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Abstract: We will discuss an inventory model is investigates with variable demand rate and time dependent 

deteriorating items.In this study, we have taken shortages in inventory are allowed and fully backlogged. This 

model is studied under the condition for decaying items of permissible delay in payments which is most 

important and an outcome of interaction between product and financial markets which arises. This model based 

on time-dependent, holding cost, shortages cost and the combination of model is unique and practical. 

 

I. Introduction 

Trade credit would play an important role in the conduct of business for many reasons. For a supplier 

who offers trade credit, it is also an efficient method to stimulate the demand of the product. For a retailer, it is 
an efficient method of bonding a supplier when the retailer is at the risk of receiving inferior quality goods or 

service and is also an effective means of reducing the cost of holding stocks. 

Teng and Yang (2004) developed a deterministic economic order quantity models with partial 

backlogging when demand and cost are fluctuating with time. Chang, et al. (2001) developed an inventory 

model for deteriorating items with linear trend demand under the condition of permissible delay in payments. 

Teng et al. (2002) has discussed inventory model for deteriorating items with time varying demand and partially 

backlogging. 

 

II. Formulation And Solution Of The Model 
To discussan inventory model with the same assumptions as adopted by Vashistha (17), except the time 

dependent demand, the inflation and time-discounting.  

The inventory system is governed by the following differential equations in the interval (0, T) are 

q′ t + αβtβ−1q t =  − a + bt + ct2 ,                            0≤ t ≤ μ…(1) 

q′ t + αβtβ−1q t = − a +  b + cμ t , μ ≤ t ≤ t1…(2) 
And 

 

q′ t =  −aθ,               t1 ≤ t ≤ T…(3) 
 

With the condition q (0) =S and q (t1) =0                                                                 …(4) 

Solution of equations (1) and (2) by using (4) are giving by                                q t =  at + b
t2

2
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3
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From (5) and (6), we get 
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Using (7) and (5) becomes 
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Also the solution of equation (3) by using (4) is given by 

q t =  −θa(t − t1)t1 ≤ t ≤ T…(9) 
 

The holding cost during the period (0,𝐭𝟐) is given by  

HC =h[ q(t)
μ

0
e−rt dt +  q(t)e−rt dt]
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The deterioration cost during the period (0,𝐭𝟏) is given by 

DC= d[ αβtβ−1e−rt q t dt +  αβtβ−1e−rtt1
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The shortage cost during the period (𝐭𝟏, 𝐓) is given by 

SC= -s[ q(t)e−rt dt
T

t1
] 

     =
sθa
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The opportunity cost due to lost sales during the period (𝐭𝟏, 𝐓) is given by 

LSC= l a(1 − θ)
T

t1
e−rt dt 

       =
la (1−θ)

r
[e−rt1 − e−rT ]…(13)   

 

The ordering cost is given by 

OC=A                                                                                                                               …(14)  

 

The total cost of the system is given by  

 

The total average cost of the inventory system per unit time is given by 
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III. Approximation Solution Procedure 
The total average cost has the two variables t1 and T. To minimize the total average cost , the optimal values of  

t1 and T can be obtained by solving the following equations simultaneously 

 
∂CA (t1 , T)

∂t1

= 0                                                                                                   …… . (16) 
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∂CA (t1 , T)

∂T
= 0                                                                                                    … . . (17) 

Provided, they satisfy the following conditions 
∂2CA (t1 ,T)

∂t1
2 > 0, 

∂2CA (t1 ,T)

∂T2 > 0 

(
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∂t1
2 )(
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∂t1 ∂T
 > 0                                             ……(18) 

 

The numerical solution of the equations (16), (17) and (18) can be obtained by using suitable computational 

numerical method. 

 

Numerical Example 

a = 50, s =25, b = 20, h = 1, c = 10, d = 20, C = 200, l =10, μ = 1, α = .10, β = 3, r = .2,θ = .56, H = 10 in 

appropriate units. 

 

IV. Results 
In this study one of the main objectives a volume flexible production inventory model is developed for 

perishable items having linear demand. Then with the help of this model demand rate is taken as quadratic 

function of time and production rate is decision variable and total inventory cost is obtained. The total cost 

obtained than can be used to obtain a total inventory average cost, using by calculus techniques. 
 

V. Discussion 
The inventory model is developed for deteriorating items with time dependent demand Rate. The unit 

inventory cost is depending upon material cost, labor cost and tool or die Cost. Shortages with partially 

backlogged are allowed a very natural phenomenon in Inventory model. The suggested model and study will 

help retailers in deciding their Optimal ordering quantity to have minimum inventory cost. 

 

VI. Conclusion 
This model is very most useful in their retail business. The result is our model, the fresh product time 

increases the order quantity and total cost are decreases. It can we develop an inventory model with time 

dependent deterioration, the effect of inflation and time value of money in formulating the inventory 

replenishment policy.We have taken shortages in inventory are allowed and fully backlogged. It can be used for 

electronic components, fashion apparel etc. Furtherwe have considered demand rate is an exponential increasing 

function of time, the small change in time, demand is increasing a lot. 
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