y_t or $\mu_{y_t}(x) < \mu_{\tilde{B}}(x)$, \tilde{B} \tilde{q} x_r If $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $\tilde{B} \hat{q} y_t$ then $\tilde{B}^c \hat{q} x_r$, $\mu_{y_t}(x) \leq \mu_{\tilde{B}^c}(x)$ Since \tilde{B}^c is a fuzzy δ - closed set therefore $\mu_{\delta cl(y_t)}(x) \leq \mu_{\tilde{B}^c}(x)$ Hence δ - cl $(y_t) \hat{q} x_r$ Similarly if $\mu_{v_t}(x) < \mu_{\tilde{B}}(x)$, $\tilde{B} \tilde{q} x_r \blacksquare$ #### **Definition 3.3:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$) if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist two \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, y_t $\tilde{q}\tilde{B}$ and $\mu_{y_t}(y) < \mu_{\tilde{C}}(y)$, x_r \tilde{q} \tilde{C} . # **Proposition 3.4:** Every fuzzy $\delta \tilde{T}_1$ – space is a fuzzy $\delta \tilde{T}_0$ – space . **Proof:** Obvious. ## **Remark 3.5:** # The converse of proposition (3.4) is not true in general as shown in the following example . Example 3.6: Let $X=\{a,b\}$ and \tilde{B} , \tilde{C} , \tilde{D} are fuzzy subset of \tilde{A} where: $\tilde{A}=\{(a,0.4),(b,0.4)\}$, $\tilde{B}=\{(a,0.4),(b,0.1)\}$, $\tilde{C}=\{(a,0.1),(b,0.1)\}$, $\tilde{D}=\{(a,0.4),(b,0.2)\}$, $\tilde{E}=\{(a,0.3),(b,0.1)\}$, $\tilde{T}=\{\tilde{\emptyset},\tilde{A},\tilde{B},\tilde{C},\tilde{D}\}$ be a fuzzy topology on \tilde{A} and the $F\delta O(\tilde{A})=\{\tilde{\emptyset},\tilde{A},\tilde{C},\tilde{C},\tilde{D}\}$ Then the space (\tilde{A},\tilde{T}) is a fuzzy $\delta \tilde{T}_0$ - space but notfuzzy $\delta \tilde{T}_1$ - space # Theorem 3.7: If (\tilde{A} , \tilde{T}) is a fuzzy Topological space then the following statements are equivalents : 1) (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_1$ - space. - 2) For every maximal fuzzy points x_r , y_t in \tilde{A} , there exists a fuzzy open nbhds sets \tilde{U} and \tilde{V} of x_r and y_t respectively in \tilde{A} such that $\mu_{x_r}(x) = \min \{\{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$ and $\mu_{y_t}(y) = \min \{\{ \mu_{(\tilde{V})}(x), \mu_{(\tilde{V})}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$. - 3) For every maximal fuzzy points x_r , y_t in $\tilde{\mathbf{A}}$, there exists a fuzzy δ-open nbhds sets $\tilde{\mathbf{U}}$ and $\tilde{\mathbf{V}}$ of x_r and y_t respectively in $\tilde{\mathbf{A}}$ such that $\mu_{x_r}(x) = \min \{\{\mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y)\}, \{\mu_{x_r}(x), \mu_{y_t}(y)\}\}$ and $\mu_{y_t}(y) = \min \{\{\mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y)\}, \{\mu_{x_r}(x), \mu_{y_t}(y)\}\}$. #### Proof: ``` (1\Longrightarrow 2) :- Let x_r , y_t \in \text{MFP}(\tilde{\mathbf{A}}) , \exists \ \tilde{\mathbf{U}} , \tilde{\mathbf{V}} \in \text{F}\delta \mathbf{O}(\tilde{\mathbf{A}}) ``` such that $\mu_{x_r}(x) < \mu_{\tilde{U}}(x)$, $y_t \tilde{q} \tilde{U}$ and $\mu_{y_t}(y) < \mu_{(\tilde{V})}(y)$, $x_r \tilde{q} \tilde{V}$.then $\mu_{x_r}(x) = \mu_{\tilde{U}}(x) = \mu_{\tilde{A}}(x)$ $\mu_{y_t}(y) + \mu_{\tilde{U}}(y) \leq \mu_{\tilde{A}}(y)$ and $\mu_{y_t}(y) = \mu_{(\tilde{V})}(y) = \mu_{\tilde{A}}(y) \ , \ \mu_{x_r}(x) + \ \mu_{(\tilde{V})}(x) \leq \mu_{\tilde{A}}(x) \\ \text{then } \ \mu_{\tilde{U}}(y) = 0 \ , \ \mu_{(\tilde{V})}(x) = 0 \ , \text{and since } \tilde{\mathbf{U}} \ , \tilde{\mathbf{V}} \in \tilde{\mathbf{F}} \\ \delta O(\tilde{\mathbf{A}}) \ \ \text{then } \ \tilde{\mathbf{U}} \ , \tilde{\mathbf{V}} \in \tilde{\mathbf{T}}$ Therefore $\mu_{x_r}(x) = \min \{ \{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$ and $\mu_{y_t}(y) = \min \{ \{ \mu_{(V)}(x), \mu_{(V)}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}.$ # $(2 \Longrightarrow 3)$:- Obvious. (3 \Rightarrow 1):- Let x_n , $y_m \in \mathrm{FP}(\tilde{\mathrm{A}})$, then every x_r , $y_t \in \mathrm{MFP}(\tilde{\mathrm{A}})$, there exist $\tilde{\mathrm{U}}$, $\tilde{\mathrm{V}} \in \mathrm{F}\delta\mathrm{O}(\tilde{\mathrm{A}})$ such that $\mu_{x_r}(x) = \min \{ \{ \mu_{\tilde{U}}(x), \mu_{\tilde{U}}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}$ and $\mu_{y_t}(y) = \min \{ \{ \mu_{(\tilde{V})}(x), \mu_{(\tilde{V})}(y) \}, \{ \mu_{x_r}(x), \mu_{y_t}(y) \} \}.$ then $\mu_{x_r}(x)=\mu_{\tilde{U}}(x)=\mu_{\tilde{A}}(x)$, $\mu_{\tilde{U}}(y)=0$ and $\mu_{y_t}(y) = \mu_{(\tilde{V})}(y) = \mu_{\tilde{A}}(y)$, $\mu_{(\tilde{V})}(x) = 0$ $\operatorname{then} y_t \, \widehat{q} \, \tilde{\mathbf{U}} \quad \text{ and } \quad x_r \, \widehat{q} \, \, \tilde{\mathbf{V}}, \operatorname{Since} \, \mu_{x_n}(x) \, < \mu_{x_r}(x) \, \operatorname{and} \, \, \mu_{y_m}(y) < \mu_{y_t}(y) \quad , \, \forall \ \, \mathbf{n} \quad , \, \mathbf{m} \in \, \mathbf{I}$ then $\mu_{x_n}(x) < \mu_{\tilde{U}}(x)$, $y_m \tilde{q} \tilde{U}$ and $\mu_{y_m}(y) < \mu_{(\tilde{V})}(y)$, $x_n \tilde{q} \tilde{V}$ Hence the space (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_1$ -space. # Definition 3.8 A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_2$ – space ($F\delta \tilde{T}_2$) if for every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist two \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $\mu_{y_t}(y) < \mu_{\tilde{C}}(y)$ and \tilde{B} \tilde{G} \tilde{C} . # Theorem 3.9: A fuzzy topological space (\tilde{A}, \tilde{T}) is a fuzzy $\delta - \tilde{T}_2$ –space if and only if $\min\{\mu_{\delta cl(\tilde{U})}(x) : \tilde{U} \text{ is a fuzzy } \delta \text{-open set } \mu_{x_*}(x) < \mu_{\tilde{U}}(x) \} < \mu_{v_*}(x)$ any fuzzy point such that $\mu_{v_*}(x) < \mu_{\tilde{A}}(x)$. #### Proof: (\Longrightarrow) Let (\tilde{A}, \tilde{T}) be a fuzzy δ- \tilde{T}_2 -space and x_r , y_t be a distinct fuzzy points in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ and $\mu_{y_n}(x) = \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ then $\mu_{y_n}(x) < \mu_{\tilde{A}}(x)$ and there exists two fuzzy δ -open set \tilde{U} , \tilde{G} in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{U}}(x)$, $\mu_{y_n}(x) < \mu_{\tilde{G}}(x)$, \tilde{U} \tilde{G} \tilde{G} , $\mu_{\tilde{U}}(x) \leq \mu_{\tilde{G}^c}(x)$ and $\mu_{\delta cl(\tilde{U})}(x) \leq \mu_{\delta cl(\tilde{G}^c)}(x) = \mu_{\tilde{G}^c}(x)$ Since $\mu_{\nu_n}(x) < \mu_{\tilde{G}}(x)$ and $\mu_{\nu_n}(x) = \mu_{\tilde{A}}(x) - \mu_{\nu_t}(x)$, Then $\mu_{\tilde{A}}(x) - \mu_{y_t}(x) < \mu_{\tilde{G}}(x)$, $\mu_{\tilde{G}^c}(x) < \mu_{\tilde{A}}(x) - \mu_{y_n}(x)$ and $\mu_{\tilde{G}^c}(x) < \mu_{y_t}(x)$ Since $\mu_{\delta cl(\mathcal{O})}(x) \le \mu_{\mathcal{G}^c}(x) < \mu_{y_t}(x)$ then $\mu_{\delta cl(\mathcal{O})}(x) < \mu_{y_t}(x)$ Hence $\min\{\mu_{\delta cl(\widetilde{U}i)}(\mathbf{x}): i=1,\ldots,n\} < \mu_{v_t}(\mathbf{x})$ (\Leftarrow) Suppose that given condition hold x_r , y_t are distinct fuzzy points in \tilde{A} such that $\mu_{x_r}(x) < \mu_{\tilde{A}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{A}}(x)$ and Let $\mu_{y_n}(x) = \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ then $\mu_{y_n}(x) < \mu_{\tilde{A}}(x)$ And $\mu_{\delta cl(\tilde{U})}(x) < \mu_{\gamma_n}(x)$ for every $\mu_{x_r}(x) < \mu_{\tilde{U}}(x) \le \mu_{\delta cl(\tilde{U})}(x)$, since $\mu_{y_n}(x) = \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ Then $\mu_{\delta cl(\mathcal{O})}(x) < \mu_{\tilde{A}}(x) - \mu_{y_t}(x)$ and $\mu_{\tilde{A}}(x) - \mu_{y_n}(x) < \mu_{\delta int(\mathcal{O}^c)}(x)$ hence $\mu_{y_t}(x) < \mu_{\delta int(\mathcal{O}^c)}(x)$ $\operatorname{let} \mu_{\tilde{G}}(x) = \mu_{\delta int}(\tilde{U}^c)(x)$ and since $\mu_{\delta int}(\tilde{U}^c)(x) \leq \mu_{(\tilde{U}^c)}(x)$, Then $\mu_{v_t}(x) < \mu_{\tilde{G}}(x) \text{ and } \mu_{\tilde{G}}(x) \le \mu_{(\tilde{U}^c)}(x) \text{ we get } \tilde{U} \tilde{q} \tilde{G}$ Hence the space (\tilde{A}, \tilde{T}) is a fuzzy $\delta - \tilde{T}_2$ –space #### Proposition 3.10: Every fuzzy $\delta \tilde{T}_2$ – space is a fuzzy $\delta \tilde{T}_1$ – space . **Proof:** Obvious. #### **Remark 3.11:** The converse of proposition (3.10) is not true in general as shown in the following example . Example 3.12: Let $X=\{a,b\}$ and \tilde{B} , \tilde{C} , \tilde{D} , \tilde{E} are fuzzy subset of \tilde{A} where: $\tilde{A}=\{(a,0.7),(b,0.9)\}, \tilde{B}=\{(a,0.5),(b,0.0)\}, \tilde{C}=\{(a,0.0),(b,0.7)\}, \tilde{D}=\{(a,0.5),(b,0.7)\}, \tilde{E}=\{(a,0.1),(b,0.8)\}, \tilde{F}=\{(a,0.6),(b,0.1)\}, \tilde{T}=\{\tilde{\emptyset},\tilde{A},\tilde{B},\tilde{C},\tilde{D}\}$ be a fuzzy topology on \tilde{A} and the $F\delta O(\tilde{A})=\{\tilde{\emptyset},\tilde{A},\tilde{B},\tilde{C},\tilde{D},\tilde{E},\tilde{F}\}$ then the space (\tilde{A},\tilde{T}) is a fuzzy $\delta \tilde{T}_1$ - space but not fuzzy $\delta \tilde{T}_2$ - space # **Definition 3.13:** A fuzzy topological space ($\tilde{\mathbf{A}}$, $\tilde{\mathbf{T}}$) is said to be **Fuzzy** $\boldsymbol{\delta} \, \widetilde{\boldsymbol{T}}_{2\frac{1}{2}}$ - **space** ($\mathbf{F} \boldsymbol{\delta} \widetilde{\boldsymbol{T}}_{2\frac{1}{2}}$) if for every pair of distinct fuzzy points x_r , y_t in $\tilde{\mathbf{A}}$ there exist two $\tilde{\mathbf{B}}$, $\tilde{\mathcal{C}} \in \mathrm{F} \delta \mathrm{O}(\tilde{\mathbf{A}})$ such that $\mu_{x_r}(x) < \mu_{\tilde{\mathcal{B}}}(x)$, $\mu_{y_t}(x) < \mu_{\mathcal{C}}(x)$ and $\delta cl(\tilde{\mathcal{B}}) \, \widetilde{\boldsymbol{q}} \, \delta cl(\tilde{\mathcal{C}})$. #### **Proposition 3.14:** Every fuzzy $\delta \tilde{T}_{2^{\frac{1}{2}-}}$ space is a fuzzy $\delta \tilde{T}_2$ - space . #### Proof: Let (\tilde{A}, \tilde{T}) be a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space, then every pair of distinct fuzzy points x_r , y_t in \tilde{A} there exist two \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) < \mu_{\tilde{B}}(x)$, $\mu_{y_t}(x) < \mu_{\tilde{C}}(x)$ and $\delta cl(\tilde{B})$ \tilde{q} $\delta cl(\tilde{C})$ Since $\mu_{\tilde{B}}(x) \leq \delta cl(\tilde{B})$, $\mu_{C}(x) \leq \delta cl(\tilde{C})$ Then We get \tilde{B} \tilde{q} \tilde{C} , hence (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_2$ - space # **Remark 3.15:** The converse of proposition (3.14) is not true in general as shown in the following example # .Example 3.16: Let X={ a , b } and , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_3 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_8 , are fuzzy subset of \tilde{A} where: $\tilde{A} = \{(a,0.9),(b,0.9)\}$, $\tilde{B}_1 = \{(a,0.8),(b,0.1)\}$, $\tilde{B}_2 = \{(a,0.0),(b,0.7)\}$, $\tilde{B}_3 = \{(a,0.8),(b,0.7)\}$, $\tilde{B}_4 = \{(a,0.0),(b,0.1)\}$, $\tilde{B}_5 = \{(a,0.0),(b,0.9)\}$, $\tilde{B}_6 = \{(a,0.8),(b,0.9)\}$, $\tilde{B}_7 = \{(a,0.0),(b,0.8)\}$ $\tilde{B}_8 = \{(a,0.8),(b,0.9)\}$, $\tilde{T} = \{\tilde{\emptyset},\tilde{A},\tilde{B}_1,\tilde{B}_2,\tilde{B}_3,\tilde{B}_4,\tilde{B}_5,\tilde{B}_6\}$ be a fuzzy topology on \tilde{A} and the F δ O(\tilde{A}) = $\{\tilde{\emptyset},\tilde{A},\tilde{B}_1,\tilde{B}_2,\tilde{B}_4,\tilde{B}_7,\tilde{B}_8\}$, then the space (\tilde{A},\tilde{T}) is a fuzzy $\delta\tilde{T}_2$ - space but not fuzzy $\delta\tilde{T}_2$ -space **Definition 3.17:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy \delta- regular space** ($F\delta R$) if for each fuzzy point x_r in \tilde{A} and each fuzzy closed set \tilde{F} with x_r \tilde{q} \tilde{F} there exists \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) \leq \mu_{\tilde{B}}(x)$, $\mu_{\tilde{F}}(x) \leq \mu_{\tilde{C}}(x) \forall x \in X$ and \tilde{B} \tilde{q} \tilde{C} # **Definition 3.18:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **fuzzy** δ^* - **regular space** ($F\delta^*R$) if for each fuzzy point x_r in \tilde{A} and each fuzzy δ - closed set \tilde{F} with x_r \tilde{q} \tilde{F} there exists \tilde{B} , $\tilde{C} \in F\delta O(\tilde{A})$ such that $\mu_{x_r}(x) \leq \mu_{B}(x)$, $\mu_{F}(x) \leq \mu_{C}(x) \forall x \in X$ and \tilde{B} \tilde{q} \tilde{C} # **Proposition 3.19:** Every fuzzy δ - regular space is a fuzzy δ^* - regular space. Proof: Obvious. # **Remark 3.20:** The converse of proposition (3.19) is not true in general as shown in the following example Example 3.21: ``` Let X={ a, b } and \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}, \tilde{F} is a fuzzy subset of \tilde{A} where: \tilde{A} = \{(a, 0.7), (b, 0.8)\}, \tilde{B} = \{(a, 0.0), (b, 0.7)\}, \tilde{C} = \{(a, 0.6), (b, 0.0)\}, \tilde{D} = \{(a, 0.6), (b, 0.7)\}, \tilde{E} = \{(a, 0.7), (b, 0.0)\}, \tilde{E} = \{(a, 0.0), (b, 0.8)\} ``` $\tilde{T} = \{ \widetilde{\emptyset}, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D} \}$ be a fuzzy topology on \widetilde{A} and the $F\delta O(\widetilde{A}) = \{ \widetilde{\emptyset}, \widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}, \widetilde{E}, \widetilde{F} \}$ Then the space $(\widetilde{A}, \widetilde{T})$ is a fuzzy δ^* - regular space but not fuzzy δ - regular space. **Definition 3.22:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_3$ – space ($F\delta \tilde{T}_3$) if it is δ - regular space ($F\delta R$) as well as fuzzy $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$). ### **Proposition 3.23:** Every fuzzy $\delta \tilde{T}_3$ - space is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space .**Proof :** Let (\tilde{A}, \tilde{T}) be a fuzzy $\delta \tilde{T}_3$ - space, Then (\tilde{A}, \tilde{T}) be a fuzzy δ - regular space, for every fuzzy point $x_r \in FP(\tilde{A})$ and $\tilde{F} \in FC(\tilde{A})$ Such that $x_r \hat{q} \tilde{F}$, $\tilde{F} = \delta cl(\tilde{F})$ And since (\tilde{A}, \tilde{T}) be a fuzzy $\delta \tilde{T}_1$ - space then We get $\{x_r\}$ is a fuzzy δ -closed set Let $\{x_r\} = \tilde{B}$ is a fuzzy δ -closed set Then $\delta cl(\tilde{B}) \vec{q} \, \delta cl(\tilde{F})$, hence (\tilde{A}, \tilde{T}) is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ -space Remark 3.24 :The converse of proposition (3.23) is not true in general as shown in the following example . Example 3.25 :Let X={ a, b } and , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_3 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_8 , \tilde{B}_9 , \tilde{B}_{10} , \tilde{B}_{11} , are fuzzy subset of \tilde{A} where: $\tilde{A} = \{(a,0.8),(b,0.9)\}$, $\tilde{B}_1 = \{(a,0.8),(b,0.0)\}$, $\tilde{B}_2 = \{(a,0.0),(b,0.7)\}$, $\tilde{B}_3 = \{(a,0.8),(b,0.7)\}$, $\tilde{B}_4 = \{(a,0.1),(b,0.9)\}$, $\tilde{B}_5 = \{(a,0.6),(b,0.0)\}$, $\tilde{B}_6 = \{(a,0.1),(b,0.0)\}$, $\tilde{B}_7 = \{(a,0.6),(b,0.7)\}$, $\tilde{B}_9 = \{(a,0.6),(b,0.7)\}$, $\tilde{B}_{10} = \{(a,0.0),(b,0.7)\}$, $\tilde{B}_{11} = \{(a,0.7),(b,0.0)\}$, $\tilde{T} = \{\tilde{\emptyset}$, \tilde{A} , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_3 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_8 , \tilde{B}_9 } be a fuzzy topology on \tilde{A} and the F δ O(\tilde{A}) = $\{\tilde{\emptyset}$, \tilde{A} , \tilde{B}_1 , \tilde{B}_2 , \tilde{B}_4 , \tilde{B}_5 , \tilde{B}_6 , \tilde{B}_7 , \tilde{B}_{11} }, then the space (\tilde{A} , \tilde{T}) is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space but not fuzzyfuzzy $\delta \tilde{T}_3$ – space . **Definition 3.26**: A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **fuzzy** $\delta^* \tilde{T}_3 - \text{space}(F \delta^* \tilde{T}_3)$ if it is δ^* - regular space ($F \delta^* R$) as well as fuzzy $\delta \tilde{T}_1 - \text{space}(F \delta \tilde{T}_1)$ **Proposition 3.27 :**Every fuzzy $\delta \tilde{T}_3$ - space is a fuzzy $\delta^* \tilde{T}_3$ - space. **Proof:** Obvious **Proposition 3.28 :**Every fuzzy $\delta^* \tilde{T}_3$ - space is a fuzzy $\delta \tilde{T}_{2\frac{1}{2}}$ - space . **Proof:** Obvious # Remark 3.29: The converse of proposition (3.27) and (2.28) is not true in general #### **Definition 3.30:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be Fuzzy δ - normal space ($F\delta N$) if for each two fuzzy closed sets \tilde{F}_1 and \tilde{F}_2 in \tilde{A} such that \tilde{F}_1 \tilde{q} \tilde{F}_2 , there exists \tilde{U}_1 , \tilde{U}_2 \in F δ O(\tilde{A}) such that $\mu_{\tilde{F}_1}(x) \leq \mu_{\tilde{U}_1}(x)$, $\mu_{\tilde{F}_2}(x) \leq \mu_{\tilde{U}_2}(x)$ and \tilde{U}_1 \tilde{q} \tilde{U}_2 . #### **Definition 3.31:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy \delta^*- normal space** ($F\delta^*N$) if for each two fuzzy δ -closed sets \tilde{F}_1 and \tilde{F}_2 in \tilde{A} such that \tilde{F}_1 \tilde{q} \tilde{F}_2 , there exists \tilde{U}_1 , $\tilde{U}_2 \in F\delta O(\tilde{A})$ such that $\mu_{\tilde{F}_1}(x) \leq \mu_{\tilde{U}_1}(x)$, $\mu_{\tilde{F}_2}(x) \leq \mu_{\tilde{U}_2}(x)$ and \tilde{U}_1 \tilde{q} \tilde{U}_2 . # **Proposition 3.32:** Every fuzzy δ - normal space is a fuzzy δ^* - normal space Proof: Obvious. # **Definition 3.33:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy** $\delta \tilde{T}_4$ – space ($F\delta \tilde{T}_4$) if it is δ -normal space ($F\delta N$)as well as fuzzy $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$). #### **Definition 3.34:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be fuzzy $\delta^* \tilde{T}_4 - space (F\delta^* \tilde{T}_4)$ if it is δ^* - normal space ($F\delta^* N$) as well as fuzzy $\delta \tilde{T}_1 - space (F\delta \tilde{T}_1)$ ### **Proposition 3.35:** Every fuzzy $\delta \widetilde{T}_4$ – space is a fuzzy $\delta^* \widetilde{T}_4$ – space **Proof:** Obvious # **Proposition 3.36:** Every fuzzy $\delta \widetilde{T}_4$ – space is a fuzzy $\delta \widetilde{T}_3$ – space **Proof:** Obvious #### **Remark 3.37:** # The converse of proposition (3.35) and (3.36) is not true in general Definition 3.38: A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be **Fuzzy \delta-completely normal** if for any two fuzzy δ -separated sets \tilde{B} , \tilde{C} in \tilde{A} there exist \tilde{D} , $\tilde{E} \in F\delta O(\tilde{A})$ such that $\mu_{\tilde{B}}(x) \leq \mu_{\tilde{D}}(x)$, $\mu_{\tilde{C}}(x) \leq \mu_{\tilde{E}}(x)$ and \tilde{D} \tilde{q} \tilde{E} **Definition 3.39:** A fuzzy topological space (\tilde{A} , \tilde{T}) is said to be Fuzzy $\delta \tilde{T}_5$ – space ($F\delta \tilde{T}_5$) if it is δ -completely normal space as well as fuzzy $\delta \tilde{T}_1$ – space ($F\delta \tilde{T}_1$). # **Proposition 3.40:** Every fuzzy $\delta \widetilde{T}_5$ – space is a fuzzy $\delta \widetilde{T}_4$ – space **Proof:** Obvious ### **Remark 3.41:** # The converse of proposition (3.40) is not true in general Remark 3.42: Figure (2) illustrate the relations among a certain types of fuzzy $\delta \widetilde{T}_i-space$, i=0 , 1 , 2 , $2\frac{1}{2},3,4,5.$ References # [1]. Zadeh L. A. "Fuzzy sets", Inform.Control 8, 338-353 (1965). - [2]. Chang, C. L. "Fuzzy Topological Spaces", J. Math. Anal. Appl., Vol. 24, pp. 182-190, (1968). - [3]. A.M.Zahran "fuzzy δ-continuous", fuzzy almost Regularity (normality) on fuzzy topology No fuzzy set fuzzy mathematics, Vol.3, No.1,1995, pp.89-96 - [4]. Kandill A., S. Saleh2 and M.M Yakout3 "Fuzzy Topology On Fuzzy Sets: Regularity and Separation Axioms" American Academic & Scholarly Research Journal Vol. 4, No. 2, March (2012). - [5]. Mashhour A.S. and Ghanim M.H."Fuzzy closure spaces" J.Math.Anal.And Appl.106,pp.145-170(1985). - [6]. Chakraborty M. K. and T. M. G. Ahsanullah "Fuzzy topology on fuzzy sets and tolerance topology" Fuzzy Sets and Systems, 45103-108(1992). - Ismail Ibedou," A New Setting of fuzzy separation axioms "Department of Mathematics, Faculty of Science, Benha University, [7]. Benha, (13518), Egypt - [8]. ShymaaAbdAlhassan A " On fuzzy semi-separation Axioms in fuzzy topological space on fuzzy sets"M.Sc Thesis , College of Eduction, Al-Mustansiritah University (2013). - $N.V. Velicko "H-closed topological space" Amer. math. soc. Transl. (2), 78 (1968), \, 103-118.$ - [10]. - Sinha,S.P." separation axioms in fuzzy topological spaces"suzzy sets and system,45:261-270(1992). S.S.Benchalli,R.S.Wali and BasavarajM.Ittanagi "On fuzzy rw-closed sets And fuzzy rw-open sets in fuzzy topological spaces"Int.J.mathematical sciences and Applications , Vol.1,No.2,May 2011. [11]. - Shahla H. K. "On fuzzy Δ open sets in fuzzy topological spaces" M. Sc. Thesis, college of science, Salahddin Univ. (2004). [12]. - [13]. R.UshaParameswari and K.Bageerathi" On fuzzy γ -semi open sets and fuzzy γ -semi closed sets in fuzzy topological spaces" IOSR Journal of mathematics, Vol 7, pp 63-70, (May-Jun. 2013). - M.E. El-shafei and A. Zakari," 0-generalized closed sets in fuzzy topological spaces " The Arabian Journal for science and [14]. Engineering 31(2A) (2006), 197-206. - [15]. Luay A.Al. Swidi, Amed S.A.Oon, Fuzzy γ-open sets and fuzzy γ-closed sets " Americal Journal of Scientific research, 27(2011), 62-