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Abstract: We adopted the method of interpolation of the approximation and collocation of its differential 

equation and with Legendre polynomial of the first kind as basis function to yield a continuous Linear Multistep 

Method with constant step size. The methods are verified to be consistent and satisfies the stability condition. 

Our methods was tested on first order Ordinary Differential Equation (ODE) and found to give better result 

when compared with the analytical solution. 
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I. Introduction 
We consider a numerical method for solving general first order Initial Value Problems (IVPs) of Ordinary 

Differential Equations (ODEs) of the form: 

  𝑦 ′ = 𝑓(𝑥, 𝑦), 𝑦 𝑥0 = 𝑦0                                                  (1) 

Where f is a continuous function and satisfies Lipschitz condition of the existence and uniqueness of solution. A 
differential equation in which the unknown function is a function of two or more independent variable is called 

a Partial Differential Equations (PDEs). Those in which the unknown function is function of only one 

independent variable are called Ordinary Deferential Equations (ODEs). 

Many scholars have worked extensively on the solution of (1) in literatures [1-6]. These authors proposed 

different method ranging from predictor corrector method to block method using different polynomials as basis 

functions, evaluated at some selected points. 

In this paper we proposed three-step and four-step hybrid block method with two off- step points,  using 

Legendre polynomials  evaluated at grids and off-grids points to give a discrete scheme. 

 

II. Derivation Of The Method 
In this section, we intend to develop the Linear Multistep Method (LMM), by interpolating and collocating at 

some selected points. We consider a Legendre approximation of the form; 

𝑦 𝑥 =  𝑎𝑗 𝑝
𝑗  𝑥                                                        (2)

𝑠+𝑟−1

𝑗 =0

 

Where r and s are interpolation and collocation point 

𝑦 ′ 𝑥 =  𝑗𝑎𝑗 𝑝
𝑗−1 𝑥                                                   (3)

𝑠+𝑟−1

𝑗 =0

 

Substituting (3) into (1), we have  

𝑓(𝑥, 𝑦) =  𝑗𝑎𝑗 𝑝
𝑗−1 𝑥                                                 (4)

𝑠+𝑟−1

𝑗 =0

 

 

2.1 Three-Step Method With Two Off-Step Points. 

Interpolating (2) at 𝑥𝑛  and collocating (4) at 𝑥𝑛+𝑠 , 𝑠 = 0,1,
3

2
, 2,

5

2
, 3 give the system of polynomial equation in 

the form . 

                                        𝐴𝑋 = 𝑈                                                                           (5)  
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Solving the above matrix by Gaussian elimination method we obtained the following results, 

 

𝑎0 = 𝑦𝑛 +
3

28
ℎ𝑓𝑛 +3 −

18

35
ℎ𝑓

𝑛+
5

2

−
58

35
ℎ𝑓

𝑛+
3

2
+

71

280
ℎ𝑓𝑛 +

117

70
ℎ𝑓𝑛+1 +

459

280
ℎ𝑓𝑛+2

𝑎1 =
3

56
ℎ𝑓𝑛 +

3

56
ℎ𝑓𝑛 +3 −

12

35
ℎ𝑓

𝑛+
3

2
+

243

280
ℎ𝑓𝑛 +1 +

243

280
ℎ𝑓𝑛+2 +

459

280
ℎ𝑓𝑛+2

𝑎2 = −
1

56
ℎ𝑓𝑛+3 +

18

35
ℎ𝑓

𝑛+
5

2

+
6

7
ℎ𝑓

𝑛+
3

2
−

19

280
ℎ𝑓𝑛 −

45

56
ℎ𝑓𝑛+1 −

27

56
ℎ𝑓𝑛 +2

𝑎3 =
1

16
ℎ𝑓𝑛 +

1

16
ℎ𝑓𝑛 +3 −

4

5
ℎ𝑓

𝑛+
3

2
+

27

80
ℎ𝑓𝑛+1 +

27

80
ℎ𝑓𝑛 +2

𝑎4 =
117

6160
ℎ𝑓𝑛+3 +

54

385
ℎ𝑓

𝑛+
5

2

+
18

77
ℎ𝑓

𝑛+
3

2
−

261

6160
ℎ𝑓𝑛 +

351

6160
ℎ𝑓𝑛+1 −

2511

6160
ℎ𝑓𝑛+2

𝑎5 =
3

140
ℎ𝑓𝑛+3 +

12

35
ℎ𝑓

𝑛+
3

2
+

3

140
ℎ𝑓𝑛 −

27

140
ℎ𝑓𝑛+1 −

27

140
ℎ𝑓𝑛+2      

𝑎6 =
9

308
ℎ𝑓𝑛+3 −

54

385
ℎ𝑓

𝑛+
5

2

−
18

77
ℎ𝑓

𝑛+
3

2
−

9

1540
ℎ𝑓𝑛 +

27

308
ℎ𝑓𝑛+1 +

81

308
ℎ𝑓𝑛 +2

          

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

         (6) 

   

                     

Substituting (6) into (2) we obtained, the LMM as, 

y z = α0 z yn +   β
0

(z)fn+1
3
j=0 + β3

2

 z f
n+

3

2
+ β5

2

(z)f
n+

5

2

   

where  α0 z  and β
0

(z) are continuous coefficients obtained as  

   α0 z = 1  

 

β
0
 z = z −

31

72
z4 −

29

20
z2 +

29

27
z3 +

4

45
z5 −

1

135
z6

β
1
 z =

119

24
z4 +

15

2
z2 −

19

2
z3 −

6

5
z5 +

1

9
z6

β3

2

 z = −
104

9
z4 −

40

3
z2 +

536

27
z3 +

136

45
z5 −

8

27
z6

β
2
 z =

91

8
z4 +

45

4
z2 − 18z3 −

16

5
z5 +

1

3
z6

β5

2

 z = −
24

5
z2 −

16

3
z4 + 8z3 −

8

45
z6 +

8

5
z5

β
3
 z =

71

72
z4 +

5

6
z2 −

77

54
z3 −

14

45
z5 +

1

27
z6

                    

 
 
 
 
 
 
 

 
 
 
 
 
 

           (7) 

                                

 Where  𝑧 =
𝑥−𝑥𝑛

ℎ
  

Equation (7) is known as the continuous scheme. 

 

Evaluating (7) at 𝑥𝑛+𝑠 , 𝑠 = 1,
1

2
, 2,

3

2
, 3   we obtained the following discrete scheme 
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𝑦𝑛+1 = 𝑦𝑛 + ℎ  
11

40
𝑓𝑛 +

673

360
𝑓𝑛+1 −

104

45
𝑓

𝑛+
3

2
+

211

120
𝑓𝑛 +2 −

32

45
𝑓

𝑛+
5

2

+
43

360
𝑓𝑛+3 

𝑦
𝑛+

3

2
= 𝑦𝑛 + ℎ 

35

128
𝑓𝑛 +

1323

640
𝑓𝑛 +1 −

77

40
𝑓

𝑛+
3

2
+

1053

640
𝑓𝑛+2 −

27

40
𝑓

𝑛+
5

2

+
73

640
𝑓𝑛 +3 

𝑦𝑛+2 = 𝑦𝑛 + ℎ 
37

135
𝑓𝑛 +

92

45
𝑓𝑛 +1 −

224

135
𝑓

𝑛+
3

2
+

29

15
𝑓𝑛+2 −

32

45
𝑓

𝑛+
5

2

+
16

145
𝑓𝑛+3 

𝑦
𝑛+

5

2

= 𝑦𝑛 + ℎ  
35

128
𝑓𝑛 +

2375

1152
𝑓𝑛+1 −

125

72
𝑓

𝑛+
3

2
+

875

384
𝑓𝑛 +2 −

35

72
𝑓

𝑛+
5

2

+
125

1152
𝑓𝑛+3 

𝑦𝑛+3 = 𝑦𝑛 + ℎ  
11

40
𝑓𝑛 +

81

40
𝑓𝑛+1 −

8

5
𝑓

𝑛+
3

2
+

81

40
𝑓𝑛+2 +

11

40
𝑓𝑛 +3 

               

 
 
 
 
 
 

 
 
 
 
 

         (8)  

 

Equation (8) is known as the required block method. 

 

2.2 Four-Step Method With Two Off-Step Points 

Following similar procedure above, we interpolate (2) at 𝑥𝑛  and collocation (4) at 

 𝑥𝑛+𝑠 , s =0, 1, 
5

2
, 2,  

7

2
, 4 and 

Evaluating at different grids and off-grid point, we obtain the method as 

 

 

𝑦𝑛+1 = 𝑦𝑛 + ℎ  
2039

7056
𝑓𝑛 +

2047

1512
𝑓𝑛+1 −

958

315
𝑓𝑛 +2 +

4636

946
𝑓

𝑛+
5

2

−
3134

2205
𝑓

𝑛+
7

2
−

3359

15120
𝑓𝑛+4 

𝑦𝑛+2 = 𝑦𝑛 + ℎ 
83

294
𝑓𝑛 +

1598

945
𝑓𝑛 +1 −

172

105
𝑓𝑛+2 +

3392

945
𝑓

𝑛+
5

2

−
302

105
𝑓𝑛 +3 +

832

738
𝑓

𝑛+
7

2
−

341

1890
𝑓𝑛+4 

𝑦𝑛+3 = 𝑦𝑛 + ℎ  
1107

3920
𝑓𝑛 +

473

280
𝑓𝑛+1 −

51

35
𝑓𝑛 +2 +

148

35
𝑓

𝑛+
5

2

−
713

289
𝑓𝑛+3 +

276

245
𝑓

𝑛+
7

2
−

101

560
𝑓𝑛 +4 

𝑦
𝑛+

7

2
= 𝑦𝑛 + ℎ  

217

768
𝑓𝑛 +

5831

3456
𝑓𝑛+1 −

343

240
𝑓𝑛 +2 +

4459

1080
𝑓

𝑛+
5

2

−
4459

1920
𝑓𝑛+3 +

161

120
𝑓

𝑛+
7

2
−

6517

34560
𝑓𝑛+4 

𝑦
𝑛+

5

2

= 𝑦𝑛 + ℎ  

31895

112896
𝑓𝑛 +

40825

24192
𝑓𝑛+1 −

2875

3016
𝑓𝑛 +2 +

5965

1512
𝑓

𝑛+
5

2

−
23875

8064
𝑓𝑛+3

+
4075

3528
𝑓

𝑛+
7

2
−

8875

48384
𝑓𝑛+4

 

  

   
          

 
 
 
 
 
 
 

 
 
 
 
 
 
 

(9)  

 

              𝑦𝑛+4 = 𝑦𝑛 + ℎ 
622

2205
𝑓𝑛 +

320

189
𝑓𝑛+1 −

472

315
𝑓𝑛+2 +

4096

946
𝑓

𝑛+
5

2

−
832

315
𝑓𝑛 +3 +

4096

2206
𝑓

𝑛+
7

2
−  

26

 946
𝑓𝑛 +4                                                                                            

(10)       
               Equation (9) and (10) together form the block method.   

 

III. Analysis Of The Methods. 
 In this section we discuss the local truncation error and order, consistency and zero stability of the scheme 

generated.    

 

3.1 Order And Error Constant  

Let the linear operator 𝐿 𝑦 𝑥 ; ℎ  associated with the block formula be as  

𝐿 𝑦 𝑥 ; ℎ =   𝛼𝑗 𝑦 𝑥𝑛 + 𝑗ℎ − ℎ𝛽𝑗 𝑦
′ 𝑥𝑛 + 𝑗ℎ                             (3.1)𝑘

𝑗=0   

Expanding in Taylor series expansion and comparing the coefficients of ℎ gives  

𝐿 𝑦 𝑥 ; ℎ = 𝐶0𝑦 𝑥 + 𝐶1ℎ𝑦 ′ 𝑥 + 𝐶1ℎ
2𝑦′′ 𝑥 …𝐶𝑝ℎ

𝑝𝑦𝑝 𝑥 + 𝐶𝑝+1ℎ
𝑝+1𝑦𝑝+1 𝑥                               

 

Definition 3.1 
The Linear operator L and the associated continuous LMM (3.1) are said to be of order p if 

𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = 𝐶3 … = 𝐶𝑝 = 0,  𝐶𝑝+1 ≠ 0 is called the error constant. 
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Table 2.1: Features of the block method (8) 
 Order Error Constant 

𝑦𝑛+1           7 
−

47

24192
 

𝑦
𝑛+

3

2

          7 
−

27

14336
 

𝑦𝑛+2          7 
−

29

15120
 

𝑦
𝑛+

5

2

          7 
−

725

387072
 

𝑦𝑛+3          7 
−

9

4480
 

 

Table 2.2: Features of the method (10) and (11) 
 Order Error constant 

𝑦𝑛+4           7 16

6615
 

𝑦𝑛+3           7 31

12544
 

𝑦𝑛+2           7 29

11760
 

𝑦𝑛+1 
       7 

965

33860
 

𝑦
𝑛+

5

2

            7 107725

43342064
 

𝑦
𝑛+

7

2

            7 24

98304
 

 

3.2 Consistent And Zero Stability 

Definition 3.2  

The LMM is said to be consistent if it has order P≥1. 

Definition 3.3 

 The block method is said to be zero stable if the roots 𝑍𝑠 , 𝑠 = 1,2, … , 𝑁 of the characteristic  𝑝(𝑍) defined by  

𝑝 𝑍 = det⁡ 𝑍𝐴0 − 𝐴′  Satisfied |𝑍𝑠| ≤ 1 have the multiplicity not exceeding the order of the differential 

equation, as  ℎ → 0, 𝑝 𝑍 = 𝑍𝑟−𝜇 (𝑧−1)𝜇   

Where 𝜇 is the order of the differential equation 𝑟 is the order of the matrix 𝐴0 and 𝐴′  [2]. 
Putting (8) in matrix form we obtain  
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                     Normalizing the matrix as ℎ → 0  
 

 

                                                𝜌 𝑍 = [𝑍𝐴0 − 𝐴′]  
 

 

                           𝑍4 𝑍 − 1 = 0  
 

                                               𝑍 = 0, 𝑍 = 1  
 

The block method (8) is observed to be zero-stable. 

Equation (9) and (10) in matrix form, and following the same procedure above is found to be zero-stable.  [8] 

 

3.3 Convergence 

The convergence of the continuous hybrid block method is considered in the light of the basic properties 

discussed above in conjunction with the fundamental theorem of Dahlquist [8] for LMM; we state the Dahlquist 
theorem without proof. 

Theorem 3.1 

The necessary and sufficient condition for a linear multistep method to be convergent is for it to be consistent 

and zero stable. 

Following the theorem 3.1 above shows that both methods are convergent. 

 

IV. Numerical Examples 
We now implement our derived block methods, on first order initial value problems. 

In order to test the efficiency of the methods, we employed the following notations in our tables below: 
3S2HBM: 3 Step two off - step Hybrid Block Method. 

4S2HBM: 4 Step two off - step Hybrid Block Method. 

 

Example 4.1 

𝑦 ′ = 5𝑦 , 𝑦 0 = 1, ℎ = 0.01 

Exact solution y(x) = 𝑒5𝑥  
 

Example 4.2 

𝑦 ′ + 𝑦 = 0 , 𝑦 0 = 1, ℎ = 0.1 

Exact solution 𝑦 𝑥 = 𝑒−𝑥  

 

Table 4.1:  Numerical results for example 4.1 
X EXACT 3S2HBM       4S2HBM 

0.0 1.000000000 1.000000000 1.000000000 

0.01 1.051271096 1.051271096 1.051271096 

0.02 1.105170918 1.105170918 1.105170918 

0.03 1.161834243 1.161834243 1.161834243 

0.04 1.221402758 1.221402758 1.221402758 

0.05 1.284025417 1.284025417 1.284025417 

0.06 1.349858808 1.349858808 1.349858807 

0.07 1.419067549 1.419067549 1.419067548 

0.08 1.491824698 1.491824698 1.491824697 

0.09 1.568312185 1.568312186 1.568312185 

0.1 1.648721271 1.648721271 1.648721270 

 

Table 4.2: Comparison of error for example 4.1 
X 3S2HBM 4S2HBM       [7] 

0.01 0.0 0.0 6.2 E -10 

0.02 0.0 0.0 1.1 E -09 
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0.03 0.0 0.0 1.3 E -09 

0.04 0.0 0.0 1.6 E -09 

0.05 0.0 0.0 1.3 E -09 

0.06 0.0 1.0 E -09 4.2 E -10 

0.07 0.0 1.0 E -09 2.4 E -09 

0.08 0.0 1.0 E -09 2.4 E -09 

0.09 1.0 E -09 0.0 2.5 E -09 

0.1 0.0 1.0 E -09 2.3 E -09 

                     

Table 4.3: Numerical results for example 4.2 
X EXACT 3S2HBN            4S2HBM 

0.0 1.000000000 1.000000000 1.000000000 

0.1 0.904837418 0.904837418 0.904837418 

0.2 0.818730753 0.818730753 0.818730753 

0.3 0.740818220 0.740818220 0.740818220 

0.4 0.670320046 0.670320046 0.670320046 

0.5 0.606530659 0.606530660 0.606530660 

0.6 0.548811636 0.548811636 0.548811636 

0.7 0.496575303 0.496585304 0.496583304 

0.8 0.449328964 0.449328964 0.449328965 

0.9 0.406569590 0.406569659 0.406569660 

1.0 0.367879441 0.367879441 0.367579441 

                                

                               Table 4.4: Comparison of Errors for example 4.2 

 

 

V. Conclusion 
The desirable property of a numerical solution is to behave like the theoretical solution of the problem 

which can be seen in the above result. The implementation of the scheme is done with the aid of maple software. 

The method are tested and found to be consistent, zero stable and convergent. We implement the methods on 
two numerical examples and the numerical evidences shows that the methods are accurate and effective and 

therefore favourable. 
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X           3S2HBM 4S2HBM 

 0.0            0.0  0.0 

 0.1            0.0  0.0 

 0.2            0.0  0.0 

 0.3           1.0 E -09  1.0  E -09 

 0.4           0.0 1.0 E -09 

 0.5           1.2 E -03  1.2 E -03 

 0.6           0.0  1.0 E -09 
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0.0        0.0  1.0 E -09 


